Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(8)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941965

RESUMO

Since 1998, notifiable bluetongue virus (BTV) serotypes 1-4, 6, 8, 9, 11, and 16 have been reported in Europe. In August 2006, a bluetongue (BT) outbreak caused by BTV serotype 8 began in northwestern Europe. The Netherlands was declared BT-free in February 2012, and annual monitoring continued. On September 3, 2023, typical BT clinical manifestations in sheep were notified to the Netherlands Food and Product Safety Consumer Authority. On September 6, we confirmed BTV infection through laboratory diagnosis; notifications of clinical signs in cattle were also reported. We determined the virus was serotype 3 by whole-genome sequencing. Retrospective analysis did not reveal BTV circulation earlier than September. The virus source and introduction route into the Netherlands remains unknown. Continuous monitoring and molecular diagnostic testing of livestock will be needed to determine virus spread, and new prevention strategies will be required to prevent BTV circulation within the Netherlands and Europe.

2.
Vet Res ; 55(1): 48, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594744

RESUMO

Actinobacillus pleuropneumoniae (APP) is a bacterium frequently associated with porcine pleuropneumonia. The acute form of the disease is highly contagious and often fatal, resulting in significant economic losses for pig farmers. Serotype diversity and antimicrobial resistance (AMR) of APP strains circulating in north Italian farms from 2015 to 2022 were evaluated retrospectively to investigate APP epidemiology in the area. A total of 572 strains isolated from outbreaks occurring in 337 different swine farms were analysed. The majority of isolates belonged to serotypes 9/11 (39.2%) and 2 (28.1%) and serotype diversity increased during the study period, up to nine different serotypes isolated in 2022. The most common resistances were against tetracycline (53% of isolates) and ampicillin (33%), followed by enrofloxacin, florfenicol and trimethoprim/sulfamethoxazole (23% each). Multidrug resistance (MDR) was common, with a third of isolates showing resistance to more than three antimicrobial classes. Resistance to the different classes and MDR varied significantly depending on the serotype. In particular, the widespread serotype 9/11 was strongly associated with florfenicol and enrofloxacin resistance and showed the highest proportion of MDR isolates. Serotype 5, although less common, showed instead a concerning proportion of trimethoprim/sulfamethoxazole resistance. Our results highlight how the typing of circulating serotypes and the analysis of their antimicrobial susceptibility profile are crucial to effectively manage APP infection and improve antimicrobial stewardship.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Pleuropneumonia , Doenças dos Suínos , Tianfenicol/análogos & derivados , Suínos , Animais , Sorogrupo , Testes de Sensibilidade Microbiana/veterinária , Enrofloxacina , Fazendas , Estudos Retrospectivos , Pleuropneumonia/epidemiologia , Pleuropneumonia/veterinária , Pleuropneumonia/microbiologia , Antibacterianos/farmacologia , Sulfametoxazol/farmacologia , Trimetoprima/farmacologia , Itália/epidemiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/epidemiologia , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Sorotipagem/veterinária
3.
Eur J Clin Microbiol Infect Dis ; 43(4): 791-795, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332396

RESUMO

We report for the first time in Portugal a serotype c Haemophilus influenzae isolated from an adult, with HIV-1 infection. Whole-genome sequencing characterized the isolate as clonal complex ST-7, albeit with a novel MLST (ST2754) due to a unique atpG profile. Integration of this genome with other available H. influenzae serotype c genomes from PubMLST revealed its overall genetic distinctiveness, with the closest related isolate being identified in France in 2020. This surveillance study, involving collaboration among hospitals and reference laboratory, successfully contributed to the identification and characterization of this rare serotype.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Adulto , Humanos , Sorogrupo , Haemophilus influenzae/genética , Tipagem de Sequências Multilocus , Infecções por Haemophilus/epidemiologia , Infecções por Haemophilus/microbiologia , Portugal/epidemiologia , Sorotipagem
4.
Dis Aquat Organ ; 158: 27-36, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661135

RESUMO

Streptococcus agalactiae infection is one of the major factors limiting the expansion of tilapia farming globally. In this study, we investigated the serotype distribution, virulence and antimicrobial resistance of S. agalactiae isolates from tilapia farmed in Lake Volta, Ghana. Isolates from 300 moribund fish were characterised by Gram staining, MALDI-TOF/MS and 16S rRNA sequencing. Serotype identification was based on multiplex polymerase chain reaction (PCR) amplification of the capsular polysaccharide genes. Detection of virulence genes (cfb, fbsA and cspA) and histopathology were used to infer the pathogenicity of the isolates. The susceptibility of isolates to antibiotics was tested using the Kirby-Bauer disk diffusion assay. All 32 isolates identified as S. agalactiae were of serotype Ia. This was notably different from isolates previously collected from the farms in 2017, which belonged to serotype Ib, suggesting a possible serotype replacement. The prevalence of the pathogen was related to the scale of farm operation, with large-scale farms showing higher S. agalactiae positivity. Data from histopathological analysis and PCR amplification of targeted virulence genes confirmed the virulence potential and ability of the isolates to cause systemic infection in tilapia. Except for gentamicin, the majority of the isolates were less resistant to the tested antibiotics. All isolates were fully sensitive to oxytetracycline, erythromycin, florfenicol, enrofloxacin, ampicillin and amoxicillin. This study has improved our understanding of the specific S. agalactiae serotypes circulating in Lake Volta and demonstrates the need for continuous monitoring to guide the use of antimicrobials and vaccines against streptococcal infections in Ghanaian aquaculture systems.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Doenças dos Peixes , Sorogrupo , Infecções Estreptocócicas , Streptococcus agalactiae , Animais , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidade , Gana/epidemiologia , Doenças dos Peixes/microbiologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/epidemiologia , Virulência , Antibacterianos/farmacologia , Lagos/microbiologia , Ciclídeos , Aquicultura
5.
Food Microbiol ; 119: 104431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225041

RESUMO

Isolation of Salmonella from enrichment cultures of food or environmental samples is a complicated process. Numerous factors including fitness in various selective enrichment media, relative starting concentrations in pre-enrichment, and competition among multi-serovar populations and associated natural microflora, come together to determine which serovars are identified from a given sample. A recently developed approach for assessing the relative abundance (RA) of multi-serovar Salmonella populations (CRISPR-SeroSeq or Deep Serotyping, DST) is providing new insight into how these factors impact the serovars observed, especially when different selective enrichment methods are used to identify Salmonella from a primary enrichment sample. To illustrate this, we examined Salmonella-positive poultry pre-enrichment samples through the selective enrichment process in Tetrathionate (TT) and Rappaport Vassiliadis (RVS) broths and assessed recovery of serovars with each medium. We observed the RA of serovars detected post selective enrichment varied depending on the medium used, initial concentration, and competitive fitness factors, all which could result in minority serovars in pre-enrichment becoming dominant serovars post selective enrichment. The data presented provide a greater understanding of culture biases and lays the groundwork for investigations into robust enrichment and plating media combinations for detecting Salmonella serovars of greater concern for human health.


Assuntos
Salmonella enterica , Animais , Humanos , Salmonella enterica/genética , Sorogrupo , Aves Domésticas , Salmonella/genética , Sorotipagem/métodos , Meios de Cultura
6.
Epidemiol Mikrobiol Imunol ; 73(1): 30-36, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38697838

RESUMO

Streptococcus pneumoniae (pneumococcus) is a Gram-positive coccus causing both non-invasive and invasive infectious diseases. Pneumococcal diseases are vaccine preventable. Invasive pneumococcal diseases (IPD) meeting the international case definition are reported nationally and internationally and are subject to surveillance programmes in many countries, including the Czech Republic. An important part of IPD surveillance is the monitoring of causative serotypes and their frequency over time and in relation to ongoing vaccination programmes. In the world and in the Czech Republic, whole genome sequencing (WGS) is increasingly used for pneumococci, which allows for serotyping from sequencing data, precise analysis of their genetic relationships, and the study of genes present in their genome. Whole-genome sequencing enables the generation of reliable and internationally comparable data that can be easily shared. Sequencing data are analysed using bioinformatics tools that require knowledge in the field of natural sciences with an emphasis on genetics and expertise in bioinformatics. This publication presents some options for pneumococcal analysis, i.e., serotyping, multilocus sequence typing (MLST), ribosomal MLST (rMLST), core genome MLST (cgMLST), whole genome MLST (wgMLST), single nucleotide polymorphism (SNP) analysis, assignment to Global Pneumococcal Sequence Cluster (GPSC), and identification of virulence genes and antibiotic resistance genes. The WGS strategies and applications for Europe and WGS implementation in practice are presented. WGS analysis of pneumococci allows for improved IPD surveillance, thanks to molecular serotyping, more detailed typing, generation of internationally comparable data, and improved evaluation of the effectiveness of vaccination programmes.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Sequenciamento Completo do Genoma , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/classificação , Humanos , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , República Tcheca , Genoma Bacteriano , Tipagem de Sequências Multilocus , Sorotipagem
7.
J Clin Microbiol ; 61(12): e0074123, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38092657

RESUMO

Whole genome sequencing (WGS)-based approaches for pneumococcal capsular typing have become an alternative to serological methods. In silico serotyping from WGS has not yet been applied to long-read sequences produced by third-generation technologies. The objective of the study was to determine the capsular types of pneumococci causing invasive disease in Catalonia (Spain) using serological typing and WGS and to compare the performance of different bioinformatics pipelines using short- and long-read data from WGS. All invasive pneumococcal pediatric isolates collected in Hospital Sant Joan de Déu (Barcelona) from 2013 to 2019 were included. Isolates were assigned a capsular type by serological testing based on anticapsular antisera and by different WGS-based pipelines: Illumina sequencing followed by serotyping with PneumoCaT, SeroBA, and Pathogenwatch vs MinION-ONT sequencing coupled with serotyping by Pathogenwatch from pneumococcal assembled genomes. A total of 119 out of 121 pneumococcal isolates were available for sequencing. Twenty-nine different serotypes were identified by serological typing, with 24F (n = 17; 14.3%), 14 (n = 10; 8.4%), and 15B/C (n = 8; 6.7%) being the most common serotypes. WGS-based pipelines showed initial concordance with serological typing (>91% of accuracy). The main discrepant results were found at the serotype level within a serogroup: 6A/B, 6C/D, 9A/V, 11A/D, and 18B/C. Only one discrepancy at the serogroup level was observed: serotype 29 by serological testing and serotype 35B/D by all WGS-based pipelines. Thus, bioinformatics WGS-based pipelines, including those using third-generation sequencing, are useful for pneumococcal capsular assignment. Possible discrepancies between serological typing and WGS-based approaches should be considered in pneumococcal capsular-type surveillance studies.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Criança , Streptococcus pneumoniae/genética , Sorotipagem/métodos , Sorogrupo , Sequenciamento Completo do Genoma/métodos , Biologia Computacional , Infecções Pneumocócicas/epidemiologia
8.
Appl Environ Microbiol ; 89(3): e0192322, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36853053

RESUMO

Accurate detection of all Salmonella serovars present in a sample is important in surveillance programs. Current detection protocols are limited to detection of a predominant serovar, missing identification of less abundant serovars in a sample. An alternative method, called CRISPR-SeroSeq, serotyping by sequencing of amplified CRISPR spacers, was employed to detect multiple serovars in a sample without the need of culture isolation. The CRISPR-SeroSeq method successfully detected 34 most frequently reported Salmonella serovars in pure cultures and target serovars at 104 CFU/mL in 27 Salmonella-negative environmental enrichment samples post-spiked with one of 15 different serovars, plus 2 additional serovars at 1 log CFU/mL higher abundance. When the method was applied to 442 naturally contaminated environmental samples collected from 192 poultry farms, 25 different serovars were detected from 430 of the samples. In 73.1% of the samples, 2 to 7 serovars were detected, with Salmonella Kiambu (55.7%), Salmonella Infantis (48.4%), Salmonella Kentucky (27.1%), Salmonella Livingstone (26.6%), and Salmonella Mbandaka/Montevideo (23.4%) being the most prevalent on the farms. Single isolates from 384 samples were also analyzed using a traditional serotyping method, and the same serovar identified by culture was detected by CRISPR-SeroSeq in 96.1% (369/384) of samples, with the former missing detection of additional and sometimes critical serovars. The surveillance data obtained via CRISPR-SeroSeq revealed a significant emergence of Salmonella Kiambu and Salmonella Rissen on poultry farms in Ontario. The results highlight the effectiveness of the CRISPR-SeroSeq approach in detecting multiple Salmonella serovars in poultry environmental samples under applied conditions, providing updated surveillance information on Salmonella serovars on poultry farms in Ontario. IMPORTANCE The CRISPR-SeroSeq method represents an alternative molecular tool to the traditional culture-based serotyping method that can detect multiple Salmonella serovars in a sample and provide rapid serovar results without the need of selective enrichment and culture isolation. The evaluation results can facilitate implementation of the method in routine Salmonella surveillance on poultry farms and in outbreak investigations. The application of the method can increase the accuracy of current serovar prevalence information. The results highlight the effectiveness of the validated method and the need for monitoring Salmonella serovars in poultry environments to improve current surveillance programs. The updated surveillance data provide timely information on emergence of different Salmonella serovars on poultry farms in Ontario and support on-farm risk assessment and risk management of Salmonella.


Assuntos
Aves Domésticas , Salmonelose Animal , Animais , Sorogrupo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ontário , Galinhas , Salmonella , Salmonelose Animal/epidemiologia
9.
Appl Environ Microbiol ; 89(11): e0128423, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37861326

RESUMO

IMPORTANCE: To the best of our knowledge, this study reveals a strong correlation between mass spectra pattern and virulence phenotype among S. suis for the first time. In order to make the findings applicable and to excavate the intrinsic information in the spectra, the classifiers based on the machine learning algorithms were established, and RF (Random Forest)-based models have achieved an accuracy of over 90%. Overall, this study will pave the way for virulent SS2 (Streptococcus suis serotype 2) rapid detection, and the important findings on the association between genotype and mass spectrum may provide a new idea for the genotype-dependent detection of specific pathogens.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Virulência/genética , Streptococcus suis/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sorogrupo , Aprendizado de Máquina
10.
BMC Microbiol ; 23(1): 164, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312043

RESUMO

BACKGROUND: Salmonella infections remain an important public health issue worldwide. Some serovars of non-typhoidal Salmonella (NTS) have been associated with bloodstream infections and gastroenteritis, especially in children in Sub-Saharan Africa with circulating S. enterica serovars with drug resistance and virulence genes. This study identified and verified the clonal relationship of Nigerian NTS strains isolated from humans, animals, and the environment. METHODS: In total, 2,522 samples were collected from patients, animals (cattle and poultry), and environmental sources between December 2017 and May 2019. The samples were subjected to a standard microbiological investigation. All the isolates were identified using Microbact 24E, and MALDI-TOF MS. The isolates were serotyped using the Kauffmann-White scheme. Antibiotic susceptibility testing was conducted using the disc diffusion method and the Vitek 2 compact system. Virulence and antimicrobial resistance genes, sequence type, and cluster analysis were investigated using WGS data. RESULTS: Forty-eight (48) NTS isolates (1.9%) were obtained. The prevalence of NTS from clinical sources was 0.9%, while 4% was recorded for animal sources. The serovars identified were S. Cotham (n = 17), S. Give (n = 16), S. Mokola (n = 6), S. Abony (n = 4), S. Typhimurium (n = 4), and S. Senftenberg (n = 1). All 48 Salmonella isolates carried intrinsic and acquired resistant genes such as aac.6…Iaa, mdf(A), qnrB, qnrB19 genes and golT, golS, pcoA, and silP, mediated by plasmid Col440I_1, incFIB.B and incFII. Between 100 and 118 virulence gene markers distributed across several Salmonella pathogenicity islands (SPIs), clusters, prophages, and plasmid operons were found in each isolate. WGS revealed that strains of each Salmonella serovar could be assigned to a single 7-gene MLST cluster, and strains within the clusters were identical strains and closely related as defined by the 0 and 10 cgSNPs and likely shared a common ancestor. The dominant sequence types were S. Give ST516 and S. Cotham ST617. CONCLUSION: We found identical Salmonella sequence types in human, animal, and environmental samples in the same locality, which demonstrates the great potential of the applied tools to trace back outbreak strains. Strategies to control and prevent the spread of NTS in the context of one's health are essential to prevent possible outbreaks.


Assuntos
Salmonella enterica , Febre Tifoide , Criança , Humanos , Animais , Bovinos , Sorogrupo , Salmonella enterica/genética , Nigéria/epidemiologia , Tipagem de Sequências Multilocus , Óperon
11.
Avian Pathol ; 52(5): 362-376, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37470411

RESUMO

Avibacterium paragallinarum (A. paragallinarum) is the aetiological agent of infectious coryza (IC) in chickens and characterized by acute respiratory distress and severe drop in egg production. Vaccination is important in the control of IC outbreaks and the efficacy of vaccination is dependent on A. paragallinarum serovars included in the vaccine. Classical serotyping of A. paragallinarum is laborious and hampered by poor availability of antigens and antisera. The haemagglutinin, important in classical serotyping, is encoded by the HMTp210 gene. HMTp210 gene analysis has been shown to have potential as alternative to classical serotyping. The aim of the present study was to further investigate the potential of sequence analyses of partial region 1 of the HMTp210 gene, the HMTp210 hypervariable region and the concatenated sequences of both fragments. For this analysis, 123 HMTp210 gene sequences (field isolates, A. paragallinarum serovar reference strains and vaccine strains) were included. Evaluation of serovar references and vaccine strains revealed a need for critical evaluation, especially within Page serovar B and C. Phylogenetic analysis of HMTp210 region 1 resulted in a separation of Page serovar A, B and C strains. Analysis of the HMTp210 HVR alone was not sufficient to discriminate all nine different Kume serovar references. The concatenated sequences of HMTp210 region 1 and HMTp210 HVR resulted in 14 clusters with a high correlation with Page serovar and with the nine currently known Kume serovars and is therefore proposed as a novel genotyping method that could be used as an alternative for classical serotyping of A. paragallinarum.


Assuntos
Infecções por Haemophilus , Haemophilus paragallinarum , Doenças das Aves Domésticas , Animais , Sorotipagem/veterinária , Infecções por Haemophilus/veterinária , Infecções por Haemophilus/microbiologia , Genótipo , Filogenia , Galinhas , Haemophilus paragallinarum/genética , Doenças das Aves Domésticas/microbiologia
12.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36801995

RESUMO

AIMS: The ability to distinguish between Klebsiella pneumoniae strains is critical for outbreak investigations. A new typing method, intergenic region polymorphism analysis (IRPA), was developed, validated, and the discriminatory power was determined by comparison with multiple-locus variable-number tandem repeat analysis (MLVA) in this study. METHODS AND RESULTS: This method is based on the idea that every IRPA locus (polymorphic fragment of intergenic regions present in one strain but not in other strains or different fragment sizes in other strains) could divide strains into different genotypes. A 9-loci IRPA scheme was designed to type 64 K. pneumoniae isolates. Five IRPA loci were identified that conferred the same level of discrimination as the 9-loci initially examined. Among these K. pneumoniae isolates, 7.81% (5/64), 6.25% (4/64), 4.96% (3/64), 9.38% (6/64), and 1.56% (1/64) were capsular serotypes K1, K2, K5, K20, and K54, respectively. The discriminatory power of the IRPA method was better than that of MLVA expressed in Simpson's index of diversity (SI) at 0.997 and 0.988, respectively. The congruent analysis of the IRPA method and MLVA showed moderate congruence between the two methods (AR = 0.378). The AW indicated that if IRPA data are availabl, one can accurately predict the MLVA cluster. CONCLUSION: The IRPA method was found to have higher discriminatory power than MLVA and allowed for simpler band profile interpretation. The IRPA method is a rapid, simple, and high-resolution technique for molecular typing of K. pneumoniae.


Assuntos
Técnicas de Genotipagem , Klebsiella pneumoniae , Genótipo , Klebsiella pneumoniae/genética , Técnicas de Genotipagem/métodos , Tipagem Molecular/métodos , Repetições Minissatélites/genética
13.
BMC Vet Res ; 19(1): 135, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641044

RESUMO

BACKGROUND: Glaesserella parasuis is the causative agent of Glässer's disease in pigs. Serotyping is the most common method used to type G. parasuis isolates. However, the high number of non-typables (NT) and low discriminatory power make serotyping problematic. In this study, 218 field clinical isolates and 15 G. parasuis reference strains were whole-genome sequenced (WGS). Multilocus sequence types (MLST), serotypes, core-genome phylogeny, antimicrobial resistance (AMR) genes, and putative virulence gene information was extracted. RESULTS: In silico WGS serotyping identified 11 of 15 serotypes. The most frequently detected serotypes were 7, 13, 4, and 2. MLST identified 72 sequence types (STs), of which 66 were novel. The most predominant ST was ST454. Core-genome phylogeny depicted 3 primary lineages (LI, LII, and LIII), with LIIIA sublineage isolates lacking all vtaA genes, based on the structure of the phylogenetic tree and the number of virulence genes. At least one group 1 vtaA virulence genes were observed in most isolates (97.2%), except for serotype 8 (ST299 and ST406), 15 (ST408 and ST552) and NT (ST448). A few group 1 vtaA genes were significantly associated with certain serotypes or STs. The putative virulence gene lsgB, was detected in 8.3% of the isolates which were predominantly of serotype 5/12. While most isolates carried the bcr, ksgA, and bacA genes, the following antimicrobial resistant genes were detected in lower frequency;  blaZ (6.9%), tetM (3.7%), spc (3.7%), tetB (2.8%), bla-ROB-1 (1.8%), ermA (1.8%), strA (1.4%), qnrB (0.5%), and aph3''Ia (0.5%).   CONCLUSION: This study showed the use of WGS to type G. parasuis isolates and can be considered an alternative to the more labor-intensive and traditional serotyping and standard MLST. Core-genome phylogeny provided the best strain discrimination. These findings will lead to a better understanding of the molecular epidemiology and virulence in G. parasuis that can be applied to the future development of diagnostic tools, autogenous vaccines, evaluation of antibiotic use, prevention, and disease control.


Assuntos
Haemophilus parasuis , Animais , Suínos , Tipagem de Sequências Multilocus/veterinária , Filogenia , Sorogrupo , Sorotipagem/veterinária , Haemophilus parasuis/genética , América do Norte
14.
Dis Aquat Organ ; 154: 1-6, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227038

RESUMO

Streptococcus agalactiae is one of the main aetiological agents in large-scale mortalities of tilapia, having caused major economic losses to the aquaculture industry in recent years. This study describes the isolation and identification of the bacteria from cage-cultured Etroplus suratensis that experienced moderate to severe mortalities in Kerala, India. Gram-positive, catalase-negative S. agalactiae was identified from brain, eye and liver of the fish by antigen grouping and 16S rDNA sequencing. Multiplex PCR confirmed that the isolate belonged to capsular serotype Ia. Antibiotic susceptibility tests showed that the isolate was resistant to methicillin, vancomycin, tetracycline, kanamycin, streptomycin, ampicillin, oxacillin and amikacin. Histological sections of the infected E. suratensis brain revealed infiltration of inflammatory cells, vacuolation and meningitis. This report is the first description of S. agalactiae as a primary pathogen causing mortalities in E. suratensis culture in Kerala.


Assuntos
Ciclídeos , Tilápia , Animais , Streptococcus agalactiae/genética , Índia , Antibacterianos/farmacologia
15.
J Fish Dis ; 46(4): 445-452, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36656662

RESUMO

Vibrio vulnificus is a zoonotic pathogen that can cause death by septicaemia in farmed fish (mainly eels) and humans. The zoonotic strains that have been isolated from diseased eels and humans after eel handling belong to clade E (or serovar E (SerE)), a clonal complex within the pathovar (pv.) piscis. The aim of this study was to evaluate the accuracy of MALDI-TOF mass spectrometry (MS) in the identification of SerE, using the other two main pv. piscis-serovars (SerA and SerI) from eels as controls. MALDI-TOF data were compared with known serologic and genetic data of five pv. piscis isolates or strains, and with the non pv. piscis reference strain. Based on multiple spectra analysis, we found serovar-specific peaks that were of ~3098 Da and ~ 4045 Da for SerE, of ~3085 Da and ~ 4037 Da for SerA, and of ~3085 Da and ~ 4044 Da for SerI. Therefore, our results demonstrate that MALDI-TOF can be used to identify SerE and could also help in the identification of the other serovars of the species. This means that zoonosis due to V. vulnificus could be prevented by using MALDI-TOF, as action can be taken immediately after the isolation of a possible zoonotic V. vulnificus strain.


Assuntos
Doenças dos Peixes , Vibrioses , Vibrio vulnificus , Vibrio , Humanos , Animais , Enguias , Sorogrupo , Vibrioses/veterinária , Vibrioses/prevenção & controle , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/veterinária , Doenças dos Peixes/prevenção & controle
16.
J Vector Borne Dis ; 60(1): 74-78, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37026222

RESUMO

BACKGROUND & OBJECTIVES: Dengue (DEN) is a result of infection by one or multiple types of four dengue viruses known as Dengue virus (DENV) 1-4. Identifying circulating serotype and genotype is epidemiologically important, however, it is challenging in resource limited areas. Moreover, transporting samples from the collation site to the laboratory in appropriate condition is an exigent task. To overcome this, we evaluated the usefulness of dry blots of serum for DENV diagnosis, serotyping and genotyping. METHODS: Serum samples received for diagnosis were divided into parts; one was used for providing the diagnosis. Remaining sample was distributed in three parts (100 µl each), one part was used for molecular testing and two parts were mixed with RNAlater reagent® in equal volumes and was blotted on Whatman filter paper no 3. The blots were dried and stored at 4°C and 28°C and tested for presence of dengue RNA, serotypes and genotypes after 7 days of incubation. RESULTS: The diagnosis and serotyping results of serum sample and dry serum blots were in concordance. Out of 20 positive samples, 13 (65%) gave satisfactory sequencing results. Genotype III of DENV-1, Genotype IV of DENV 2 and Genotype I of DENV-4 were detected. INTERPRETATION & CONCLUSION: The results demonstrate that serum mixed with RNA protective solution and blotted on Whatman filter paper no 3 can be effectively used for diagnosis, serotyping and genotyping of DENVs. This will help in easy transportation, diagnosis and effective data generation in resource limited settings.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Dengue/diagnóstico , Sorotipagem , Projetos Piloto , Genótipo , Filogenia , Sorogrupo , RNA Viral/genética
17.
Br Poult Sci ; 64(2): 224-230, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36259551

RESUMO

1. This study determined the antimicrobial resistance profile and the biofilm-forming ability of Salmonella enterica strains isolated from commercial broiler houses over a three-year period in southern Brazil.2. Of the 720 drag swabs analysed, 37 (5%) tested positive for non-typhoidal Salmonella spp. and S. Heidelberg was the most frequent serovar.3. Among the antimicrobial resistant strains (83.8%; 31/37), resistance was most common to tetracycline, ampicillin and nalidixic acid. Multidrug resistance was found in 65% (24/37) of the isolates, with a large proportion of multidrug resistant S. Heidelberg strains (81%; 13/16).4. In total, 65% (24/37) of the isolates showed the ability to produce biofilm and multiple antimicrobial resistance was negatively correlated with biofilm formation.5. Strains susceptible to all tested antimicrobials tended to form stronger biofilms than multidrug resistant ones. This suggested that Salmonella spp. with less antimicrobial resistance depend more on the protection provided by biofilm to survive in the farm environment.


Assuntos
Antibacterianos , Salmonella enterica , Animais , Antibacterianos/farmacologia , Sorogrupo , Fazendas , Brasil , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Galinhas , Salmonella , Biofilmes , Testes de Sensibilidade Microbiana/veterinária
18.
J Clin Microbiol ; 60(7): e0032522, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35699436

RESUMO

Fourier transform infrared (FT-IR) spectroscopy (IR Biotyper; Bruker) allows highly discriminatory fingerprinting of closely related bacterial strains. In this study, FT-IR spectroscopy-based capsular typing of Streptococcus pneumoniae was validated as a rapid, cost-effective, and medium-throughput alternative to the classical phenotypic techniques. A training set of 233 strains was defined, comprising 34 different serotypes and including all 24 vaccine types (VTs) and 10 non-vaccine types (NVTs). The acquired spectra were used to (i) create a dendrogram where strains clustered together according to their serotypes and (ii) train an artificial neural network (ANN) model to predict unknown pneumococcal serotypes. During validation using 153 additional strains, we reached 98.0% accuracy for determining serotypes represented in the training set. Next, the performance of the IR Biotyper was assessed using 124 strains representing 59 non-training set serotypes. In this setting, 42 of 59 serotypes (71.1%) could be accurately categorized as being non-training set serotypes. Furthermore, it was observed that comparability of spectra was affected by the source of the Columbia medium used to grow the pneumococci and that this complicated the robustness and standardization potential of FT-IR spectroscopy. A rigorous laboratory workflow in combination with specific ANN models that account for environmental noise parameters can be applied to overcome this issue in the near future. The IR Biotyper has the potential to be used as a fast, cost-effective, and accurate phenotypic serotyping tool for S. pneumoniae.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Bactérias , Humanos , Infecções Pneumocócicas/diagnóstico , Infecções Pneumocócicas/microbiologia , Sorogrupo , Sorotipagem/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
19.
J Clin Microbiol ; 60(4): e0211121, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35306833

RESUMO

To monitor the burden and changes in Haemophilus influenzae (Hi) disease, direct real-time PCR (drt-PCR) assays have been developed for Hi detection in monoplex form and its six serotypes in triplex form, directly from cerebrospinal fluid (CSF) specimens. These assays target the phoB gene for the species detection (Hi-phoB) and serotype-specific genes in region II of the capsule biosynthesis locus (Hi-abf and Hi-cde), identified through comparative analysis of Hi and non-Hi whole-genome sequences. The lower limit of detection (LLD) is 293 CFU/mL for the Hi-phoB assay and ranged from 11 to 130 CFU/mL for the triplex serotyping assays. Using culture as a reference method, the sensitivity and specificity of Hi-phoB, Hi-abf, and Hi-cde were 100%. Triplex serotyping assays also showed 100% agreement for each serotype compared to their corresponding monoplex serotyping assay. These highly sensitive and specific drt-PCR assays do not require DNA extraction and thereby reduce the time, cost, and handling required to process CSF specimens. Furthermore, triplex drt-PCR assays combine the detection of three serotypes in a single reaction, further improving testing efficiency, which is critical for laboratories that process high volumes of Hi specimens for surveillance and diagnostic purposes.


Assuntos
Haemophilus influenzae , Reação em Cadeia da Polimerase Multiplex , DNA , Haemophilus influenzae/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Sorotipagem/métodos
20.
Appl Environ Microbiol ; 88(5): e0214921, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35020454

RESUMO

Salmonella enterica can survive in surface waters (SuWa), and the role of nonhost environments in its transmission has acquired increasing relevance. In this study, we conducted comparative genomic analyses of 172 S. enterica isolates collected from SuWa across 3 months in six states of central Mexico during 2019. S. enterica transmission dynamics were assessed using 87 experimental and 112 public isolates from Mexico collected during 2002 through 2019. We also studied genetic relatedness between SuWa isolates and human clinical strains collected in North America during 2005 through 2020. Among experimental isolates, we identified 41 S. enterica serovars and 56 multilocus sequence types (STs). Predominant serovars were Senftenberg (n = 13), Meleagridis, Agona, and Newport (n = 12 each), Give (n = 10), Anatum (n = 8), Adelaide (n = 7), and Infantis, Mbandaka, Ohio, and Typhimurium (n = 6 each). We observed a high genetic diversity in the sample under study, as well as clonal dissemination of strains across distant regions. Some of these strains are epidemiologically important (ST14, ST45, ST118, ST132, ST198, and ST213) and were genotypically close to those involved in clinical cases in North America. Transmission network analysis suggests that SuWa are a relevant source of S. enterica (0.7 source/hub ratio) and contribute to its dissemination as isolates from varied sources and clinical cases have SuWa isolates as common ancestors. Overall, the study shows that SuWa act as reservoirs of various S. enterica serovars of public health significance. Further research is needed to better understand the mechanisms involved in SuWa contamination by S. enterica, as well as to develop interventions to contain its dissemination in food production settings. IMPORTANCE Surface waters are heavily used in food production worldwide. Several human pathogens can survive in these waters for long periods and disseminate to food production environments, contaminating our food supply. One of these pathogens is Salmonella enterica, a leading cause of foodborne infections, hospitalizations, and deaths in many countries. This research demonstrates the role of surface waters as a vehicle for the transmission of Salmonella along food production chains. It also shows that some strains circulating in surface waters are very similar to those implicated in human infections and harbor genes that confer resistance to multiple antibiotics, posing a risk to public health. This study contributes to expand our current knowledge on the ecology and epidemiology of Salmonella in surface waters.


Assuntos
Salmonella enterica , Agricultura , Aquicultura , Genômica , Humanos , México/epidemiologia , Salmonella enterica/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa