RESUMO
Severe congenital neutropenia (CN) is an inherited pre-leukemia bone marrow failure syndrome commonly caused by autosomal-dominant ELANE mutations (ELANE-CN). ELANE-CN patients are treated with daily injections of recombinant human granulocyte colony-stimulating factor (rhG-CSF). However, some patients do not respond to rhG-CSF, and approximately 15% of ELANE-CN patients develop myelodysplasia or acute myeloid leukemia. Here, we report the development of a curative therapy for ELANE-CN through inhibition of ELANE mRNA expression by introducing two single-strand DNA breaks at the opposing DNA strands of the ELANE promoter TATA box using CRISPR-Cas9D10A nickases-termed MILESTONE. This editing effectively restored defective neutrophil differentiation of ELANE-CN CD34+ hematopoietic stem and progenitor cells (HSPCs) in vitro and in vivo, without affecting the functions of the edited neutrophils. CRISPResso analysis of the edited ELANE-CN CD34+ HSPCs revealed on-target efficiencies of over 90%. Simultaneously, GUIDE-seq, CAST-Seq, and rhAmpSeq indicated a safe off-target profile with no off-target sites or chromosomal translocations. Taken together, ex vivo gene editing of ELANE-CN HSPCs using MILESTONE in the setting of autologous stem cell transplantation could be a universal, safe, and efficient gene therapy approach for ELANE-CN patients.
Assuntos
Sistemas CRISPR-Cas , Síndrome Congênita de Insuficiência da Medula Óssea , Edição de Genes , Terapia Genética , Elastase de Leucócito , Neutropenia , Regiões Promotoras Genéticas , Edição de Genes/métodos , Humanos , Neutropenia/congênito , Neutropenia/terapia , Neutropenia/genética , Terapia Genética/métodos , Síndrome Congênita de Insuficiência da Medula Óssea/terapia , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Animais , Camundongos , Neutrófilos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mutação , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Doenças Genéticas Ligadas ao Cromossomo X/genéticaRESUMO
BACKGROUND: Congenital neutropenias are characterized by severe infections and a high risk of myeloid transformation; the causative genes vary across ethnicities. The Israeli population is characterized by an ethnically diverse population with a high rate of consanguinity. OBJECTIVE: To evaluate the clinical and genetic spectrum of congenital neutropenias in Israel. METHODS: We included individuals with congenital neutropenias listed in the Israeli Inherited Bone Marrow Failure Registry. Sanger sequencing was performed for ELANE or G6PC3, and patients with wild-type ELANE/G6PC3 were referred for next-generation sequencing. RESULTS: Sixty-five patients with neutropenia were included. Of 51 patients with severe congenital neutropenia, 34 were genetically diagnosed, most commonly with variants in ELANE (15 patients). Nine patients had biallelic variants in G6PC3, all of consanguineous Muslim Arab origin. Other genes involved were SRP54, JAGN1, TAZ, and SLC37A4. Seven patients had cyclic neutropenia, all with pathogenic variants in ELANE, and seven had Shwachman-Diamond syndrome caused by biallelic SBDS variants. Eight patients (12%) developed myeloid transformation, including six patients with an unknown underlying genetic cause. Nineteen (29%) patients underwent hematopoietic stem cell transplantation, mostly due to insufficient response to treatment with granulocyte-colony stimulating factor or due to myeloid transformation. CONCLUSIONS: The genetic spectrum of congenital neutropenias in Israel is characterized by a high prevalence of G6PC3 variants and an absence of HAX1 mutations. Similar to other registries, for 26% of the patients, a molecular diagnosis was not achieved. However, myeloid transformation was common in this group, emphasizing the need for close follow-up.
Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea , Mutação , Neutropenia , Humanos , Neutropenia/genética , Neutropenia/congênito , Neutropenia/epidemiologia , Neutropenia/diagnóstico , Masculino , Israel/epidemiologia , Feminino , Criança , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Síndrome Congênita de Insuficiência da Medula Óssea/diagnóstico , Pré-Escolar , Adolescente , Predisposição Genética para Doença , Adulto , Transplante de Células-Tronco Hematopoéticas , Lactente , Consanguinidade , Glucose-6-Fosfatase/genética , Alelos , Sistema de Registros , Sequenciamento de Nucleotídeos em Larga Escala , Adulto Jovem , Fenótipo , Estudos de Associação GenéticaRESUMO
Severe congenital neutropenia (SCN) patients are prone to develop myelodysplastic syndrome (MDS) or acute myeloid leukaemia (AML). Leukaemic progression of SCN is associated with the early acquisition of CSF3R mutations in haematopoietic progenitor cells (HPCs), which truncate the colony-stimulating factor 3 receptor (CSF3R). These mutant clones may arise years before MDS/AML becomes overt. Introduction and activation of CSF3R truncation mutants in normal HPCs causes a clonally dominant myeloproliferative state in mice treated with CSF3. Paradoxically, in SCN patients receiving CSF3 therapy, clonal dominance of CSF3R mutant clones usually occurs only after the acquisition of additional mutations shortly before frank MDS or AML is diagnosed. To seek an explanation for this discrepancy, we introduced a patient-derived CSF3R-truncating mutation in ELANE-SCN and HAX1-SCN derived and control induced pluripotent stem cells and compared the CSF3 responses of HPCs generated from these lines. In contrast to CSF3R-mutant control HPCs, CSF3R-mutant HPCs from SCN patients do not show increased proliferation but display elevated levels of inflammatory signalling. Thus, activation of the truncated CSF3R in SCN-HPCs does not evoke clonal outgrowth but causes a sustained pro-inflammatory state, which has ramifications for how these CSF3R mutants contribute to the leukaemic transformation of SCN.
Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Camundongos , Animais , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Leucemia Mieloide Aguda/diagnóstico , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/complicaçõesRESUMO
Genome editing of hematopoietic stem and progenitor cells is being developed for the treatment of several inherited disorders of the hematopoietic system. The adaptation of CRISPR-Cas9-based technologies to make precise changes to the genome, and developments in altering the specificity and efficiency, and improving the delivery of nucleases to target cells have led to several breakthroughs. Many clinical trials are ongoing, and several pre-clinical models have been reported that would allow these genetic therapies to one day offer a potential cure to patients with diseases where limited options currently exist. However, there remain several challenges with respect to establishing safety, expanding accessibility and improving the manufacturing processes of these therapeutic products. This review focuses on some of the recent advances in the field of genome editing of hematopoietic stem and progenitor cells and illustrates the ongoing challenges.
Assuntos
Sistemas CRISPR-Cas , Células-Tronco Hematopoéticas , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Terapia Genética/métodosRESUMO
Severe congenital neutropenia (SCN) is a rare disorder, often due to pathogenic variants in genes such as ELANE, HAX1, and SBDS. SRP54 pathogenic variants are associated with SCN and Shwachman-Diamond-like syndrome. Thirty-eight patients with SRP54-related SCN are reported in the literature. We present an infant with SCN, without classic Shwachman-Diamond syndrome features, who presented with recurrent bacterial infections and an SRP54 (c.349_351del) pathogenic variant. Despite ongoing granulocyte colony-stimulating factor therapy, this patient has no evidence of malignant transformation. Here we establish a framework for the future development of universal guidelines to care for this patient population.
Assuntos
Neutropenia , Lactente , Humanos , Virulência , Mutação , Neutropenia/genética , Neutropenia/patologia , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Síndrome de Shwachman-Diamond , Partícula de Reconhecimento de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/genéticaRESUMO
An assay for neutrophil-specific antibodies is frequently used in the workup of chronic severe neutropenia and is suggestive of autoimmune, or sporadically alloimmune neutropenia, rather than severe congenital neutropenia (SCN). We analyzed a neutropenia consortium database for the outcomes of antibody testing initiated before receiving genetic diagnosis in Polish SCN cohort. Test results, performed in a single reference laboratory, were available for 14 patients with ELANE-mutated SCN or cyclic neutropenia, and were frequently positive (36%). We note that the trigger for genetic studies in severe neutropenia should not be affected by antibody-positivity and should be clinically driven.
Assuntos
Neutropenia , Neutrófilos , Humanos , Prevalência , Mutação , Elastase de Leucócito/genética , Neutropenia/genética , AutoanticorposRESUMO
The diagnostic work up and surveillance of germline disorders of bone marrow failure and predisposition to myeloid malignancy is complex and involves correlation between clinical findings, laboratory and genetic studies, and bone marrow histopathology. The rarity of these disorders and the overlap of clinical and pathologic features between primary and secondary causes of bone marrow failure, acquired aplastic anemia, and myelodysplastic syndrome may result in diagnostic uncertainty. With an emphasis on the pathologist's perspective, we review diagnostically useful features of germline disorders including Fanconi anemia, Shwachman-Diamond syndrome, telomere biology disorders, severe congenital neutropenia, GATA2 deficiency, SAMD9/SAMD9L diseases, Diamond-Blackfan anemia, and acquired aplastic anemia. We discuss the distinction between baseline morphologic and genetic findings of these disorders and features that raise concern for the development of myelodysplastic syndrome.
Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Neoplasias , Humanos , Anemia Aplástica/genética , Anemia Aplástica/complicações , Síndrome Congênita de Insuficiência da Medula Óssea/complicações , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/complicações , Doenças da Medula Óssea/diagnóstico , Patologistas , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/complicações , Transtornos da Insuficiência da Medula Óssea/complicações , Células Germinativas , Neoplasias/complicações , Peptídeos e Proteínas de Sinalização IntracelularRESUMO
BACKGROUND: Congenital neutropenia is a rare disease. Recurrent infections since young age are the presentation. The most common mutation causing severe congenital neutropenia (SCN) and cyclic neutropenia (CyN) is the ELANE gene. The objectives of this study were to screen the three common genetic mutations of ELANE, HAX1 and GFI1 in children with chronic neutropenia and to describe the clinical characteristics of children who had the mutations. METHODS: Infants having ANC < 1,000/cu mm or children aged > 1 year having ANC < 1,500/cu mm at least 3 times in 3 months were enrolled in the study. Patients who had acquired neutropenia due to infection, immune deficiency, or drugs were excluded. The ELANE gene was first studied; and if mutations were not identified, the HAX1 and GFI1 genes were further examined. RESULTS: A total of 60 patients were enrolled in the study. The median (range) age, ratio of female to male, ANC, and last follow-up age were 9.2 (0.5-45.2) months, 1:1.2, 248 (0-1,101) /cu mm, and 19.9 (3.5-202.3) months, respectively. Infections were noted in 67.3% of all patients. ELANE gene mutation was found in only four patients (6.7%), and the rest (56 patients) showed no mutations in the HAX1 and GFI1 genes. In patients without mutations, 66.0% had normal ANC during the follow-up, with a median (range) age for normal ANC of 19.8 (4.0-60.0) months. Two novel mutations p. Ala79del (c.234_236del) and p. Val197GlufsTer18 (c.589_590insAGGCCGGC) were identified, and they respectively cause SCN and CyN. Patients with the two novel mutations presented with several episodes of infection, including pneumonia, sepsis, abscess, otitis media, and gum infection. CONCLUSION: The genetic screening for ELANE, HAX1, and GFI1 gene mutations in 60 patients with chronic neutropenia could identify four patients (6.7%) with ELANE gene mutation and two novel mutations, p. Ala79del in exon 3 and p. Val197GlufsTer18 in exon 4 causing SCN; and CyN, respectively.
Assuntos
Elastase de Leucócito , Neutropenia , Lactente , Humanos , Masculino , Criança , Feminino , Elastase de Leucócito/genética , Neutropenia/genética , Neutropenia/congênito , Mutação , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genéticaRESUMO
Jagunal homolog 1 (JAGN1) has been recognized as an essential protein in neutrophil function. The mutated JAGN1 is responsible for immunodeficiency related to innate and humoral defense mechanisms. This deficiency impairs neutrophil development and function, leading to recurrent infections and facial dysmorphism as phenotypic consequences of severe congenital neutropenia (SCN). We report two siblings having the reported JAGN1 mutation with different clinical manifestations. Recurrent abscess formation unresponsive to antibiotic therapy, a history of delayed umbilical separation, frequent bacterial or fungal infection, dysmorphic face, failure to thrive, and other coexisting organ abnormalities should prompt physicians to syndromic immunodeficiencies involving neutrophils. Genetic investigations to elucidate the responsible mutation is critical as clinical management varies. Once the diagnosis is confirmed, a multi-disciplinary team should perform further workups to investigate other coexisting malformations and neurodevelopmental evaluation.
Assuntos
Neutropenia , Humanos , Mutação , Neutropenia/genética , Neutropenia/congênito , Neutrófilos/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea , Proteínas de Membrana/genéticaRESUMO
Severe congenital neutropenia (SCN) is characterized by severe neutropenia and recurrent critical infections. X-linked neutropenia (XLN) is caused by a gain-of-function mutation in the Wiskott-Aldrich syndrome gene (WAS), the product of which (WASp) is expressed only in blood cells, especially during neutrophil maturation. To investigate the mechanism of neutropenia, we established a novel knock-in mouse line expressing WASp-I292T. WASp-I292T neutrophils exhibited activated (dysregulated) actin polymerization. Although WASp-I292T mice did not recapitulate neutropenia, neutrophil levels were increased in the bone marrow, and extramedullary hematopoiesis was observed. Bone marrow neutrophils from WASp-I292T mice exhibited attenuated transmigration. These abnormalities were associated with downregulation of NFκB and TP53 and faulty activation of their downstream pathways.
Assuntos
Neutropenia , Vespas , Actinas/metabolismo , Animais , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Hematopoese/genética , Humanos , Camundongos , Neutropenia/genética , Neutrófilos/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismoRESUMO
BACKGROUND AND OBJECTIVES: Glucose-6-phosphate catalytic subunit 3 (G6PC3) deficiency is characterized by severe congenital neutropenia with recurrent pyogenic infections, a prominent superficial venous pattern and cardiovascular and urogenital malformations caused by an alteration of glucose homeostasis, with increased endoplasmic reticulum stress and cell apoptosis. METHODS: We reviewed our patients with G6PC3 deficiency diagnosed along the last decade in Mexico; we also searched the PubMed/Medline database for the terms ('G6PC3 deficiency' OR 'Dursun syndrome' OR 'Severe congenital neutropenia type 4'), and selected articles published in English from 2009 to 2020. RESULTS: We found 89 patients reported from at least 14 countries in 4 continents. We describe five new cases from Mexico. Of the 94 patients, 56% are male, 48% from Middle East countries and none of them had adverse reactions to live vaccines; all presented with at least 1 severe infection prior to age 2. Seventy-five per cent had syndromic features, mainly atrial septal defect in 55% and prominent superficial veins in 62%. CONCLUSIONS: With a total of 94 patients reported in the past decade, we delineate the most frequent laboratory and genetic features, their treatment and outcomes, and to expand the knowledge of syndromic and non-syndromic phenotypes in these patients.
Assuntos
Glucose-6-Fosfatase , Neutropenia , Domínio Catalítico , Síndrome Congênita de Insuficiência da Medula Óssea , Feminino , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Humanos , Masculino , Neutropenia/congênito , Neutropenia/genéticaRESUMO
Background: Severe congenital neutropenia type 4 (SCN4) is a rare autosomal recessive granulopoiesis disorder caused by G6PC3 gene pathogenic variants. The estimated prevalence is 1/10,000,000 people. Over 90% of patients present a syndromic form with variable multisystemic involvement, including congenital heart defects, increased visibility of superficial veins (IVSV), inflammatory bowel disease, and congenital urogenital defects as prominent symptoms. Objectives: The objective of the study was to study non-hematological phenotypic findings that suggest a clinical diagnosis of SCN4. Methods: We examined medical records of patients diagnosed with neutropenia from January 2000 to December 2020, selecting cases with non-hematologic manifestations for phenotypic description and G6PC3 gene sequencing. Results: We found 11 cases with non-hematologic features: congenital heart defects in 8, IVSV in 6, inflammatory bowel disease in 4, urogenital defects in 4, and similar facial appearance. In addition, Sanger sequencing confirmed 3 homozygous cases for the c.210delC variant, a compound heterozygous harboring this variant, and a c.199_218+1 deletion. Conclusions: Our findings of the c.210delC variant in very close geographical settings, to date, have only been reported among Mexicans, and a mutual uncommon surname in two families strongly supports a founder effect for the variant in the studied population. Furthermore, the described non-hematologic symptoms in patients with severe primary neutropenia should be explored, confirming SCN4 by investigating G6PC3 gene mutations.
Assuntos
Doenças Inflamatórias Intestinais , Neutropenia , Humanos , Glucose-6-Fosfatase/genética , Cardiopatias Congênitas/genética , Doenças Inflamatórias Intestinais/genética , Mutação , Neutropenia/epidemiologia , Neutropenia/genética , Neutropenia/congênito , Doenças RarasRESUMO
Severe congenital neutropenia (SCN) is characterized by a near absence of neutrophils, rendering individuals with this disorder vulnerable to recurrent life-threatening infections. The majority of SCN cases arise because of germline mutations in the gene elastase, neutrophil-expressed (ELANE) encoding the neutrophil granule serine protease neutrophil elastase. Treatment with a high dose of granulocyte colony-stimulating factor increases neutrophil production and reduces infection risk. How ELANE mutations produce SCN remains unknown. The currently proposed mechanism is that ELANE mutations promote protein misfolding, resulting in endoplasmic reticulum stress and activation of the unfolded protein response (UPR), triggering death of neutrophil precursors and resulting in neutropenia. Here we studied the ELANE mutation p.G185R, often associated with greater clinical severity (e.g. decreased responsiveness to granulocyte colony-stimulating factor and increased leukemogenesis). Using an inducible expression system, we observed that this ELANE mutation diminishes enzymatic activity and granulocytic differentiation without significantly affecting cell proliferation, cell death, or UPR induction in murine myeloblast 32D and human promyelocytic NB4 cells. Impaired differentiation was associated with decreased expression of genes encoding critical hematopoietic transcription factors (Gfi1, Cebpd, Cebpe, and Spi1), cell surface proteins (Csf3r and Gr1), and neutrophil granule proteins (Mpo and Elane). Together, these findings challenge the currently prevailing model that SCN results from mutant ELANE, which triggers endoplasmic reticulum stress, UPR, and apoptosis.
Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea , Regulação Enzimológica da Expressão Gênica , Granulócitos/enzimologia , Elastase de Leucócito , Mutação de Sentido Incorreto , Neutropenia/congênito , Resposta a Proteínas não Dobradas , Substituição de Aminoácidos , Animais , Apoptose , Linhagem Celular Tumoral , Síndrome Congênita de Insuficiência da Medula Óssea/enzimologia , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Estresse do Retículo Endoplasmático , Humanos , Elastase de Leucócito/biossíntese , Elastase de Leucócito/genética , Camundongos , Neutropenia/enzimologia , Neutropenia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Among 143 patients with elastase, neutrophil-expressed (ELANE)-related neutropenia enrolled in the French Severe Chronic Neutropenia Registry, 94 were classified as having severe chronic neutropenia (SCN) and 49 with cyclic neutropenia (CyN). Their infectious episodes were classified as severe, mild or oral, and analysed according to their natural occurrence without granulocyte-colony stimulating factor (G-CSF), on G-CSF, after myelodysplasia/acute leukaemia or after haematopoietic stem-cell transplantation. During the disease's natural history period (without G-CSF; 1913 person-years), 302, 957 and 754 severe, mild and oral infectious events, respectively, occurred. Among severe infections, cellulitis (48%) and pneumonia (38%) were the most common. Only 38% of episodes were microbiologically documented. The most frequent pathogens were Staphylococcus aureus (37·4%), Escherichia coli (20%) and Pseudomonas aeruginosa (16%), while fungal infections accounted for 1%. Profound neutropenia (<200/mm3 ), high lymphocyte count (>3000/mm3 ) and neutropenia subtype were associated with high risk of infection. Only the p.Gly214Arg variant (5% of the patients) was associated with infections but not the overall genotype. The first year of life was associated with the highest infection risk throughout life. G-CSF therapy achieved lower ratios of serious or oral infectious event numbers per period but was less protective for patients requiring >10 µg/kg/day. Infections had permanent consequences in 33% of patients, most frequently edentulism.
Assuntos
Infecções Bacterianas/etiologia , Elastase de Leucócito/análise , Micoses/etiologia , Neutropenia/complicações , Adolescente , Adulto , Infecções Bacterianas/genética , Criança , Seguimentos , França/epidemiologia , Variação Genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Lactente , Elastase de Leucócito/genética , Micoses/genética , Neutropenia/genética , Neutropenia/terapia , Recidiva , Sistema de Registros , Adulto JovemRESUMO
Severe congenital neutropenia (SCN) is a monogenic disorder. SCN patients are prone to recurrent life-threatening infections. The main causes of SCN are autosomal dominant mutations in the ELANE gene that lead to a block in neutrophil differentiation. In this study, we use CRISPR-Cas9 ribonucleoproteins and adeno-associated virus (AAV)6 as a donor template delivery system to repair the ELANEL172P mutation in SCN patient-derived hematopoietic stem and progenitor cells (HSPCs). We used a single guide RNA (sgRNA) specifically targeting the mutant allele, and an sgRNA targeting exon 4 of ELANE. Using the latter sgRNA, â¼34% of the known ELANE mutations can in principle be repaired. We achieved gene correction efficiencies of up to 40% (with sgELANE-ex4) and 56% (with sgELANE-L172P) in the SCN patient-derived HSPCs. Gene repair restored neutrophil differentiation in vitro and in vivo upon HSPC transplantation into humanized mice. Mature edited neutrophils expressed normal elastase levels and behaved normally in functional assays. Thus, we provide a proof of principle for using CRISPR-Cas9 to correct ELANE mutations in patient-derived HSPCs, which may translate into gene therapy for SCN.
Assuntos
Sistemas CRISPR-Cas/genética , Síndrome Congênita de Insuficiência da Medula Óssea/terapia , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Elastase de Leucócito/genética , Mutação , Neutropenia/congênito , Alelos , Animais , Diferenciação Celular/genética , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Éxons , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células HEK293 , Humanos , Interleucina-3/genética , Interleucina-3/metabolismo , Camundongos , Camundongos Transgênicos , Neutropenia/genética , Neutropenia/patologia , Neutropenia/terapia , Neutrófilos/metabolismo , RNA Guia de Cinetoplastídeos/genética , Transfecção , Resultado do TratamentoRESUMO
BACKGROUND: The molecular cause of severe congenital neutropenia (SCN) is unknown in 30% to 50% of patients. SEC61A1 encodes the α-subunit of the Sec61 complex, which governs endoplasmic reticulum protein transport and passive calcium leakage. Recently, mutations in SEC61A1 were reported to be pathogenic in common variable immunodeficiency and glomerulocystic kidney disease. OBJECTIVE: Our aim was to expand the spectrum of SEC61A1-mediated disease to include autosomal dominant SCN. METHODS: Whole exome sequencing findings were validated, and reported mutations were compared by Western blotting, Ca2+ flux assays, differentiation of transduced HL-60 cells, in vitro differentiation of primary CD34 cells, quantitative PCR for unfolded protein response (UPR) genes, and single-cell RNA sequencing on whole bone marrow. RESULTS: We identified a novel de novo missense mutation in SEC61A1 (c.A275G;p.Q92R) in a patient with SCN who was born to nonconsanguineous Belgian parents. The mutation results in diminished protein expression, disturbed protein translocation, and an increase in calcium leakage from the endoplasmic reticulum. In vitro differentiation of CD34+ cells recapitulated the patient's clinical arrest in granulopoiesis. The impact of Q92R-Sec61α1 on neutrophil maturation was validated by using HL-60 cells, in which transduction reduced differentiation into CD11b+CD16+ cells. A potential mechanism for this defect is the uncontrolled initiation of the unfolded protein stress response, with single-cell analysis of primary bone marrow revealing perturbed UPR in myeloid precursors and in vitro differentiation of primary CD34+ cells revealing upregulation of CCAAT/enhancer-binding protein homologous protein and immunoglobulin heavy chain binding protein UPR-response genes. CONCLUSION: Specific mutations in SEC61A1 cause SCN through dysregulation of the UPR.
Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Mutação/genética , Neutropenia/congênito , Neutrófilos/fisiologia , Canais de Translocação SEC/genética , Antígenos CD34/metabolismo , Transtornos Cromossômicos , Feminino , Genes Dominantes , Células HL-60 , Humanos , Neutropenia/genética , Linhagem , Análise de Célula Única , Resposta a Proteínas não Dobradas/genética , Sequenciamento do Exoma , Adulto JovemRESUMO
Severe congenital neutropenia (SCN) is a primary immunodeficiency characterized by defect in neutrophil count. Increased risk of infections in addition to periodontal problems, such as ulcerations of oral mucosa, gingival inflammation, and rapid loss of attachment are common in the course of the disease. The aim of the present study is to define the causal relationship between the severity of periodontal inflammation and severe congenital neutropenia through identification of cytokine profile in gingival crevicular fluid (GCF). A case-control study was performed in patients diagnosed with SCN and healthy controls. Demographic data, the molecular defect, laboratory work-up were gathered from the hospital registry. Periodontal indices were recorded and GCF samples were analyzed using multiplex analysis for the simultaneous measurements of the particular cytokines and chemokines. The present study included 14 patients and 22 control subjects. Both groups were comparable in terms of age and sex. Severity of gingival inflammation measured by the criteria of Löe was higher in the SCN cases (p < 0.05). Moreover, GCF levels of IFN-α, TNF-α, IL-10, IL-13, IL-15, IL-17, IL-2, IL-7, IL-33, IP-10, MIG, MIP-1ß were significantly higher in the controls. Decreased cytokine secretion seems to correlate with the decrease in neutrophil counts. The severity of gingival inflammation in SCN patients may be due to the bacterial overgrowth and the change in the content of the oral flora due to the decreased neutrophil counts. Therefore, regular periodontal examinations, the motivation of oral hygiene as well as the compliance with therapy in SCN patients contribute to the periodontal health.
Assuntos
Citocinas , Líquido do Sulco Gengival , Estudos de Casos e Controles , Quimiocinas , Síndrome Congênita de Insuficiência da Medula Óssea , Líquido do Sulco Gengival/química , Humanos , Neutropenia/congênito , Fator de Necrose Tumoral alfaRESUMO
Splicing is a ubiquitous process in eukaryotic cells, long recognised as contributing to diversity of the transcriptome. More specifically, splicing fine-tunes the transcriptome output for highly individual outcomes at different stages of cell development, in specific timeframes, which when perturbed result in significant human diseases. Granulopoiesis provides a particularly well studied example of how splicing can be a highly flexible but tightly regulated process. Focusing on the specific case of granulopoiesis, this review surveys the contribution of cis-splicing variations in individual genes and the trans-regulation of global splicing outcomes during the normal development of neutrophils. Further, the contribution of splicing dysfunction to the pathogenesis of diseases of neutrophil number, function and maturation including hereditary neutropenia, myelodysplasia, and acute myeloid leukaemia is explored.
Assuntos
Processamento Alternativo , Leucopoese/genética , Neutropenia/genética , Neutrófilos/metabolismo , Animais , Regulação da Expressão Gênica , Predisposição Genética para Doença/genética , Humanos , Modelos Genéticos , MutaçãoRESUMO
Patients with the pre-leukemia bone marrow failure syndrome called severe congenital neutropenia (CN) have an approximately 15% risk of developing acute myeloid leukemia (AML; called here CN/AML). Most CN/AML patients co-acquire CSF3R and RUNX1 mutations, which play cooperative roles in the development of AML. To establish an in vitro model of leukemogenesis, we utilized bone marrow lin- cells from transgenic C57BL/6-d715 Csf3r mice expressing a CN patient-mimicking truncated CSF3R mutation. We transduced these cells with vectors encoding RUNX1 wild type (WT) or RUNX1 mutant proteins carrying the R139G or R174L mutations. Cells transduced with these RUNX1 mutants showed diminished in vitro myeloid differentiation and elevated replating capacity, compared with those expressing WT RUNX1. mRNA expression analysis showed that cells transduced with the RUNX1 mutants exhibited hyperactivation of inflammatory signaling and innate immunity pathways, including IL-6, TLR, NF-kappaB, IFN, and TREM1 signaling. These data suggest that the expression of mutated RUNX1 in a CSF3R-mutated background may activate the pro-inflammatory cell state and inhibit myeloid differentiation.
Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células-Tronco Hematopoéticas/patologia , Células Mieloides/patologia , Mielopoese/genética , Neutropenia/congênito , Pré-Leucemia/genética , Receptores de Fator Estimulador de Colônias/genética , Animais , Divisão Celular , Ensaio de Unidades Formadoras de Colônias , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Perfilação da Expressão Gênica , Imunidade Inata , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutropenia/genética , Neutropenia/patologia , Pré-Leucemia/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Fator Estimulador de Colônias/fisiologia , Proteínas Recombinantes/genética , Organismos Livres de Patógenos EspecíficosRESUMO
Severe congenital neutropenia caused by ELANE gene mutation is a rare disease. To date, only four families were reported with mosaicism. Here we examined the morphology and function of granulocytes isolated from two patients and their mosaic fathers. Analysis of granulocytes isolated from the fathers revealed no genetic mutations. DNA extracted from fractionated peripheral blood mononuclear cells (PBMCs) and fingernails obtained from both fathers did harbor the mutation, suggesting mosaicism. Granulocytes isolated from the patients displayed significantly weaker ionomycin-induced intracellular reactive oxygen species (ROS) responses than those isolated from the fathers. Both patients showed increased expression of neutrophil elastase, whereas the mosaic fathers showed normal expression. Taken together, the results suggest that granulocytes from these SCN patients are immunocompromised, whereas those from the mosaic fathers are normal. These findings may provide new insight into disease diagnosis, prognosis, therapy and genetic counseling.