Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(13): e2117770119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312359

RESUMO

Spirochetal pathogens, such as the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, encode an abundance of lipoproteins; however, due in part to their evolutionary distance from more well-studied bacteria, such as Proteobacteria and Firmicutes, few spirochetal lipoproteins have assigned functions. Indeed, B. burgdorferi devotes almost 8% of its genome to lipoprotein genes and interacts with its environment primarily through the production of at least 80 surface-exposed lipoproteins throughout its tick vector­vertebrate host lifecycle. Several B. burgdorferi lipoproteins have been shown to serve roles in cellular adherence or immune evasion, but the functions for most B. burgdorferi surface lipoproteins remain unknown. In this study, we developed a B. burgdorferi lipoproteome screening platform utilizing intact spirochetes that enables the identification of previously unrecognized host interactions. As spirochetal survival in the bloodstream is essential for dissemination, we targeted our screen to C1, the first component of the classical (antibody-initiated) complement pathway. We identified two high-affinity C1 interactions by the paralogous lipoproteins, ElpB and ElpQ (also termed ErpB and ErpQ, respectively). Using biochemical, microbiological, and biophysical approaches, we demonstrate that ElpB and ElpQ bind the activated forms of the C1 proteases, C1r and C1s, and represent a distinct mechanistic class of C1 inhibitors that protect the spirochete from antibody-mediated complement killing. In addition to identifying a mode of complement inhibition, our study establishes a lipoproteome screening methodology as a discovery platform for identifying direct host­pathogen interactions that are central to the pathogenesis of spirochetes, such as the Lyme disease agent.


Assuntos
Proteínas de Bactérias , Borrelia burgdorferi , Complemento C1q , Evasão da Resposta Imune , Lipoproteínas , Doença de Lyme , Proteínas de Bactérias/imunologia , Borrelia burgdorferi/imunologia , Complemento C1q/imunologia , Humanos , Imunoglobulinas/imunologia , Lipoproteínas/imunologia , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Proteoma/imunologia
2.
J Infect Dis ; 230(2): e221-e229, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38235716

RESUMO

BACKGROUND: Pseudomonas aeruginosa is a frequent pathogen isolated from bacterial bloodstream infection (BSI) and is associated with high mortality. To survive in the blood, P aeruginosa must resist the bactericidal action of complement (ie, serum killing). Antibodies usually promote serum killing through the classical complement pathway; however, "cloaking antibodies" (cAbs) have been described, which paradoxically protect bacteria from serum killing. The relevance of cAbs in P aeruginosa BSI is unknown. METHODS: Serum and P aeruginosa were collected from a cohort of 100 patients with BSI. Isolates were tested for sensitivity to healthy control serum (HCS). cAb prevalence was determined in sera. Patient sera were mixed with HCS to determine if killing of the matched isolate was inhibited. RESULTS: Overall, 36 patients had elevated titers of cAbs, and 34 isolates were sensitive to HCS killing. Fifteen patients had cAbs and HCS-sensitive isolates; of these patients, 14 had serum that protected their matched bacteria from HCS killing. Patients with cAbs were less likely to be neutropenic or have comorbidities. CONCLUSIONS: cAbs are prevalent in patients with P aeruginosa BSI and allow survival of otherwise serum-sensitive bacteria in the bloodstream. Generation of cAbs may be a risk factor for the development of BSI.


Assuntos
Anticorpos Antibacterianos , Bacteriemia , Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Bacteriemia/microbiologia , Bacteriemia/imunologia , Idoso , Anticorpos Antibacterianos/sangue , Adulto , Idoso de 80 Anos ou mais , Estudos de Coortes
3.
J Proteome Res ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360742

RESUMO

The aim of this study was to identify, using proteomics, the molecular alterations caused by human serum exposure to Klebsiella pneumoniae ACH2. The analysis was performed under two different conditions, native serum from healthy donors and heat-inactivated serum (to inactivate the complement system), and at two different times, after 1 and 4 h of serum exposure. More than 1,000 bacterial proteins were identified at each time point. Enterobactin, a siderophore involved in iron uptake, and proteins involved in translation were upregulated at 1 h, while the chaperone ProQ and the glyoxylate cycle were identified after 4 h. Enzymes involved in the stress response were downregulated, and the SOD activity was validated using an enzymatic assay. In addition, an intricate metabolic adaptation was observed, with pyruvate and thiamine possibly involved in survival and virulence in the first hour of serum exposure. The addition of exogenous thiamine contributes to bacterial growth in human serum, corroborating this result. During 4 h of serum exposure, the glyoxylate cycle (GC) probably plays a central role, and the addition of exogenous succinate suppresses the GC, inducing a decrease in serum resistance. Therefore, serum exposure causes important changes in iron acquisition, the expression of virulence factors, and metabolic reprogramming, which could contribute to bacterial serum resistance.

4.
Microbiology (Reading) ; 170(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39177453

RESUMO

Escherichia coli (E. coli) is a major cause of urinary tract infections, bacteraemia, and sepsis. CFT073 is a prototypic, urosepsis isolate of sequence type (ST) 73. This laboratory, among others, has shown that strain CFT073 is resistant to serum, with capsule and other extracellular polysaccharides imparting resistance. The interplay of such polysaccharides remains under-explored. This study has shown that CFT073 mutants deficient in lipopolysaccharide (LPS) O-antigen and capsule display exquisite serum sensitivity. Additionally, O-antigen and LPS outer core mutants displayed significantly decreased surface K2 capsule, coupled with increased unbound K2 capsule being detected in the supernatant. The R1 core and O6 antigen are involved in the tethering of K2 capsule to the CFT073 cell surface, highlighting the importance of the R1 core in serum resistance. The dependence of capsule on LPS was shown to be post-transcriptional and related to changes in cell surface hydrophobicity. Furthermore, immunofluorescence microscopy suggested that the surface pattern of capsule is altered in such LPS core mutants, which display a punctate capsule pattern. Finally, targeting LPS biosynthesis using sub-inhibitory concentrations of a WaaG inhibitor resulted in increased serum sensitivity and decreased capsule in CFT073. Interestingly, the dependency of capsule on LPS has been observed previously in other Enterobacteria, indicating that the synergy between these polysaccharides is not just strain, serotype or species-specific but may be conserved across several pathogenic Gram-negative species. Therefore, using WaaG inhibitor derivatives to target LPS is a promising therapeutic strategy to reduce morbidity and mortality by reducing or eliminating surface capsule.


Assuntos
Cápsulas Bacterianas , Lipopolissacarídeos , Lipopolissacarídeos/metabolismo , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Humanos , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Escherichia coli Extraintestinal Patogênica/metabolismo , Antígenos O/genética , Antígenos O/metabolismo , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação
5.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692849

RESUMO

AIMS: Pyometra and cystitis caused by Escherichia coli are common diseases identified in canine or feline females. The origin of pyometra infection remains uncertain, and effective prevention strategies for this disease are still unknown. This study aimed to provide a phenotypic characterization, including antimicrobial resistance and virulence profiles, of endometrial pathogenic (EnPEC) and uropathogenic (UPEC) E. coli strains isolated simultaneously from the same animal. METHODS AND RESULTS: Sixteen E. coli strains, from eight different animals, were analyzed in this study. The antimicrobial susceptibility profile of EnPEC and UPEC strains was determined using the disc diffusion method, which showed a similar susceptibility profile among strains (EnPEC and UPEC) from the same animal. The virulence profile of the strains was assessed through biofilm formation, as well as serum resistance abilities. EnPEC and UPEC strains from the same animal exhibited slight variations in their virulence and antimicrobial resistance capabilities. Overall, most of the strain pairs showed a high similarity in their ability to establish biofilms and survive in serum complement activity. CONCLUSIONS: Overall, strains of E. coli isolated from both pyometra and cystitis in the same animal, despite presenting distinct clinical diseases, exhibit a wide phenotypic similarity, suggesting a common origin for the strains.


Assuntos
Biofilmes , Doenças do Gato , Cistite , Infecções por Escherichia coli , Escherichia coli , Testes de Sensibilidade Microbiana , Fenótipo , Piometra , Animais , Cistite/microbiologia , Cistite/veterinária , Piometra/microbiologia , Piometra/veterinária , Feminino , Gatos , Cães , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Doenças do Gato/microbiologia , Biofilmes/crescimento & desenvolvimento , Virulência , Antibacterianos/farmacologia , Doenças do Cão/microbiologia , Escherichia coli Uropatogênica/isolamento & purificação , Escherichia coli Uropatogênica/patogenicidade , Farmacorresistência Bacteriana
6.
Infect Immun ; 91(11): e0003923, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37815368

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) is responsible for severe bloodstream infections in humans and animals. However, the mechanisms underlying ExPEC's serum resistance remain incompletely understood. Through the transposon-directed insertion-site sequencing approach, our previous study identified nhaA, the gene encoding a Na+/H+ antiporter, as a crucial factor for infection in vivo. In this study, we investigated the role of NhaA in ExPEC virulence utilizing both in vitro models and systemic infection models involving avian and mammalian animals. Genetic mutagenesis analysis revealed that nhaA deletion resulted in filamentous bacterial morphology and rendered the bacteria more susceptible to sodium dodecyl sulfate, suggesting the role of nhaA in maintaining cell envelope integrity. The nhaA mutant also displayed heightened sensitivity to complement-mediated killing compared to the wild-type strain, attributed to augmented deposition of complement components (C3b and C9). Remarkably, NhaA played a more crucial role in virulence compared to several well-known factors, including Iss, Prc, NlpI, and OmpA. Our findings revealed that NhaA significantly enhanced virulence across diverse human ExPEC prototype strains within B2 phylogroups, suggesting widespread involvement in virulence. Given its pivotal role, NhaA could serve as a potential drug target for tackling ExPEC infections.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Extraintestinal Patogênica , Animais , Humanos , Escherichia coli Extraintestinal Patogênica/metabolismo , Virulência/genética , Infecções por Escherichia coli/microbiologia , Fatores de Virulência/genética , Aves/metabolismo , Aves/microbiologia , Mamíferos , Trocadores de Sódio-Hidrogênio , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipoproteínas
7.
Pflugers Arch ; 475(3): 323-341, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36449077

RESUMO

Two heterozygous missense variants (G1 and G2) of Apolipoprotein L1 (APOL1) found in individuals of recent African ancestry can attenuate the severity of infection by some forms of Trypanosoma brucei. However, these two variants within a broader African haplotype also increase the risk of kidney disease in Americans of African descent. Although overexpression of either variant G1 or G2 causes multiple pathogenic changes in cultured cells and transgenic mouse models, the mechanism(s) promoting kidney disease remain unclear. Human serum APOL1 kills trypanosomes through its cation channel activity, and cation channel activity of recombinant APOL1 has been reconstituted in lipid bilayers and proteoliposomes. Although APOL1 overexpression increases whole cell cation currents in HEK-293 cells, the ion channel activity of APOL1 has not been assessed in glomerular podocytes, the major site of APOL1-associated kidney diseases. We characterize APOL1-associated whole cell and on-cell cation currents in HEK-293 T-Rex cells and demonstrate partial inhibition of currents by anti-APOL antibodies. We detect in primary human podocytes a similar cation current inducible by interferon-γ (IFNγ) and sensitive to inhibition by anti-APOL antibody as well as by a fragment of T. brucei Serum Resistance-Associated protein (SRA). CRISPR knockout of APOL1 in human primary podocytes abrogates the IFNγ-induced, antibody-sensitive current. Our novel characterization in HEK-293 cells of heterologous APOL1-associated cation conductance inhibited by anti-APOL antibody and our documentation in primary human glomerular podocytes of endogenous IFNγ-stimulated, APOL1-mediated, SRA and anti-APOL-sensitive ion channel activity together support APOL1-mediated channel activity as a therapeutic target for treatment of APOL1-associated kidney diseases.


Assuntos
Nefropatias , Podócitos , Camundongos , Animais , Humanos , Podócitos/metabolismo , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Células HEK293 , Nefropatias/metabolismo , Camundongos Transgênicos , Canais Iônicos/metabolismo
8.
Appl Environ Microbiol ; 89(2): e0124422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744930

RESUMO

Ail confers serum resistance in humans and is a critical virulence factor of Y. pestis, the causative agent of plague. Here, the contribution of Ail for Y. pestis survival in the flea vector was examined. Rat or human but not mouse sera were bactericidal against a Y. pestis Δail mutant at 28°C in vitro. Complement components deposited rapidly on the Y. pestis surface as measured by immunofluorescent microscopy. Ail reduced the amount of active C3b on the Y. pestis surface. Human sera retained bactericidal activity against a Y. pestis Δail mutant in the presence of mouse sera. However, in the flea vector, the serum protective properties of Ail were not required. Flea colonization studies using murine sera and Y. pestis KIM6+ wild type, a Δail mutant, and the Δail/ail+ control showed no differences in bacterial prevalence or numbers during the early stage of flea colonization. Similarly, flea studies with human blood showed Ail was not required for serum resistance. Finally, a variant of Ail (AilF100V E108_S109insS) from a human serum-sensitive Y. pestis subsp. microtus bv. Caucasica 1146 conferred resistance to human complement when expressed in the Y. pestis KIM6+ Δail mutant. This indicated that Ail activity was somehow blocked, most likely by lipooligosaccharide, in this serum sensitive strain. IMPORTANCE This work contributes to our understanding of how highly virulent Y. pestis evolved from its innocuous enteric predecessor. Among identified virulence factors is the attachment invasion locus protein, Ail, that is required to protect Y. pestis from serum complement in all mammals tested except mice. Murine sera is not bactericidal. In this study, we asked, is bactericidal sera from humans active in Y. pestis colonized fleas? We found it was not. The importance of this observation is that it identifies a protective niche for the growth of serum sensitive and nonsensitive Y. pestis strains.


Assuntos
Peste , Sifonápteros , Yersinia pestis , Animais , Humanos , Camundongos , Ratos , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Mamíferos , Peste/microbiologia , Sifonápteros/metabolismo , Sifonápteros/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Yersinia pestis/genética , Yersinia pestis/metabolismo , Complemento C3b/metabolismo , Complemento C3b/farmacologia
9.
Bioorg Chem ; 141: 106917, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37865055

RESUMO

The limitations associated with the in vivo use of the thrombin binding aptamer (TBA or TBA15) have dramatically stimulated the search of suitable chemically modified analogues in order to discover effective and reversible inhibitors of thrombin activity. In this context, we previously proposed cyclic and pseudo-cyclic TBA analogues with improved stability that proved to be more active than the parent aptamer. Herein, we have investigated a novel library of TBA derivatives carrying naphthalene diimide (NDI) moieties at the 3'- or 5'-end. In a subset of the investigated oligonucleotides, additional 3-hydroxypropylphosphate (HPP) groups were introduced at one or both ends of the TBA sequence. Evaluation of the G-quadruplex thermal stability, serum nuclease resistance and in vitro anticoagulant activity of the new TBA analogues allowed rationalizing the effect of these appendages on the activity of the aptamer on the basis of their relative position. Notably, most of the different TBA analogues tested were more potent thrombin inhibitors than unmodified TBA. Particularly, the analogue carrying an NDI group at the 5'-end and an HPP group at the 3'-end, named N-TBA-p, exhibited enhanced G-quadruplex thermal stability (ΔTm + 14° C) and ca. 10-fold improved nuclease resistance in serum compared to the native aptamer. N-TBA-p also induced prolonged and dose-dependent clotting times, showing a ca. 11-fold higher anticoagulant activity compared to unmodified TBA, as determined by spectroscopic methods. Overall, N-TBA-p proved to be in vitro a more efficient thrombin inhibitor than all the best ones previously investigated in our group. Its interesting features, associated with its easy preparation, make it a very promising candidate for future in vivo studies.


Assuntos
Aptâmeros de Nucleotídeos , Quadruplex G , Trombina/metabolismo , Anticoagulantes/química , Imidas/farmacologia , Naftalenos/farmacologia , Aptâmeros de Nucleotídeos/química
10.
J Fish Dis ; 46(3): 229-238, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36484113

RESUMO

Pseudomonas plecoglossicida is an important pathogenic bacterium in aquaculture that causes visceral granulomas in large yellow croaker (Larimichthys crocea). Uridine diphosphate glucose phosphorylase encoded by galU plays a key role in biosynthesis of the bacterial envelope, particularly lipopolysaccharide and the capsule. In this study, we inactivated the galU gene in the P. plecoglossicida isolate XSDHY-P. The galU mutant strain showed impaired growth in the early exponential stage and lacked the O polysaccharide side chain in lipopolysaccharide, but almost no defect in biofilm formation was detected. The galU mutant strain also exhibited significantly more sensitivity to the bactericidal action of normal fish serum mediated by the complement system compared to the wild-type strain. In a cell model originating from the head kidney of large yellow croaker, the galU mutant strain showed lower capacities of adhesion, invasion, and intracellular survival compared to the wild-type strain. In addition, the deficiency of the galU mutant drastically decreased bacterial loads in tissues and attenuated P. plecoglossicida virulence in fish. These results suggest that the galU gene of P. plecoglossicida is required for in vivo survival in large yellow croaker.


Assuntos
Doenças dos Peixes , Perciformes , Infecções por Pseudomonas , Animais , Infecções por Pseudomonas/microbiologia , Lipopolissacarídeos , Doenças dos Peixes/microbiologia , Perciformes/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa