Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Mol Plant Microbe Interact ; 37(5): 432-444, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38265007

RESUMO

Zymoseptoria tritici, the causal agent of Septoria tritici blotch, is one of Europe's most damaging wheat pathogens, causing significant economic losses. Genetic resistance is a common strategy to control the disease, Stb6 being a resistance gene used for more than 100 years in Europe. This study investigates the molecular mechanisms underlying Stb6-mediated resistance. Utilizing confocal microscopy imaging, we determined that Z. tritici epiphytic hyphae mainly accumulate the corresponding avirulence factor AvrStb6 in close proximity to stomata. Consequently, the progression of AvrStb6-expressing avirulent strains is hampered during penetration. The fungal growth inhibition co-occurs with a transcriptional reprogramming in wheat characterized by an induction of immune responses, genes involved in stomatal regulation, and cell wall-related genes. Overall, we shed light on the gene-for-gene resistance mechanisms in the wheat-Z. tritici pathosystem at the cytological and transcriptomic level, and our results highlight that stomatal penetration is a critical process for pathogenicity and resistance. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Proteínas Fúngicas , Hifas , Doenças das Plantas , Estômatos de Plantas , Triticum , Triticum/microbiologia , Triticum/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Ascomicetos/genética , Estômatos de Plantas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas , Resistência à Doença/genética , Virulência , Interações Hospedeiro-Patógeno , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Virulência/metabolismo , Fatores de Virulência/genética
2.
BMC Plant Biol ; 24(1): 682, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020304

RESUMO

BACKGROUND: Septoria tritici blotch (STB) is considered to be one of the most destructive foliar wheat diseases and is caused by Zymoseptoria tritici. The yield losses are severe and in Northwestern Europe can reach up to 50%. The efficacy of fungicides is diminishing due to changes in the genetic structure of the pathogen. Therefore, resistance breeding is the most effective strategy of disease management. Recently, genome-wide association studies (GWAS) have become more popular due to their robustness in dissecting complex traits, including STB resistance in wheat. This was made possible by the use of large mapping populations and new sequencing technologies. High-resolution mapping benefits from historical recombination and greater allele numbers in GWAS. RESULTS: In our study, 217 wheat genotypes of diverse origin were phenotyped against five Z. tritici isolates (IPO323, IPO88004, IPO92004, IPO86036 and St1-03) and genotyped on the DArTseq platform. In polytunnel tests two disease parameters were evaluated: the percentage of leaf area covered by necrotic lesions (NEC) and the percentage of leaf area covered by lesions bearing pycnidia (PYC). The disease escape parameters heading date (Hd) and plant height (Ht) were also measured. Pearson's correlation showed a positive effect between disease parameters, providing additional information. The Structure analysis indicated four subpopulations which included from 28 (subpopulation 2) to 79 genotypes (subpopulation 3). All of the subpopulations showed a relatively high degree of admixture, which ranged from 60% of genotypes with less than 80% of proportions of the genome attributed to assigned subpopulation for group 2 to 85% for group 4. Haplotype-based GWAS analysis allowed us to identify 27 haploblocks (HBs) significantly associated with analysed traits with a p-value above the genome-wide significance threshold (5%, which was -log10(p) > 3.64) and spread across the wheat genome. The explained phenotypic variation of identified significant HBs ranged from 0.2% to 21.5%. The results of the analysis showed that four haplotypes (HTs) associated with disease parameters cause a reduction in the level of leaf coverage by necrosis and pycnidia, namely: Chr3A_HB98_HT2, Chr5B_HB47_HT1, Chr7B_HB36_HT1 and Chr5D_HB10_HT3. CONCLUSIONS: GWAS analysis enabled us to identify four significant chromosomal regions associated with a reduction in STB disease parameters. The list of valuable HBs and wheat varieties possessing them provides promising material for further molecular analysis of resistance loci and development of breeding programmes.


Assuntos
Ascomicetos , Resistência à Doença , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Doenças das Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Mapeamento Cromossômico , Fenótipo , Genoma de Planta
3.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38115638

RESUMO

AIMS: Biocontrol products based on microorganisms and natural substances are promising alternatives to chemical pesticides that could contribute to develop a more sustainable agriculture. Here, we investigated the potential of cell-free culture filtrates (CFCFs) from two strains of the Bacillus subtilis group to inhibit Zymoseptoria tritici, a major fungal pathogen of wheat. METHODS AND RESULTS: Foliar application of CFCFs from Bacillus velezensis GA1 and Bacillus sp. III1 on wheat seedlings in a greenhouse strongly reduced Z. tritici disease severity (>90%). In vitro bioassays showed that CFCFs completely inhibited the spore germination and fungal growth (100%). In planta cytological investigations revealed a significant impact of the treatments on both spore germination (∼40% inhibition) and fungal growth of Z. tritici (>80% inhibition). High Performance Liquid Chromatography (HPLC) analysis showed that the Bacillus strains displayed different lipopeptide profiles. The CFCF obtained from Bacillus GA1 contained 90 mg l-1 of iturin A + surfactins + fengycins and the CFCF obtained from Bacillus sp. III1 contained 25 mg l-1 of mojavensin A (iturin family) + surfactins + fengycins. CONCLUSIONS: Strains of the B. subtilis group producing different iturins could provide several CFCF-based solutions for the biocontrol of Z. tritici.


Assuntos
Ascomicetos , Bacillus , Triticum , Triticum/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Lipopeptídeos/farmacologia
4.
New Phytol ; 238(4): 1562-1577, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36529883

RESUMO

Successful host colonization by plant pathogens requires the circumvention of host defense responses, frequently through sequence modifications in secreted pathogen proteins known as avirulence factors (Avrs). Although Avr sequences are often polymorphic, the contribution of these polymorphisms to virulence diversity in natural pathogen populations remains largely unexplored. We used molecular genetic tools to determine how natural sequence polymorphisms of the avirulence factor Avr3D1 in the wheat pathogen Zymoseptoria tritici contributed to adaptive changes in virulence. We showed that there is a continuous distribution in the magnitude of resistance triggered by different Avr3D1 isoforms and demonstrated that natural variation in an Avr gene can lead to a quantitative resistance phenotype. We further showed that homologues of Avr3D1 in two nonpathogenic sister species of Z. tritici are recognized by some wheat cultivars, suggesting that Avr-R gene-for-gene interactions can contribute to nonhost resistance. We suggest that the mechanisms underlying host range, qualitative resistance, and quantitative resistance are not exclusive.


Assuntos
Resistência à Doença , Especificidade de Hospedeiro , Especificidade de Hospedeiro/genética , Resistência à Doença/genética , Polimorfismo Genético , Virulência/genética , Fenótipo , Doenças das Plantas/genética
5.
Phytopathology ; 113(10): 1876-1889, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37097642

RESUMO

Diversification of cropping systems is a lever for the management of epidemics. However, most research to date has focused on cultivar mixtures, especially for cereals, even though crop mixtures can also improve disease management. To investigate the benefits of crop mixtures, we studied the effect of different crop mixture characteristics (i.e., companion proportion, sowing date, and traits) on the protective effect of the mixture. We developed a SEIR (Susceptible, Exposed, Infectious, Removed) model of two damaging wheat diseases (Zymoseptoria tritici and Puccinia triticina), which were applied to different canopy components, ascribable to wheat and a theoretical companion crop. We used the model to study the sensitivity of disease intensity to the following parameters: wheat-versus-companion proportion, companion sowing date and growth, and architectural traits. For both pathogens, the companion proportion had the strongest effect, with 25% of companion reducing disease severity by 50%. However, changing companion growth and architectural traits also significantly improved the protective effect. The effect of companion characteristics was consistent across different weather conditions. After decomposing the dilution and barrier effects, the model suggested that the barrier effect is maximized for an intermediate proportion of companion crop. Our study thus supports crop mixtures as a promising strategy to improve disease management. Future studies should identify real species and determine the combination of host and companion traits to maximize the protective effect of the mixture. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Folhas de Planta , Triticum , Folhas de Planta/microbiologia , Triticum/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Tempo (Meteorologia) , Grão Comestível
6.
Phytopathology ; 113(10): 1924-1933, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37261424

RESUMO

Managing pathogen damage in wheat production is important for sustaining yields. Fungal plant pathogen genomes encode many small secreted proteins acting as effectors that play key roles in the successful colonization of host tissue and triggering host defenses. AvrStb6 is the first described Zymoseptoria tritici avirulence effector, which triggers Stb6-mediated immunity in the wheat host in a gene-for-gene manner. Evasion of major resistance factors such as Stb6 challenges deployment decisions on wheat cultivars. In this study, we analyzed the evolution of the AvrStb6 effector in Iranian isolates of Z. tritici. In total, 78 isolates were isolated and purified from 30 infected wheat specimens collected from the East Azerbaijan and Ardabil provinces of Iran. The pathogenicity of all isolates was evaluated on the susceptible wheat cultivar 'Tajan'. A subset of 40 isolates were also tested for pathogenicity on the resistant cultivar 'Shafir' carrying Stb6. Genetic diversity at the AvrStb6 locus was analyzed for 14 isolates covering the breadth of the observed disease severity. The AvrStb6 sequence variation was high, with virulent isolates carrying highly diverse AvrStb6 haplotypes. In an analysis including more than 1,000 additional AvrStb6 sequences from a global set of isolates, we found that virulent isolates carried AvrStb6 haplotypes either clustering with known virulent haplotypes on different continents or constituting previously unknown haplotypes. Furthermore, we found that AvrStb6 variants from avirulent isolates clustered with known avirulent genotypes from Europe. Our study highlights the relevance of AvrStb6 for Z. tritici virulence and the exceptional global diversity patterns of this effector.


Assuntos
Variação Genética , Doenças das Plantas , Irã (Geográfico) , Virulência/genética , Doenças das Plantas/microbiologia
7.
Plant Dis ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526486

RESUMO

Wheat (Triticum aestivum) is the third most cultivated field crop in Paraguay; it is grown on over 450,000 hectares with an annual production of 927,776 tons (fao.org/faostat). In 1952, Septoria tritici blotch (STB) was associated with the fungus Septoria tritici solely based on microscopic observation of conidia (Viedma and Delgado 1987). However, no morphometric or molecular studies have been performed in Paraguay up to date. Over the following decades, STB epidemic outbreaks were recorded, with a reduction in wheat production of up to 70% (Viedma and Delgado 1987). During winter 2021, leaf blotch symptoms were observed with an incidence above 50% in wheat fields in Capitán Miranda, Itapúa, Paraguay. Scattered, spherical, buried, and light brown necrotic spots with dark edges were observed on the leaves. Pycnidia with prominent central ostiole were observed. Leaves with symptoms were washed with 1% sodium hypochlorite for 1 min, rinsed with sterile distilled water, and incubated in wet chambers to induce sporulation of the fungus. Pycnidia produced greyish to white cirri. Isolated conidia were thin, elongated, and hyaline, ranging from 26.9-72.7 × 1.5-2.9 µm with one to three septa. Monosporic colonies on potato dextrose agar (PDA, ; Difco laboratories, Detroit, MI) media varied in color from white to pink, dark gray to black, or black with stroma-like structures. Based on morphology, the fungus was characterized as Zymoseptoria tritici (Hoorne et al. 2002; Gilchrist-Saavedra et al. 2005). Fungal DNA was extracted from mycelia, and the internal transcribed spacer (ITS), translation elongation factor 1-α (TEF1-α), 28S rRNA gene (LSU), actin gene (act), calmodulin (CaM) were amplified using ITS1/ITS4, EF1-728F/EF-2, LSU1Fd/ LR5, ACT-512F/ACT-783R, CAL-228F/CAL737R primers, respectively. PCR amplicons were sequenced at Macrogen (Seoul, Republic of Korea) and deposited in the NCBI GenBank database (ITS: OQ360718; TEF1-α: OQ999044, LSU: OQ996413, act: OQ999046, CaM: OQ999045). Sequences were aligned with several isolates of Septoria spp. previously reported (Verkley et al. 2013; Stukenbrock et al. 2012) using ClustalW. The alignments were concatenated with Bioedit (Hall 1999). The UPGMA method with 1,000 bootstrap replications, was used to construct the phylogenetic tree using MEGA11 with Readeriella mirabilis as the outgroup. The isolate from Paraguay grouped into the Zymoseptoria tritici clade with 96% bootstrap support. To confirm pathogenicity, ten wheat plants cv. Itapúa 80 were grown in pots for three weeks in growth chambers (22 ± 2°C; 16 h photoperiod). Subsequently, these plants were inoculated with 1×107 conidia ml-1 suspension, and ten non-inoculated plants served as control. Seven days after inoculation (DAI), symptoms were observed displaying oval necrotic lesions and approximately 14 DAI abundant pycnidia were observed on and around the lesions. Segments of symptomatic leaves were placed in moisture chambers overnight to enhance cirri development. Conidia were mounted on a slide and observed under the compound microscope. Individual cirrhus were transferred to plates containing PDA and produced colonies like those used in the inoculation (Hoorne et al. 2002). We confirmed that the causal agent of STB from wheat fields in Paraguay was Zymoseptoria tritici. This pathogen causes annual wheat disease epidemics in Paraguay; therefore, optimizing surveillance for early detection and understanding its distribution will improve integrated management.

8.
New Phytol ; 233(6): 2573-2584, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35081666

RESUMO

Agroecosystem diversification through increased crop genetic diversity could provide multiple services such as improved disease control or increased productivity. However, we still poorly understand how genetic diversity affects agronomic performance. We grew 179 inbred lines of durum wheat in pure stands and in 202 binary mixtures in field conditions. We then tested the effect of allelic richness between genotypes and genotype richness on grain yield and Septoria tritici blotch disease. Allelic richness was tested at 19K single nucleotide polymorphisms distributed along the durum wheat genome. Both genotype richness and allelic richness could be equal to 1 or 2. Mixtures were overall more productive and less diseased than their pure stand components. Yet, we identified one locus at which allelic richness between genotypes was associated with increased disease severity and decreased grain yield. The effect of allelic richness at this locus was stronger than the effect of genotype richness on grain yield (-7.6% vs +5.7%). Our results suggest that positive effects of crop diversity can be reversed by unfavourable allelic associations. This highlights the need to integrate genomic data into crop diversification strategies. More generally, investigating plant-plant interactions at the genomic level is promising to better understand biodiversity-ecosystem functioning relationships.


Assuntos
Ecossistema , Triticum , Alelos , Biodiversidade , Genótipo , Triticum/genética
9.
Mol Biol Rep ; 49(12): 11563-11571, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36097116

RESUMO

BACKGROUND: Wheat is one of the most important staple crops produced worldwide. Its susceptibility to plant diseases reduces its production significantly. One of the most important diseases of wheat is septoria tritici blotch, a devastating disease observed in fields with wet and temperate conditions. Z. tritici secretes effector proteins to influence the host's defense mechanisms, as is typical of plant pathogens. In this investigation, we evaluated the pathogenicity of some Zymoseptoria tritici effector candidate genes having a signal peptide for secretion with no known function. METHODS AND RESULTS: Three genes named Mycgr3G104383, Mycgr3G104444 and Mycgr3G105826 were knocked out separately through homologous recombination, generating Z. tritici IPO323 mutants lacking the functional copy of the corresponding genes. While KO1 and KO3 mutants did not show any significant differences during phenotypic and virulence investigations, the KO2 mutant generated exclusively macropycnidiospores in artificial media, different from wild-type IPO323 which produce only micropycidiospores. The mycelial growth capability of KO2 was also severely attenuated in all of the investigated growth conditions. These changes were observed independent of growth media and growth temperatures, implying that changes were genetic and inherited through generations. Virulence of knockout mutants in wheat leaves was observed to be similar to the wild-type IPO323. CONCLUSION: Understanding the biology of Z. tritici and its interactions with wheat will reveal new strategies to fight septoria tritici blotch, enabling breeding wheat cultivars resistant to a broader spectrum of Z. tritici strains. Furthermore, gene knockout via homologous recombination proved to be a powerful tool for discovering novel gene functions.


Assuntos
Ascomicetos , Melhoramento Vegetal , Ascomicetos/genética , Doenças das Plantas/genética , Triticum/genética
10.
Plant Dis ; 106(5): 1408-1418, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34978870

RESUMO

The present study aimed to evaluate the potential of the laminarin-based formulation Vacciplant to protect and induce resistance in wheat against Zymoseptoria tritici, a major pathogen on this crop. Under greenhouse conditions, a single foliar spraying of the product 2 days before inoculation with Z. tritici reduced disease severity and pycnidium density by 42 and 45%, respectively. Vacciplant exhibited a direct antifungal activity on Z. tritici conidial germination both in vitro and in planta. Moreover, it reduced in planta substomatal colonization as well as pycnidium formation on treated leaves. Molecular investigations revealed that Vacciplant elicits but did not prime the expression of several wheat genes related to defense pathways, including phenylpropanoids (phenylalanine ammonia-lyase and chalcone synthase), octadecanoids (lipoxygenase and allene oxide synthase), and pathogenesis-related proteins (ß-1,3-endoglucanase and chitinase). By contrast, it did not modulate the expression of oxalate oxidase gene involved in the reactive oxygen species metabolism. Ultrahigh-performance liquid chromatography-mass spectrometry analysis indicated limited changes in leaf metabolome after product application in both noninoculated and inoculated conditions, suggesting a low metabolic cost associated with induction of plant resistance. This study provides evidence that the laminarin-based formulation confers protection to wheat against Z. tritici through direct antifungal activity and elicitation of plant defense-associated genes.


Assuntos
Antifúngicos , Triticum , Antifúngicos/farmacologia , Ascomicetos , Glucanos , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
11.
Plant Dis ; 106(12): 3083-3090, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35612573

RESUMO

In the semiarid regions of North Dakota and Montana, low annual precipitation favors production of high-quality durum wheat (Triticum turgidum subsp. durum). However, conducive weather conditions for disease epidemics have occurred more frequently in recent years. Modification of planting date can reduce disease risk by decreasing the timeframe in which a susceptible crop overlaps with conducive disease conditions. The effect of planting date on fungal leaf spotting diseases (leaf spot), ergot, Fusarium head blight (FHB), and yield of durum was evaluated in 11 experiments across four sites in eastern Montana and western North Dakota. Six durum cultivars with differing levels of susceptibility to leaf spot and FHB were planted at three planting dates from 2017 to 2019. Early planting maximized yield and influenced ergot incidence. Although there was no effect of planting date, reduced susceptibility to leaf spot and FHB was associated with a reduction in leaf spotting disease severity and deoxynivalenol, respectively, in the harvested grain. Growers in the semiarid regions of these states should prioritize the selection of disease-resistant cultivars to help manage sporadic disease outbreaks and continue to plant early to maximize yield.


Assuntos
Fusarium , Triticum , Triticum/microbiologia , Doenças das Plantas/microbiologia , North Dakota , Montana
12.
Phytopathology ; 111(9): 1583-1593, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33586995

RESUMO

This work established a hyperspectral library of important foliar diseases of wheat induced by different fungal pathogens, representing a time series from infection to symptom appearance for the purpose of detecting spectral changes. The data were generated under controlled conditions at the leaf scale. The transition from healthy to diseased leaf tissue was assessed, and spectral shifts were identified and used in combination with histological investigations to define developmental stages in pathogenesis for each disease. The spectral signatures of each plant disease that indicate a specific developmental stage during pathogenesis, defined as turning points, were combined into a spectral library. Machine learning analysis methods were applied and compared to test the potential of this library to detect and quantify foliar diseases in hyperspectral images. All evaluated classifiers had high accuracy (≤99%) for the detection and identification of both biotrophic and necrotrophic fungi. The potential of applying spectral analysis methods in combination with a spectral library for the detection and identification of plant diseases is demonstrated. Further evaluation and development of these algorithms should contribute to a robust detection and identification system for plant diseases at different developmental stages and the promotion and development of site-specific management techniques for plant diseases under field conditions.


Assuntos
Doenças das Plantas , Triticum
13.
Plant Dis ; 105(2): 251-254, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33297718

RESUMO

Zymoseptoria tritici is a fungal pathogen causing losses in wheat yields. Here, we present new primer sets for species-specific identification of this microorganism in wheat leaf samples using conventional PCR. Primer sets were validated in silico using tools available in genetic databases. Furthermore, in vitro tests were also carried out on 190 common wheat samples with visual symptoms of Septoria tritici blotch (STB) collected in Poland in three growing seasons (2015, 2016, 2017). The designed primer sets showed full hybridization to the available genetic resources deposited in the NCBI GenBank database, and their high specificity and sensitivity were demonstrated on wheat leaf samples and selected fungal strains.


Assuntos
Ascomicetos , Triticum , Ascomicetos/genética , Doenças das Plantas , Polônia
14.
Plant Dis ; 105(1): 169-174, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33170771

RESUMO

Zymoseptoria tritici is the causal agent of Septoria tritici blotch (STB), a disease of wheat (Triticum aestivum) that results in significant yield loss worldwide. Z. tritici's life cycle, reproductive system, effective population size, and gene flow put it at high likelihood of developing fungicide resistance. Succinate dehydrogenase inhibitor (SDHI) fungicides (FRAC code 7) were not widely used to control STB in the Willamette Valley until 2016. Field isolates of Z. tritici collected in the Willamette Valley at dates spanning the introduction of SDHI (2015 to 2017) were screened for sensitivity to four SDHI active ingredients: benzovindiflupyr, penthiopyrad, fluxapyroxad, and fluindapyr. Fungicide sensitivity changes were determined by the fungicide concentration at which fungal growth is decreased by 50% (EC50) values. The benzovindiflupyr EC50 values increased significantly, indicating a reduction in sensitivity, following the adoption of SDHI fungicides in Oregon (P < 0.0001). Additionally, significant reduction in cross-sensitivity among SDHI active ingredients was also observed with a moderate and significant relationship between penthiopyrad and benzovindiflupyr (P = 0.0002) and a weak relationship between penthiopyrad and fluxapyroxad (P = 0.0482). No change in cross-sensitivity was observed with fluindapyr, which has not yet been labeled in the region. The results document a decrease in SDHI sensitivity in Z. tritici isolates following the introduction of the active ingredients to the Willamette Valley. The reduction in cross-sensitivity observed between SDHI active ingredients highlights the notion that careful consideration is required to manage fungicide resistance and suggests that within-group rotation is insufficient for resistance management.


Assuntos
Fungicidas Industriais , Ascomicetos , Farmacorresistência Fúngica , Fungicidas Industriais/farmacologia , Norbornanos , Oregon , Doenças das Plantas , Pirazóis , Succinato Desidrogenase/genética , Ácido Succínico
15.
Fungal Genet Biol ; 141: 103413, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32442667

RESUMO

Septoria tritici blotch (STB), caused by Zymoseptoria tritici (formerly: Mycosphaerella graminicola or Septoria tritici), is one of the most devastating diseases of wheat globally. Understanding genetic diversity of the pathogen has supreme importance in developing best management strategies. However, there is dearth of information on the genetic structure of Z. tritici populations in Ethiopia. Therefore, the present study was targeted to uncover the genetic diversity and population structure of Z. tritici populations from the major wheat-growing areas of Ethiopia. Totally, 182 Z. tritici isolates representing eight populations were analyzed with 14 microsatellite markers. All the microsatellite loci were polymorphic and highly informative, and hence useful genetic tools to depict the genetic diversity and population structure of the pathogen. A wide range of diversity indices including number of observed alleles, effective number of alleles, Shannon's diversity index, number of private alleles, Nei's gene diversity and percentage of polymorphic loci (PPL) were computed to determine genetic variation within populations. A high within-populations genetic diversity was confirmed with gene diversity index and PPL values ranging from 0.34 - 0.58 and 79-100% with overall mean of 0.45 and 94%, respectively. Analysis of molecular variance (AMOVA) revealed a moderate genetic differentiation where 92% of the total genetic variation resides within populations, leaving only 8% among populations. Cluster (UPGMA), PCoA and STRUCTURE analyses did not group the populations into sharply genetically distinct clusters according to their geographical origins, likely due to high gene flow (Nm = 5.66) and reproductive biology of the pathogen. All individual samples shared alleles from two subgroups (K = 2) evidencing high potential of genetic admixture. In conclusion, the microsatellite markers used in the present study were highly informative and thus, helped to dissect the genetic structures of Z. tritici populations in Ethiopia. Among the studied populations, those of East Shewa, Arsi, South West Shewa and Bale showed a high genetic diversity, and hence these areas can be considered as hot spots for investigations planned on the pathogen and host-pathogen interactions. Therefore, the present study not only enriches missing information in Ethiopia but also provides new insights into the epidemiology and genetic structure of Z. tritici in Africa where the agro-climatic conditions and the wheat cropping systems are different from other parts of the world. Such baseline information is useful for designing and implementing durable and effective management strategies.


Assuntos
Ascomicetos/genética , Variação Genética/genética , Genética Populacional , Repetições de Microssatélites/genética , Resistência à Doença/genética , Etiópia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
16.
Phytopathology ; 110(6): 1208-1215, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32133920

RESUMO

In planta growth of Zymoseptoria tritici, causal agent of Septoria tritici blotch of wheat, during the infection process has remained an understudied topic due to the long symptomless latent period before the emergence of fruiting bodies. In this study, we attempted to understand the relationship between in planta growth of Z. tritici relative to the primary components of aggressiveness, i.e., latent period and pycnidia coverage in regard to contrasting host resistance. We tested isolates collected from Ireland against the susceptible cultivar Gallant and cultivar Stigg, which has strong partial resistance. A clear isolate-host interaction effect (F = 3.018; P = 0.005, and F = 6.008; P < 0.001) for latent period and pycnidia coverage, respectively, was identified. Furthermore, during the early infection phase of latency from 5 to 11 days postinoculation (dpi), in planta growth rate of fungal biomass was significantly (F = 30.06; P < 0.001) more affected by host resistance than isolate specificity (F = 1.27; P = 0.27), indicating the importance of host resistance in the early infection phase. In planta Z. tritici growth rates in cultivar Gallant spiked between 11 and 16 dpi followed by a continuous fall onward, whereas in cultivar Stigg it was slowly progressive in nature. From correlation and regression analysis, we found that the in planta growth rate preceding the average latent period of cultivar Gallant has more influence on latency duration and pycnidia production. Likewise, correlation between component of aggressiveness and in planta growth rate of pathogen supports our understanding of aggressiveness to be driven by the pathogen's multiplication capacity within host tissue.


Assuntos
Ascomicetos , Infecções , Humanos , Doenças das Plantas , Triticum
17.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352763

RESUMO

Generating genomics-driven knowledge opens a way to accelerate the resistance breeding process by family or population mapping and genomic selection. Important prerequisites are large populations that are genomically analyzed by medium- to high-density marker arrays and extensive phenotyping across locations and years of the same populations. The latter is important to train a genomic model that is used to predict genomic estimated breeding values of phenotypically untested genotypes. After reviewing the specific features of quantitative resistances and the basic genomic techniques, the possibilities for genomics-assisted breeding are evaluated for six pathosystems with hemi-biotrophic fungi: Small-grain cereals/Fusarium head blight (FHB), wheat/Septoria tritici blotch (STB) and Septoria nodorum blotch (SNB), maize/Gibberella ear rot (GER) and Fusarium ear rot (FER), maize/Northern corn leaf blight (NCLB). Typically, all quantitative disease resistances are caused by hundreds of QTL scattered across the whole genome, but often available in hotspots as exemplified for NCLB resistance in maize. Because all crops are suffering from many diseases, multi-disease resistance (MDR) is an attractive aim that can be selected by specific MDR QTL. Finally, the integration of genomic data in the breeding process for introgression of genetic resources and for the improvement within elite materials is discussed.


Assuntos
Resistência à Doença/genética , Grão Comestível/genética , Genômica/métodos , Interações Hospedeiro-Patógeno/genética , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Zea mays/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/microbiologia , Doenças das Plantas/microbiologia , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
18.
Fungal Genet Biol ; 105: 16-27, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28579390

RESUMO

Development of novel strategies to control fungal plant pathogens requires understanding of their cellular organisation and biology. Live cell imaging of fluorescent organelle markers has provided valuable insight into various aspects of their cell biology, including invasion strategies in plant pathogenic fungi. Here, we introduce a set of 17 vectors that encode fluorescent markers to visualize the plasma membrane, endoplasmic reticulum (ER), chromosomes, the actin cytoskeleton, peroxisomes and autophagosomes in the wheat pathogen Zymoseptoria tritici. We fused either enhanced green-fluorescent protein (eGFP) or a codon-optimised version of GFP (ZtGFP) to homologues of a plasma membrane-located Sso1-like syntaxin, an ER signalling and retention peptide, a histone H1 homologue, the LifeAct actin-binding peptide, a mitochondrial acetyl-CoA dehydrogenase, a peroxisomal import signal and a homologue of the ubiquitin-like autophagosomal protein Atg8. We expressed these markers in wildtype strain IPO323 and confirmed the specificity of these markers by counterstaining or physiological experiments. This new set of molecular tools will help understanding the cell biology of the wheat pathogen Z. tritici.


Assuntos
Ascomicetos/metabolismo , Biomarcadores/metabolismo , Corantes Fluorescentes/metabolismo , Organelas/metabolismo , Actinas/metabolismo , Ascomicetos/genética , Ascomicetos/ultraestrutura , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Peroxissomos/metabolismo , Triticum/microbiologia
19.
Ecol Appl ; 27(4): 1305-1316, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28266146

RESUMO

Classic evolutionary theory suggests that mutations associated with antimicrobial and pesticide resistance result in a fitness cost in the absence of the selective antimicrobial agent or pesticide. There is experimental evidence to support fitness costs associated with resistance to anti-microbial compounds and pesticides across many biological disciplines, including human pathology, entomology, plant sciences, and plant pathology. However, researchers have also found examples of neutral and increased fitness associated with resistance, where the effect of a given resistance mutation depends on environmental and biological factors. We used Zymoseptoria tritici, a model evolutionary plant pathogenic fungus, to compare the competitive ability of fungicide-resistant isolates to fungicide-sensitive isolates. We conducted four large-scale inoculated winter wheat experiments at Oregon State University agriculture experiment stations. We found a significant change in the frequency of fungicide resistance over time in all four experiments. The direction and magnitude of these changes, however, differed by experimental location, year of experiment, and inoculum resistance treatment (fungicide-resistant, resistant/sensitive mixture, and fungicide-sensitive). These results suggest that the competitive ability of resistant isolates relative to sensitive isolates varied depending upon environmental conditions, including the initial frequency of resistant individuals in the population.


Assuntos
Ascomicetos/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Ascomicetos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação/genética , Oregon
20.
Phytopathology ; 107(12): 1468-1478, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28730873

RESUMO

Tolerance is defined as the ability of one cultivar to yield more than another cultivar under similar disease severity. If both cultivars suffer an equal loss in healthy (green) leaf area duration (HAD) over the grain filling period due to disease presence, then the yield loss per unit HAD loss is smaller for a more tolerant cultivar. Little is understood of what physiological and developmental traits of cultivars determine disease tolerance. In this study, we use a mathematical model of wheat to investigate the effect of a wide range of wheat phenotypes on tolerance. During the phase from stem extension to anthesis, the model calculates the assimilate source and sink potential, allowing for dynamic changes to the source-sink balance by partitioning assimilates between ear development and storage of water-soluble carbon (WSC) reserves, according to assimilate availability. To quantify tolerance, rates of epidemic progress were varied on each phenotype, leading to different levels of HAD loss during the postanthesis, grain-filling period. Model outputs show that the main determinant of tolerance is the total amount of assimilate produced per grain during the rapid grain-fill period, leading to a strong positive correlation between HAD per grain and tolerance. Reductions in traits that affect carbon assimilation rate and increases in traits that determine the amount of structural biomass in the plant increase disease tolerance through their associated reduction in number of grains per ear. Some of the most influential traits are the canopy green area index, carbon use efficiency, and leaf specific weight. Increased WSC accumulation can either increase or decrease tolerance. Furthermore, a cultivar is shown to be maximally tolerant when a crop is able to just fill its total sink size in the presence of disease. The model has identified influential functional traits and established that their associations with tolerance have a mechanistic basis.


Assuntos
Modelos Biológicos , Doenças das Plantas/imunologia , Triticum/fisiologia , Biomassa , Cruzamento , Resistência à Doença , Grão Comestível/imunologia , Grão Comestível/fisiologia , Modelos Lineares , Fenótipo , Folhas de Planta/imunologia , Folhas de Planta/fisiologia , Caules de Planta/imunologia , Caules de Planta/fisiologia , Triticum/imunologia , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa