Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794030

RESUMO

We consider the problem of learned speech transmission. Existing methods have exploited joint source-channel coding (JSCC) to encode speech directly to transmitted symbols to improve the robustness over noisy channels. However, the fundamental limit of these methods is the failure of identification of content diversity across speech frames, leading to inefficient transmission. In this paper, we propose a novel neural speech transmission framework named NST. It can be optimized for superior rate-distortion-perception (RDP) performance toward the goal of high-fidelity semantic communication. Particularly, a learned entropy model assesses latent speech features to quantify the semantic content complexity, which facilitates the adaptive transmission rate allocation. NST enables a seamless integration of the source content with channel state information through variable-length joint source-channel coding, which maximizes the coding gain. Furthermore, we present a streaming variant of NST, which adopts causal coding based on sliding windows. Experimental results verify that NST outperforms existing speech transmission methods including separation-based and JSCC solutions in terms of RDP performance. Streaming NST achieves low-latency transmission with a slight quality degradation, which is tailored for real-time speech communication.

2.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339674

RESUMO

Wireless Sensor Networks (WSNs) have emerged as an efficient solution for numerous real-time applications, attributable to their compactness, cost-effectiveness, and ease of deployment. The rapid advancement of 5G technology and mobile edge computing (MEC) in recent years has catalyzed the transition towards large-scale deployment of WSN devices. However, the resulting data proliferation and the dynamics of communication environments introduce new challenges for WSN communication: (1) ensuring robust communication in adverse environments and (2) effectively alleviating bandwidth pressure from massive data transmission. In response to the aforementioned challenges, this paper proposes a semantic communication solution. Specifically, considering the limited computational and storage resources of WSN devices, we propose a flexible Attention-based Adaptive Coding (AAC) module. This module integrates window and channel attention mechanisms, dynamically adjusts semantic information in response to the current channel state, and facilitates adaptation of a single model across various Signal-to-Noise Ratio (SNR) environments. Furthermore, to validate the effectiveness of this approach, the paper introduces an end-to-end Joint Source Channel Coding (JSCC) scheme for image semantic communication, employing the AAC module. Experimental results demonstrate that the proposed scheme surpasses existing deep JSCC schemes across datasets of varying resolutions; furthermore, they validate the efficacy of the proposed AAC module, which is capable of dynamically adjusting critical information according to the current channel state. This enables the model to be trained over a range of SNRs and obtain better results.

3.
Entropy (Basel) ; 24(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36554247

RESUMO

Semantic communication is not focused on improving the accuracy of transmitted symbols, but is concerned with expressing the expected meaning that the symbol sequence exactly carries. However, the measurement of semantic messages and their corresponding codebook generation are still open issues. Expansion, which integrates simple things into a complex system and even generates intelligence, is truly consistent with the evolution of the human language system. We apply this idea to the semantic communication system, quantifying semantic transmission by symbol sequences and investigating the semantic information system in a similar way as Shannon's method for digital communication systems. This work is the first to discuss semantic expansion and knowledge collision in the semantic information framework. Some important theoretical results are presented, including the relationship between semantic expansion and the transmission information rate. We believe such a semantic information framework may provide a new paradigm for semantic communications, and semantic expansion and knowledge collision will be the cornerstone of semantic information theory.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa