Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(40)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34192678

RESUMO

In order to make up for the defects of trans-1,4-polyisoprene (TPI) shape memory polymer, TPI/high density polyethylene (HDPE) hybrid shape memory matrix was prepared from the perspective of matrix composition. The carbon nanotubes (CNTs) with excellent mechanical properties were introduced into the hybrid shape memory matrix. Due to the difference of the inherent properties and geometry of nano-fillers, the change of the content of nano-fillers directly affects the bonding state within the composites. Therefore, it is very important to choose the appropriate content. In order to give full play to the potential of thermodynamics of nano-filler, the TPI/HDPE/CNTs ternary hybrid shape memory nanocomposites were prepared by mechanical melt blending technology combined with dynamic vulcanization and hot-pressing forming technology. The addition of CNTs promotes the formation of the crystal structure of TPI and HDPE, and facilitates the energy transfer between different interface, which greatly improves the thermal conductivity and mechanical properties of the nanocomposites at the same time. The effect of the changes of filler content on the thermodynamic properties of the composite materials were revealed by series of tests. The results show that the CNTs act as nucleating agents in the crystallization region of TPI and HDPE. However, the excessive addition of CNTs can inhibit the formation of HDPE crystal structure. Meanwhile, the crystallinity of nanocomposites is also an important factor affecting its thermal conductivity. The specimens with the CNTs content of 0.5 wt% have excellent tensile resistance and cyclic recovery ability, and it can improve the shape recovery properties. Therefore, the nanocomposite with the CNTs content of 0.5 wt% has the best thermodynamic and shape memory properties.

2.
Macromol Rapid Commun ; 38(23)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29083102

RESUMO

Shape-memory polymers are highly desirable in implant biomaterials for minimally invasive surgical procedures. However, most of them lack suitable transition temperature, mechanical properties, and biodegradability. Here, a series of shape-memory polyurethanes are synthesized by postcrosslinking in hard-segment domains using a flexible crosslinker. The materials used are all nontoxic and biodegradable. Through postcrosslinking of unsaturated linear polyurethanes with flexible and biodegradable crosslinker, the crosslinked polyurethanes (CPUs) show good mechanical properties, excellent shape-memory property, and repeatability. The post-crosslinking structure and shape-memory mechanism of CPUs are investigated by Fourier transform infrared spectroscopy, differential scanning calorimetry, and dynamic mechanical analysis tests. The crosslinker endows the fixed phase enough crosslinking and inserts in the hard segments to give the fixed phase certain elasticity. The elastic hard segments make them form more hydrogen bonds with soft segments during shape deformation. The low-molecular-weight poly (ε-caprolactone) offers the samples a shape-memory transition temperature at around 37 °C, which is suitable for implant devices in vivo. This work expands CPUs with an elastic crosslinking structure as potential candidates for implant biomaterials. Since the post-crosslinking polymerization is facile, it can be convenient for industrial production.


Assuntos
Materiais Biocompatíveis/química , Poliuretanos/química , Varredura Diferencial de Calorimetria , Ligação de Hidrogênio , Teste de Materiais
3.
Polymers (Basel) ; 16(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39274046

RESUMO

In situ-generated nanofibrillar polymer-polymer composites are excellent candidates for the production of polymer materials, with high mechanical and SME properties. Their special feature is the high degree of dispersion of the in situ-generated nanofibers and the ability to form entangled nanofiber structures with high aspect ratios through an end-to-end coalescence process, which makes it possible to effectively reinforce the polymer matrix and, in many cases, increase its ductility. The substantial interfacial area, created by the in situ formed fiber/matrix morphology, significantly strengthens the interfacial interactions, which are crucial for shape fixation and shape recovery. Using the polylactide/bio-polyamide (PLA/PA) system as an example, it is shown that in situ PA fibrillation improves the mechanical and shape-memory properties of PLA. The modulus of elasticity increases by a factor of 1.4, the elongation at break increases by a factor of 30, and the shape-strain/fixity ratio and shape recovery increase from 80.2 to 97.4% and from 15.5 to 94.0%, respectively. The morphology of the minor PA phase is crucial. The best result is achieved when a physically entangled nanofibrous network is formed.

4.
Int J Biol Macromol ; 253(Pt 6): 127346, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37832621

RESUMO

The widespread application of biodegradable polylactide (PLA) is hindered by its brittleness. Polyethylene glycol (PEG) is commonly utilized as a plasticizer because of its favorable compatibility with PLA. However, the incorporation of PEG considerably diminishes the tensile strength of PLA. To address this issue, reactive isocyanate-modified graphene oxide (mGO) was synthesized and used as an enhancer in PLA/PEG blends. By virtue of the reaction between the isocyanate group in mGO and the terminal hydroxyl groups of PLA and PEG, graphene-based polyurethane (PU) in-situ formed and enhanced the interface between GO and the matrix. Consequently, the PLA/PEG/mGO composites exhibit simultaneously improved tensile and impact strengths, achieving an increase of 20.6% and 29.4%, respectively, compared to PLA/PEG blends. Moreover, the in situ formed PU reduces the relaxation time of the molecule motion and improved the entanglement density, thereby improving the shape-memory recovery rate and final recovery degree of the composites. This work provides a facile method to simultaneously improve the dispersion of GO and enhance its interface with polymer, thereby supplying well comprehensive properties of PLA and extending the applications of biodegradable polymers.


Assuntos
Grafite , Polietilenoglicóis , Óxido de Magnésio , Poliésteres , Polímeros , Isocianatos
5.
Materials (Basel) ; 17(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203992

RESUMO

Fe-Mn-Si shape memory alloys (SMAs) have gained significant attention due to their unique characteristics. However, there remains a gap in the literature regarding the fabrication of these alloys using laser-directed energy deposition (LDED). This study fills this void, investigating the properties of Fe-Mn-Si SMAs produced by LDED. The shape memory performance of as-deposited Fe-Mn-Si SMAs was studied using a tensile method. Alloys underwent different degrees of deformation to assess their shape memory effect. Microstructural evaluations were conducted post-deformation to observe the internal structures of the alloys. The tensile tests revealed that shape recovery rates for deformation levels of 3%, 7%, 11%, and 15% were 68.1%, 44.2%, 31.7%, and 17.6%, respectively. Notably, the maximum recoverable deformation of the LDED-formed Fe-Mn-Si-based shape memory alloy reached 3.49%, surpassing the traditional deformation processing SMAs (<3%). The presence of a significant number of stacking faults was linked to the enhanced shape memory performance. The LDED technique demonstrates promising potential for the fabrication of Fe-Mn-Si SMAs, producing alloys with enhanced shape memory performance compared to traditionally processed SMAs. The study's findings offer new insights and broaden the applicability of LDED in the field of SMAs.

6.
Bioact Mater ; 6(7): 1988-1999, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33474513

RESUMO

Severe ischemic stroke damages neuronal tissue, forming irregular-shaped stroke cavities devoid of supporting structure. Implanting biomaterials to provide structural and functional support is thought to favor ingrowth of regenerated neuronal networks. Injectable hydrogels capable of in situ gelation are often utilized for stroke repair, but challenged by incomplete gelation and imprecise control over end-macrostructure. Injectable shape-memory scaffolds might overcome these limitations, but are not explored for stroke repair. Here, we report an injectable, photoluminescent, carbon-nanotubes-doped sericin scaffold (CNTs-SS) with programmable shape-memory property. By adjusting CNTs' concentrations, CNTs-SS' recovery dynamics can be mathematically calculated at the scale of seconds, and its shapes can be pre-designed to precisely match any irregular-shaped cavities. Using a preclinical stroke model, we show that CNTs-SS with the customized shape is successfully injected into the cavity and recovers its pre-designed shape to well fit the cavity. Notably, CNTs-SS' near-infrared photoluminescence enables non-invasive, real-time tracking after in vivo implantation. Moreover, as a cell carrier, CNTs-SS not only deliver bone marrow mesenchymal stem cells (BMSCs) into brain tissues, but also functionally promote their neuronal differentiation. Together, we for the first time demonstrate the feasibility of applying injectable shape-memory scaffolds for stroke repair, paving the way for personalized stroke repair.

7.
Carbohydr Polym ; 257: 117633, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33541659

RESUMO

Shape memory polymer (SMP), composites and blends need to be prepared to improve the properties or obtain new functions of SMPs. In this work, we successfully prepared p-coumaric acid-modified water-soluble chitosan (M-Cs) and poly (vinyl alcohol) blended membrane (PVA/M-Cs) by a simple solution casting method to enhance its physico-chemical properties, including water-induced shape memory behavior. M-Cs were synthesized from native chitosan (Cs) using carbodiimide chemistry. After the addition of M-Cs into the PVA polymer matrix, it exhibited better water-induced shape memory behavior and shape recovery ratio reach nearly 100 %. Moreover, the water contact angle value declined after the addition of Cs or M-Cs in to the PVA polymer matrix. Based on these findings, the respective blended membranes will be able to broaden the applications of SMPs in many sectors, especially in the biomedical field, which requires water as the main stimulus.

8.
Polymers (Basel) ; 14(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35012132

RESUMO

In this study, which was inspired by mussel-biomimetic bonding research, carbon nanotubes (CNTs) were interfacially modified with polydopamine (PDA) to prepare a novel nano-filler (CNTs@PDA). The structure and properties of the CNTs@PDA were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The CNTs and the CNTs@PDA were used as nanofillers and melt-blended into trans-1,4 polyisoprene (TPI) to create shape-memory polymer composites. The thermal stability, mechanical properties, and shape-memory properties of the TPI/CNTs and TPI/CNTs@PDA composites were systematically studied. The results demonstrate that these modifications enhanced the interfacial interaction, thermal stability, and mechanical properties of TPI/CNTs@PDA composites while maintaining shape-memory performance.

9.
Polymers (Basel) ; 13(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34577957

RESUMO

In this study, Polyurea/Formaldehyde (PUF) microcapsules containing Dicyclopentadiene (DCPD) as a healing substance were fabricated in situ and mixed at relatively low concentrations (<2 wt%) with a thermosetting polyurethane (PU) foam used in turn as the core of a sandwich structure. The shape memory (SM) effect depended on the combination of the behavior of the PU foam core and the shape memory polymer composite (SMPC) laminate skins. SMPC laminates were manufactured by moulding commercial carbon fiber-reinforced (CFR) prepregs with a SM polymer interlayer. At first, PU foam samples, with and without microcapsules, were mechanically tested. After, PU foam was inserted into the SMPC sandwich structure. Damage tests were carried out by compression and bending to deform and break the PU foam cells, and then assess the structure self-healing (SH) and recovery capabilities. Both SM and SH responses were rapid and thermally activated (120 °C). The CFR-SMPC skins and the PU foam core enable the sandwich to exhibit excellent SM properties with a shape recovery ratio up to 99% (initial configuration recovery). Moreover, the integration of microcapsules (0.5 wt%) enables SH functionality with a structural restoration up to 98%. This simple process makes this sandwich structure ideal for different industrial applications.

10.
Polymers (Basel) ; 13(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919931

RESUMO

Poly(lactic acid) is not only one of the most often used materials for 3D printing via fused deposition modeling (FDM), but also a shape-memory polymer. This means that objects printed from PLA can, to a certain extent, be deformed and regenerate their original shape automatically when they are heated to a moderate temperature of about 60-100 °C. It is important to note that pure PLA cannot restore broken bonds, so that it is necessary to find structures which can take up large forces by deformation without full breaks. Here we report on the continuation of previous tests on 3D-printed cubes with different infill patterns and degrees, now investigating the influence of the orientation of the applied pressure on the recovery properties. We find that for the applied gyroid pattern, indentation on the front parallel to the layers gives the worst recovery due to nearly full layer separation, while indentation on the front perpendicular to the layers or diagonal gives significantly better results. Pressing from the top, either diagonal or parallel to an edge, interestingly leads to a different residual strain than pressing from front, with indentation on top always firstly leading to an expansion towards the indenter after the first few quasi-static load tests. To quantitatively evaluate these results, new measures are suggested which could be adopted by other groups working on shape-memory polymers.

11.
Colloids Surf B Biointerfaces ; 203: 111725, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33838583

RESUMO

Hydrogels are a promising choice for soft tissue (cartilage, skin and adipose) engineering and repair. However, lack of interconnected porosity and poor mechanical performance have hindered their application, especially in natural polymer-based hydrogels. Cryogels with the potential to overcome the shortcomings of hydrogels have drawn attention in the last few years. Thus, in this study, highly porous and mechanically robust cryogels based on interpenetrating polymer network (IPN) of gelatin methacrylate (GelMA) and hyaluronic acid (HA) were fabricated for soft tissue engineering application. Cryogels have a constant amount of GelMA (3% wt) with different concentrations of HA (from 5% to 20 % w/w). In fact, crosslinking through cryogelation in subzero temperature facilitates the formation of interconnected pores with 90 % porosity percentage without external progen. On the other hand, high mechanical stability (no failure up to 90 % compression) was achieved due to the cryogelation and chemical crosslinking of GelMA as well as physical crosslinking of HA. Furthermore, the porous and hydrophile nature of the cryogels resulted in shape memory properties under compression, which can reverse to initial shape after retaining the water. Although increasing the HA concentration followed by the density of physical crosslinking boosted the mechanical performance of cryogels under compression, it limited the reversibility properties. Nevertheless, all cryogels with different HA concentrations showed acceptable gel strength and Young's modulus (G-H-20, E = 6kPa) and had appropriate pore size for cell infiltration and nutrient transportation with good cell adhesion and high cell viability (more than 90 %). The unique property of fabricated cryogels that facilitate less invasive delivery makes them a promising alternative for the soft tissue application.


Assuntos
Criogéis , Engenharia Tecidual , Gelatina , Ácido Hialurônico , Hidrogéis , Metacrilatos , Porosidade , Alicerces Teciduais
12.
Polymers (Basel) ; 13(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466249

RESUMO

Polylactic acid (PLA) belongs to the few thermoplastic polymers that are derived from renewable resources such as corn starch or sugar cane. PLA is often used in 3D printing by fused deposition modeling (FDM) as it is relatively easy to print, does not show warping and can be printed without a closed building chamber. On the other hand, PLA has interesting mechanical properties which are influenced by the printing parameters and geometries. Here we present shape-memory properties of PLA cubes with different infill patterns and percentages, extending the research reported before in a conference paper. We investigate the material response under defined quasi-static load as well as the possibility to restore the original 3D printed shape. The quasi-static flexural properties are linked to the porosity and the infill structure of the samples under investigation as well as to the numbers of closed top layers, examined optically and by simulations. Our results underline the importance of designing the infill patterns carefully to develop samples with desired mechanical properties.

13.
Materials (Basel) ; 13(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952129

RESUMO

A novel protective structure, based on shrimp chela structure and the shape of odontodactylus scyllarus, has been shown to improve impact resistance and energy absorption. A finite element model of NiTi alloy with shape memory was constructed based on the basic principles of structural bionics. The protective structure utilizes NiTi alloy as the matrix, a material with many advantages including excellent compression energy absorption, reusability after unloading, and long life. The mechanical properties of the single-layer model were obtained by static crushing experiments and numerical simulations. Building upon the idea of the monolayer bionic structure design, a two-layer structure is also conceived. Both single-layer and double-layer structures have excellent compression energy absorption and self-recovery capabilities. Compared with the single-layer structure, the double-layer structure showed larger compression deformation and exhibited better energy absorption capacity. These results have important academic and practical significance for improving the impact resistance of protective armor. Our study makes it possible to repair automatic rebounds under the action of pressure load and improves the endurance and material utilization rate of other protective structures.

14.
Nanomaterials (Basel) ; 10(6)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486235

RESUMO

To use shape memory materials based on poly (lactic acid) (PLA) for medical applications is essential to tune their transition temperature (Ttrans) near to the human body temperature. In this study, the combination of lactic acid oligomer (OLA), acting as a plasticizer, together with chitosan-mediated silver nanoparticles (AgCH-NPs) to create PLA matrices is studied to obtain functional shape memory polymers for potential medical applications. PLA/OLA nanocomposites containing different amounts of AgCH-NPs were obtained and profusely characterized relating their structure with their antimicrobial and shape memory performances. Nanocomposites exhibited shape memory responses at the temperature of interest (near physiological one), as well as excellent shape memory responses, shorter recovery times and higher recovery ratios (over 100%) when compared to neat materials. Moreover, antibacterial activity tests confirmed biocidal activity; therefore, these functional polymer nanocomposites with shape memory, degradability and biocidal activity show great potential for soft actuation applications in the medical field.

15.
ACS Appl Mater Interfaces ; 11(50): 46851-46863, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31773943

RESUMO

Strong rigidity, low thermal conductivity, and short of multi-driven capabilities of form-stable phase change materials (FSPCMs) have limited their practical utilization. Herein, we report a shape-adaptable FSPCM with the coinstantaneous light/electro-driven shape memory properties and light/electro-to-thermal energy storage performance. The FSPCM is fabricated by incorporating the poly(ethylene glycol) (PEG) into the cellulose nanofiber/graphene nanoplatelet (GNP) hybrid-coated melamine foam (CG@MF). The CG@MF/PEG FSPCMs show a good encapsulation effect, enhanced thermal conductivity, and large melting enthalpy (178.9 J g-1). Due to the high elasticity of MF and the excellent photothermal conversion and electrical conductivity of the GNP network, the CG@MF/PEG FSPCMs exhibit a remarkable light/electro-driven shape memory effect by activating the phase change process of PEG. Meanwhile, the CG@MF/PEG FSPCMs can effectively convert light or electric energy into heat energy and reposit the converted energy during the phase change process. Furthermore, the CG@MF/PEG FSPCMs possess excellent multiresponsive self-adhesion properties. A light-sensitive, shape-adaptable, and thermal-insulating container is further explored. This study provides routes toward the development of multiresponsive shape-adaptable FSPCMs for energy storage applications.

16.
Carbohydr Polym ; 179: 110-117, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29111033

RESUMO

A novel water-induced shape memory nanocomposites were prepared by introducing graphene oxide (GO), which was based on microcrystalline cellulose nanofibers (MSF-g-COOH) extracting from sisal fibers. The results showed that the water-induced shape memory properties of MSF-g-COOH were significantly improved by the strong hydrogen bonding interaction between MSF-g-COOH and GO, It leads to some additional physically cross-linked points in MSF-g-COOH. On the other hand, at 0.5wt% GO loading, tensile strength and Young modulus of the nanocomposite increased from 139 to 184MPa, and from 5.77 to 8.54GPa, respectively, compared to those of pure MSF-g-COOH. Furthermore, a water-induced model was proposed to discuss the water-induced shape memory behaviors of the MSF-g-COOH/GO nanocomposites. This study provides a framework for developing a cellulose based shape memory polymers (CSMPs) and better understanding the shape recovery mechanism in water-induced CSMPs.

17.
Polymers (Basel) ; 9(11)2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30965901

RESUMO

Trans-l,4-polyisoprene (TPI) shape memory polymer composites with different chopped carbon fiber mass fractions were prepared to study the effects of different chopped carbon fiber mass fractions and temperatures on the TPI shape memory polymer composites in this paper. While guaranteeing the shape memory effect of TPI shape memory polymers, the carbon fiber fillers also significantly enhanced the mechanical properties of the polymers. The thermodynamic properties and shape memory properties of TPI shape memory polymers were studied by a differential scanning calorimeter (DSC) test, dynamic mechanical analysis (DMA) test, thermal conductivity test, static tensile test, mechanical cycle test, thermodynamic cycling test and shape memory test. Furthermore, the tensile fracture interface of TPI shape memory polymer composites was analyzed by scanning electron microscopy. The experimental results show that when the chopped carbon mass fraction fiber is 8%, TPI shape memory polymers have good shape memory properties and the best mechanical properties.

18.
J Biomater Sci Polym Ed ; 27(12): 1248-61, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27193120

RESUMO

Two types of shape memory poly carbonate urethanes (PCUs) microspheres were synthesized by pre-polymerization and suspension polymerization, based on Polycarbonate diol (PCDL) as the soft segment, Isophorone diisocyanate (IPDI) and 1,6-hexamethylene diisocyanate (HDI) as the hard segments and 1,4-butanediol (BDO) as the chain expanding agent. The structure, crystallinity, and thermal property of the two synthesized PCUs were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Differential scanning calorimetery (DSC), respectively. The results showed that the two types of PCUs exhibited high thermal stability with phase separation and semi-crystallinity. Also, the results of the compression test displayed that the shape fixity and the shape recovery of two PCUs were more than 90% compared to the originals, indicating their similar bio-applicability and shape-memory properties. The tensile strength, elongation at break was enhanced by introducing and increasing content of HDI. The water contact angles of PCUs decreased and their surface tension increased by surface modified with Bovine serum albumin (BSA). Furthermore, the biological study results of two types of PCUs from the platelet adhesion test and the cell proliferation inhibition test indicated they had some biocompatibilites. Hence, the PCU microspheres might represent a smart and shape-memory embolic agent for vascular embolization.


Assuntos
Materiais Biocompatíveis/síntese química , Cimento de Policarboxilato/síntese química , Poliuretanos/síntese química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Plaquetas/citologia , Plaquetas/metabolismo , Proliferação de Células , Células Cultivadas , Teste de Materiais , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Adesividade Plaquetária , Cimento de Policarboxilato/química , Cimento de Policarboxilato/metabolismo , Polimerização , Poliuretanos/química , Poliuretanos/metabolismo , Coelhos , Ratos , Propriedades de Superfície
19.
Chempluschem ; 81(3): 338-350, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31968791

RESUMO

The first examples of organic-inorganic hybrid materials reinforced by transition-metal oxoclusters that exhibit shape memory properties, based on the covalent incorporation of zirconium-based inorganic building blocks, are reported. Methacrylate-functionalized zirconium oxoclusters Zr4 O2 (OMc)12 and [Zr6 O4 (OH)4 (OOCCH2 CH3 )3 {OOCC(CH3 )=CH2 }9 ]2 , with the covalent incorporation in a butyl acrylate (BA)/polycaprolactone dimethacrylate (PCLDMA) copolymer and the noncovalent incorporation of [Zr6 O4 (OH)4 (OOCCH2 CH3 )12 ]2 are focused upon herein. Shape recovery and fixity rates are studied to observe if the shape memory properties are preserved upon going from a simple copolymer to noncovalent or covalent-based hybrids. These rates display values higher than 90 %, which provides evidence that the oxocluster does not hinder the shape memory properties in the hybrid materials. The introduction of an inorganic phase and the progressively more stable interactions between organic and inorganic parts lead to an enhancement of the thermomechanical properties. The materials are characterized through FTIR spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and swelling tests. Dynamic-mechanical analyses are used to investigate whether the hybrid materials display thermally activated shape memory properties. The stability of the hybrid materials are evaluated by a combined spectroscopic approach based on FTIR, solid-state NMR, and X-ray absorption spectroscopy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa