Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Nano Lett ; 24(33): 10177-10185, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39106344

RESUMO

Energy dispersive X-ray (EDX) spectroscopy in the transmission electron microscope is a key tool for nanomaterials analysis, providing a direct link between spatial and chemical information. However, using it for precisely determining chemical compositions presents challenges of noisy data from low X-ray yields and mixed signals from phases that overlap along the electron beam trajectory. Here, we introduce a novel method, non-negative matrix factorization based pan-sharpening (PSNMF), to address these limitations. Leveraging the Poisson nature of EDX spectral noise and binning operations, PSNMF retrieves high-quality phase spectral and spatial signatures via consecutive factorizations. After validating PSNMF with synthetic data sets of different noise levels, we illustrate its effectiveness on two distinct experimental cases: a nanomineralogical lamella, and supported catalytic nanoparticles. Not only does PSNMF obtain accurate phase signatures, but data sets reconstructed from the outputs have demonstrably lower noise and better fidelity than from the benchmark denoising method of principle component analysis.

2.
Sensors (Basel) ; 24(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474949

RESUMO

Beijing Satellite 3 is a high-performance optical remote sensing satellite with a spatial resolution of 0.3-0.5 m. It can provide timely and independent ultra-high-resolution spatial big data and comprehensive spatial information application services. At present, there is no relevant research on the fusion method of BJ-3A satellite images. In many applications, high-resolution panchromatic images alone are insufficient. Therefore, it is necessary to fuse them with multispectral images that contain spectral color information. Currently, there is a lack of research on the fusion method of BJ-3A satellite images. This article explores six traditional pixel-level fusion methods (HPF, HCS, wavelet, modified-IHS, PC, and Brovey) for fusing the panchromatic image and multispectral image of the BJ-3A satellite. The fusion results were analyzed qualitatively from two aspects: spatial detail enhancement capability and spectral fidelity. Five indicators, namely mean, standard deviation, entropy, correlation coefficient, and average gradient, were used for quantitative analysis. Finally, the fusion results were comprehensively evaluated from three aspects: spectral curves of ground objects, absolute error figure, and object-oriented classification effects. The findings of the research suggest that the fusion method known as HPF is the optimum and appropriate technique for fusing panchromatic and multispectral images obtained from BJ-3A. These results can be utilized as a guide for the implementation of BJ-3A panchromatic and multispectral data fusion in real-world scenarios.

3.
Hum Brain Mapp ; 44(17): 6149-6172, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37818940

RESUMO

The brain tracks and encodes multi-level speech features during spoken language processing. It is evident that this speech tracking is dominant at low frequencies (<8 Hz) including delta and theta bands. Recent research has demonstrated distinctions between delta- and theta-band tracking but has not elucidated how they differentially encode speech across linguistic levels. Here, we hypothesised that delta-band tracking encodes prediction errors (enhanced processing of unexpected features) while theta-band tracking encodes neural sharpening (enhanced processing of expected features) when people perceive speech with different linguistic contents. EEG responses were recorded when normal-hearing participants attended to continuous auditory stimuli that contained different phonological/morphological and semantic contents: (1) real-words, (2) pseudo-words and (3) time-reversed speech. We employed multivariate temporal response functions to measure EEG reconstruction accuracies in response to acoustic (spectrogram), phonetic and phonemic features with the partialling procedure that singles out unique contributions of individual features. We found higher delta-band accuracies for pseudo-words than real-words and time-reversed speech, especially during encoding of phonetic features. Notably, individual time-lag analyses showed that significantly higher accuracies for pseudo-words than real-words started at early processing stages for phonetic encoding (<100 ms post-feature) and later stages for acoustic and phonemic encoding (>200 and 400 ms post-feature, respectively). Theta-band accuracies, on the other hand, were higher when stimuli had richer linguistic content (real-words > pseudo-words > time-reversed speech). Such effects also started at early stages (<100 ms post-feature) during encoding of all individual features or when all features were combined. We argue these results indicate that delta-band tracking may play a role in predictive coding leading to greater tracking of pseudo-words due to the presence of unexpected/unpredicted semantic information, while theta-band tracking encodes sharpened signals caused by more expected phonological/morphological and semantic contents. Early presence of these effects reflects rapid computations of sharpening and prediction errors. Moreover, by measuring changes in EEG alpha power, we did not find evidence that the observed effects can be solitarily explained by attentional demands or listening efforts. Finally, we used directed information analyses to illustrate feedforward and feedback information transfers between prediction errors and sharpening across linguistic levels, showcasing how our results fit with the hierarchical Predictive Coding framework. Together, we suggest the distinct roles of delta and theta neural tracking for sharpening and predictive coding of multi-level speech features during spoken language processing.


Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Fala/fisiologia , Eletroencefalografia/métodos , Estimulação Acústica/métodos , Percepção da Fala/fisiologia , Córtex Auditivo/fisiologia
4.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36991987

RESUMO

The purpose of the panchromatic sharpening of remote sensing images is to generate high-resolution multispectral images through software technology without increasing economic expenditure. The specific method is to fuse the spatial information of a high-resolution panchromatic image and the spectral information of a low-resolution multispectral image. This work proposes a novel model for generating high-quality multispectral images. This model uses the feature domain of the convolution neural network to fuse multispectral and panchromatic images so that the fused images can generate new features so that the final fused features can restore clear images. Because of the unique feature extraction ability of convolution neural networks, we use the core idea of convolution neural networks to extract global features. To extract the complementary features of the input image at a deeper level, we first designed two subnetworks with the same structure but different weights, and then used single-channel attention to optimize the fused features to improve the final fusion performance. We select the public data set widely used in this field to verify the validity of the model. The experimental results on the GaoFen-2 and SPOT6 data sets show that this method has a better effect in fusing multi-spectral and panchromatic images. Compared with the classical and the latest methods in this field, our model fusion obtained panchromatic sharpened images from both quantitative and qualitative analysis has achieved better results. In addition, to verify the transferability and generalization of our proposed model, we directly apply it to multispectral image sharpening, such as hyperspectral image sharpening. Experiments and tests have been carried out on Pavia Center and Botswana public hyperspectral data sets, and the results show that the model has also achieved good performance in hyperspectral data sets.

5.
Sensors (Basel) ; 23(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37112219

RESUMO

Improving the accuracy of DEMs is a critical goal in digital terrain analysis. The combination of multi-source data can be used to increase DEM accuracy. Five typical geomorphic study areas in the Loess Plateau in Shaanxi were selected for a case study and a 5 m DEM unit was used as the basic data input. Data from three open-source databases of DEM images, the ALOS, SRTM and ASTER, were obtained and processed uniformly through a previously geographical registration process. Three methods, Gram-Schmidt pan sharpening (GS), weighted fusion and feature-point-embedding fusion, were used for mutual enhancement of the three kinds of data. We combined the effect of these three fusion methods in the five sample areas and compared the eigenvalues taken before and after the fusion. The main conclusions are as follows: (1) The GS fusion method is convenient and simple, and the three combined fusion methods can be improved. Generally speaking, the fusion of ALOS and SRTM data led to the best performance, but was greatly affected by the original data. (2) By embedding feature points into three publicly available types of DEM data, the errors and extreme error value of the data obtained through fusion were significantly improved. Overall, ALOS fusion resulted in the best performance because it had the best raw data quality. The original eigenvalues of the ASTER were all inferior and the improvement in the error and the error extreme value after fusion was evident. (3) By dividing the sample area into different areas and fusing them separately according to the weights of each area, the accuracy of the data obtained was significantly improved. In comparing the improvement in accuracy in each region, it was observed that the fusion of ALOS and SRTM data relies on a gentle area. A high accuracy of these two data will lead to a better fusion. Merging ALOS and ASTER data led to the greatest increase in accuracy, especially in the areas with a steep slope. Additionally, when SRTM and ASTER data were merged, the observed improvement was relatively stable with little difference.

6.
Sensors (Basel) ; 23(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37430638

RESUMO

New CMOS imaging sensor (CIS) techniques in smartphones have helped user-generated content dominate our lives over traditional DSLRs. However, tiny sensor sizes and fixed focal lengths also lead to more grainy details, especially for zoom photos. Moreover, multi-frame stacking and post-sharpening algorithms would produce zigzag textures and over-sharpened appearances, for which traditional image-quality metrics may over-estimate. To solve this problem, a real-world zoom photo database is first constructed in this paper, which includes 900 tele-photos from 20 different mobile sensors and ISPs. Then we propose a novel no-reference zoom quality metric which incorporates the traditional estimation of sharpness and the concept of image naturalness. More specifically, for the measurement of image sharpness, we are the first to combine the total energy of the predicted gradient image with the entropy of the residual term under the framework of free-energy theory. To further compensate for the influence of over-sharpening effect and other artifacts, a set of model parameters of mean subtracted contrast normalized (MSCN) coefficients are utilized as the natural statistics representatives. Finally, these two measures are combined linearly. Experimental results on the zoom photo database demonstrate that our quality metric can achieve SROCC and PLCC over 0.91, while the performance of single sharpness or naturalness index is around 0.85. Moreover, compared with the best tested general-purpose and sharpness models, our zoom metric outperforms them by 0.072 and 0.064 in SROCC, respectively.

7.
J Neurosci ; 41(1): 167-178, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33208472

RESUMO

Prior knowledge profoundly influences perceptual processing. Previous studies have revealed consistent suppression of predicted stimulus information in sensory areas, but how prior knowledge modulates processing higher up in the cortical hierarchy remains poorly understood. In addition, the mechanism leading to suppression of predicted sensory information remains unclear, and studies thus far have revealed a mixed pattern of results in support of either the "sharpening" or "dampening" model. Here, using 7T fMRI in humans (both sexes), we observed that prior knowledge acquired from fast, one-shot perceptual learning sharpens neural representation throughout the ventral visual stream, generating suppressed sensory responses. In contrast, the frontoparietal and default mode networks exhibit similar sharpening of content-specific neural representation, but in the context of unchanged and enhanced activity magnitudes, respectively: a pattern we refer to as "selective enhancement." Together, these results reveal a heretofore unknown macroscopic gradient of prior knowledge's sharpening effect on neural representations across the cortical hierarchy.SIGNIFICANCE STATEMENT A fundamental question in neuroscience is how prior knowledge shapes perceptual processing. Perception is constantly informed by internal priors in the brain acquired from past experiences, but the neural mechanisms underlying this process are poorly understood. To date, research on this question has focused on early visual regions, reporting a consistent downregulation when predicted stimuli are encountered. Here, using a dramatic one-shot perceptual learning paradigm, we observed that prior knowledge results in sharper neural representations across the cortical hierarchy of the human brain through a gradient of mechanisms. In visual regions, neural responses tuned away from internal predictions are suppressed. In frontoparietal regions, neural activity consistent with priors is selectively enhanced. These results deepen our understanding of how prior knowledge informs perception.


Assuntos
Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Lobo Frontal/fisiologia , Humanos , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Masculino , Processos Mentais/fisiologia , Modelos Neurológicos , Lobo Parietal/fisiologia , Estimulação Luminosa , Vias Visuais/fisiologia , Adulto Jovem
8.
Sens Actuators A Phys ; 3362022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35573145

RESUMO

In this paper, a comprehensive study was carried out on in-plane silicon (Si) microneedles, a useful tool for transdermal drug delivery and sample collection. Microneedles with eleven designs were investigated by post-complementary metal-oxide-semiconductor (CMOS) compatible microfabrication processes and characterized via pricking tests by insertion in chicken breast flesh. Mechanical strength of all designs were also evaluated by theoretical calculation and finite element modeling (FEM) for bending and buckling analysis. To efficiently improve the sharpness and insertion, the wedge-shaped needle tips with thickness determined by Si wafer thickness were sharpened by a wet chemical etching process. Insertion forces recorded from pricking tests and bending and buckling from theoretical calculation and FEM analysis before and after etching were compared. The results showed that the insertion force, free bending force and the maximum buckling force were all reduced and the maximum bending stress were improved after tip sharpening. Furthermore, the buckling safety factor of all eleven designs was great than 1 and the maximum bending stress was less than the fracture strength of Si, indicating that our in-plane Si microneedles are robust enough for insertion into human skin.

9.
Sensors (Basel) ; 22(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35271122

RESUMO

Fault diagnosis systems are used to improve the productivity and reduce the costs of the manufacturing process. However, the feature variables in existing systems are extracted based on the classification performance of the final model, thereby limiting their applications to models with different conditions. This paper proposes an algorithm to improve the characteristics of feature variables by considering the cutting conditions. Regardless of the frequency band, the noise of the measurement data was reduced through an oversampling method, setting a window length through a cutter sampling frequency, and improving its sensitivity to shock signal. An experiment was subsequently performed to confirm the performance of the model. Using normal and wear tools on AI7075 and SM45C, the diagnosis accuracies were 97.1% and 95.6%, respectively, with a reduction of 85% and 83%, respectively, in the time required to develop a diagnosis model. Therefore, the proposed algorithm reduced the model computation time and developed a model with high accuracy by enhancing the characteristics of the feature variable. The results of this study can contribute significantly to the establishment of a high-precision monitoring system for various processing processes.

10.
Sensors (Basel) ; 22(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35214538

RESUMO

In this research, we aim to propose an image sharpening method to make it easy to identify concrete cracks from blurred images captured by a moving camera. This study is expected to help realize social infrastructure maintenance using a wide range of robotic technologies, and to solve the future labor shortage and shortage of engineers. In this paper, a method to estimate parameters of motion blur for Point Spread Function (PSF) is mainly discussed, where we assume that there are two main degradation factors caused by the camera, out-of-focus blur and motion blur. A major contribution of this paper is that the parameters can properly be estimated from a sub-image of the object under inspection if the sub-image contains uniform speckled texture. Here, the cepstrum of the sub-image is fully utilized. Then, a filter convoluted PSF which consists of convolution with PSF (motion blur) and PSF (out-of focus blur) can be utilized for deconvolution of the blurred image for sharpening with significant effect. PSF (out-of-focus blur) is a constant function unique to each camera and lens, and can be confirmed before or after shooting. PSF (motion blur), on the other hand, needs to be estimated on a case-by-case basis since the amount and direction of camera movement varies depending on the time of shooting. Previous research papers have sometimes encountered difficulties in estimating the parameters of motion blur because of the emphasis on generality. In this paper, the main object is made of concrete, and on the surface of it there are speckled textures. We hypothesized that we can narrow down the candidates of parameters of motion blur by using these speckled patterns. To verify this hypothesis, we conducted experiments to confirm and examine the following two points using a general-purpose camera used in actual bridge inspections: 1. Influence on the cepstrum when the isolated point-like texture unique to concrete structures is used as a feature point. 2. Selection method of multiple images to narrow down the candidate minima of the cepstrum. It is novel that the parameters of motion blur can be well estimated by using the unique speckled pattern on the surface of the object.

11.
J Digit Imaging ; 35(4): 1041-1060, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35296942

RESUMO

Poor acutance of images (unsharpness) is one of the major concerns in magnetic resonance imaging (MRI). MRI-based diagnosis and clinical interventions become difficult due to the vague textural information and weak morphological margins on images. A novel image sharpening algorithm named as maximum local variation-based unsharp masking (MLVUM) to address the issue of 'unsharpness' in MRI is proposed in this paper. In the MLVUM, the sharpened image is the algebraic sum of the input image and the product of the user-defined scale and the difference between the output of a newly designed nonlinear spatial filter named maximum local variation-controlled edge smoothing Gaussian filter (MLVESGF) and the input image, weighted by the normalised MLV. The MLVESGF is a locally adaptive 2D Gaussian edge smoothing kernel whose standard deviation is directly proportional to the local value of the normalized MLV. The values of the acutance-to-noise ratio (ANR) and absolute mean brightness error (AMBE) shown by the MLVUM on 100 MRI slices are 0.6463 ± 0.1852 and 0.3323 ± 0.2200, respectively. Compared to 17 state-of-the-art image sharpening algorithms, the MLVUM exhibited a higher ANR and lower AMBE. The MLVUM selectively enhances the sharpness of edges in the MR images without amplifying the background noise without altering the mean brightness level.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Humanos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador
12.
Entropy (Basel) ; 24(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36554159

RESUMO

Because of noise interference, improper exposure, and the over thickness of human tissues, the detailed information of DR (digital radiography) images can be masked, including unclear edges and reduced contrast. An image-enhancement algorithm based on wavelet multiscale decomposition is proposed to address the shortcomings of existing single-scale image-enhancement algorithms. The proposed algorithm is based on Shannon-Cosine wavelets by taking advantage of the interpolation, smoothness, tight support, and normalization properties. Next a multiscale interpolation wavelet operator is constructed to divide the image into several sub-images from high frequency to low frequency, and to perform different multi-scale wavelet transforms on the detailed image of each channel. So that the most subtle and diagnostically useful information in the image can be effectively enhanced. Moreover, the image will not be over-enhanced and combined with the high contrast sensitivity of the human eye's visual system in smooth regions, different attenuation coefficients are used for different regions to achieve the purpose of suppressing noise while enhancing details. The results obtained by some simulations show that this method can effectively eliminate the noise in the DR image, and the enhanced DR image detail information is clearer than before while having high effectiveness and robustness.

13.
J Struct Biol ; 213(4): 107780, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34469787

RESUMO

Electron cryomicroscopy (cryo-EM) has emerged as a powerful structural biology instrument to solve near-atomic three-dimensional structures. Despite the fast growth in the number of density maps generated from cryo-EM data, comparison tools among these reconstructions are still lacking. Current proposals to compare cryo-EM data derived volumes perform map subtraction based on adjustment of each volume grey level to the same scale. We present here a more sophisticated way of adjusting the volumes before comparing, which implies adjustment of grey level scale and spectrum energy, but keeping phases intact inside a mask and imposing the results to be strictly positive. The adjustment that we propose leaves the volumes in the same numeric frame, allowing to perform operations among the adjusted volumes in a more reliable way. This adjustment can be a preliminary step for several applications such as comparison through subtraction, map sharpening, or combination of volumes through a consensus that selects the best resolved parts of each input map. Our development might also be used as a sharpening method using an atomic model as a reference. We illustrate the applicability of this algorithm with the reconstructions derived of several experimental examples. This algorithm is implemented in Xmipp software package and its applications are user-friendly accessible through the cryo-EM image processing framework Scipion.


Assuntos
Algoritmos , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Substâncias Macromoleculares/ultraestrutura , Capsídeo/química , Capsídeo/ultraestrutura , Vírus da Hepatite B/ultraestrutura , Substâncias Macromoleculares/química , Modelos Moleculares , Conformação Molecular , Conformação Proteica , Reprodutibilidade dos Testes , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/ultraestrutura
14.
Sensors (Basel) ; 21(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34883953

RESUMO

Attention mechanisms have demonstrated great potential in improving the performance of deep convolutional neural networks (CNNs). However, many existing methods dedicate to developing channel or spatial attention modules for CNNs with lots of parameters, and complex attention modules inevitably affect the performance of CNNs. During our experiments of embedding Convolutional Block Attention Module (CBAM) in light-weight model YOLOv5s, CBAM does influence the speed and increase model complexity while reduce the average precision, but Squeeze-and-Excitation (SE) has a positive impact in the model as part of CBAM. To replace the spatial attention module in CBAM and offer a suitable scheme of channel and spatial attention modules, this paper proposes one Spatio-temporal Sharpening Attention Mechanism (SSAM), which sequentially infers intermediate maps along channel attention module and Sharpening Spatial Attention (SSA) module. By introducing sharpening filter in spatial attention module, we propose SSA module with low complexity. We try to find a scheme to combine our SSA module with SE module or Efficient Channel Attention (ECA) module and show best improvement in models such as YOLOv5s and YOLOv3-tiny. Therefore, we perform various replacement experiments and offer one best scheme that is to embed channel attention modules in backbone and neck of the model and integrate SSAM into YOLO head. We verify the positive effect of our SSAM on two general object detection datasets VOC2012 and MS COCO2017. One for obtaining a suitable scheme and the other for proving the versatility of our method in complex scenes. Experimental results on the two datasets show obvious promotion in terms of average precision and detection performance, which demonstrates the usefulness of our SSAM in light-weight YOLO models. Furthermore, visualization results also show the advantage of enhancing positioning ability with our SSAM.


Assuntos
Redes Neurais de Computação , Projetos de Pesquisa
15.
BMC Oral Health ; 21(1): 411, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412602

RESUMO

BACKGROUND: Improvement of image quality in radiology, including the maxillofacial region, is important for diagnosis by enhancing the visual perception of the original image. One of the most used modification methods is sharpening, in which simultaneously with the improvement, due to edge enhancement, several artifacts appear. These might lead to misdiagnosis and, as a consequence, to improper treatment. The purpose of this study was to prove the feasibility and effectiveness of automatic sharpening detection based on neural networks. METHODS: The in-house created dataset contained 4290 X-ray slices from different datasets of cone beam computed tomography images were taken on 2 different devices: Ortophos 3D SL (Sirona Dental Systems GmbH, Bensheim, Germany) and Planmeca ProMax 3D (Planmeca, Helsinki, Finland). The selected slices were modified using the sharpening filter available in the software RadiAnt Dicom Viewer software (Medixant, Poland), version 5.5. The neural network known as "ResNet-50" was used, which has been previously trained on the ImageNet dataset. The input images and their corresponding sharpening maps were used to train the network. For the implementation, Keras with Tensorflow backend was used. The model was trained using NVIDIA GeForce GTX 1080 Ti GPU. Receiver Operating Characteristic (ROC) analysis was performed to calculate the detection accuracy using MedCalc Statistical Software version 14.8.1 (MedCalc Software Ltd, Ostend, Belgium). The study was approved by the Ethical Committee. RESULTS: For the test, 1200 different images with the filter and without modification were used. An analysis of the detection of three different levels of sharpening (1, 2, 3) showed sensitivity of 53%, 93.33%, 93% and specificity of 72.33%, 84%, 85.33%, respectively with an accuracy of 62.17%, 88.67% and 89% (p < 0.0001). The ROC analysis in all tests showed an Area Under Curve (AUC) different from 0.5 (null hypothesis). CONCLUSIONS: This study showed a high performance in automatic sharpening detection of radiological images based on neural network technology. Further investigation of these capabilities, including their application to different types of radiological images, will significantly improve the level of diagnosis and appropriate treatment.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Radiologia , Artefatos , Humanos , Curva ROC , Software
16.
J Struct Biol ; 209(3): 107447, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911170

RESUMO

The analysis of structure factors in 3D cryo-EM Coulomb potential maps and their "enhancement" at the end of the reconstruction process is a well-established practice, normally referred to as sharpening. The aim is to increase contrast and, in this way, to help tracing the atomic model. The most common way to accomplish this enhancement is by means of the so-called B-factor correction, which applies a global filter to boost high frequencies with some dampening considerations related to noise amplification. The results are maps with a better visual aspect and a quasiflat spectrum at medium and high frequencies. This practice is so widespread that most map depositions in the Electron Microscopy Data Base (EMDB) only contain sharpened maps. Here, the use in cryoEM of global B-factor corrections is theoretically and experimentally analyzed. Results clearly illustrate that protein spectra present a falloff. Thus, spectral quasi-flattening may produce protein spectra with distortions when compared with experimental ones, this fact, combined with the practice of reporting only sharpened maps, generates a sub-optimal situation in terms of data preservation, reuse and reproducibility. Now that the field is more advanced, we put forward two suggestions: (1) to use methods which keep more faithfully the original experimental signal properties of macromolecules when "enhancing" the map, and (2) to further stress the need to deposit the original experimental maps without any postprocessing or sharpening, not only the enhanced maps. In the absence of access to these original maps data is lost, preventing their future analysis with new methods.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Substâncias Macromoleculares/ultraestrutura , Microscopia Eletrônica/normas , Conformação Proteica , Microscopia Crioeletrônica , Modelos Moleculares , Software
17.
J Chem Inf Model ; 60(5): 2448-2457, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32163280

RESUMO

A giant technological leap in the field of cryo-electron microscopy (cryo-EM) has assured the achievement of near-atomic resolution structures of biological macromolecules. As a recognition of this accomplishment, the Nobel Prize in Chemistry was awarded in 2017 to Jacques Dubochet, Joachim Frank, and Richard Henderson, the pioneers in the field of cryo-EM. Currently, the technique has become the method of choice for structural analysis of heterogeneous and intrinsically dynamic biological complexes. In the past few years, the most prolific branch of cryo-EM, single particle analysis, has revolutionized the structural biology field and structural investigation of membrane proteins, in particular. To achieve high-resolution structures of macromolecules in noncrystalline specimens, from sample and grid preparation to image acquisition, image data processing, and analysis of 3D maps, methodological advances in each of the steps play critical roles. In this Review, we discuss two areas in single particle cryo-EM, the remarkable developments in sample preparation strategies, particularly for membrane proteins, and breakthroughs in methodologies for molecular model building on the high-resolution 3D density maps that brought promises to resolve high-resolution (<4 Å) structures of biological macromolecules.


Assuntos
Proteínas de Membrana , Imagem Individual de Molécula , Microscopia Crioeletrônica , Substâncias Macromoleculares , Modelos Moleculares
18.
Exp Cell Res ; 381(1): 57-65, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31075258

RESUMO

Eph receptor and ephrin signaling has a major role in segregating distinct cell populations to form sharp borders. Expression of interacting Ephs and ephrins typically occurs in complementary regions, such that polarised activation of both components occurs at the interface. Forward signaling through Eph receptors can drive cell segregation, but it is unclear whether reverse signaling through ephrins can also contribute. We have tested the role of reverse signaling, and of polarised versus non-polarised activation, in assays in which contact repulsion drives cell segregation and border sharpening. We find that polarised forward signaling drives stronger segregation than polarised reverse signaling. Nevertheless, reverse signaling contributes since bidirectional Eph and ephrin activation drives stronger segregation than unidirectional forward signaling alone. In contrast, non-polarised Eph activation drives little segregation. We propose that although polarised forward signaling is the principal driver of segregation, reverse signaling enables bidirectional repulsion which prevents mingling of each population into the other.


Assuntos
Efrinas/fisiologia , Receptores da Família Eph/fisiologia , Transdução de Sinais , Movimento Celular , Polaridade Celular , Efrinas/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Transdução de Sinais/genética
19.
Remote Sens Environ ; 251: 112055, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33814638

RESUMO

Land surface temperature (LST) is a key diagnostic indicator of agricultural water use and crop stress. LST data retrieved from thermal infrared (TIR) band imagery, however, tend to have a coarser spatial resolution (e.g., 100 m for Landsat 8) than surface reflectance (SR) data collected from shortwave bands on the same instrument (e.g., 30 m for Landsat). Spatial sharpening of LST data using the higher resolution multi-band SR data provides an important path for improved agricultural monitoring at sub-field scales. A previously developed Data Mining Sharpener (DMS) approach has shown great potential in the sharpening of Landsat LST using Landsat SR data co-collected over various landscapes. This work evaluates DMS performance for sharpening ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST (~70 m native resolution) and Visible Infrared Imaging Radiometer Suite (VIIRS) LST (375 m) data using Harmonized Landsat and Sentinel-2 (HLS) SR data, providing the basis for generating 30-m LST data at a higher temporal frequency than afforded by Landsat alone. To account for the misalignment between ECOSTRESS/VIIRS and Landsat/HLS caused by errors in registration and orthorectification, we propose a modified version of the DMS approach that employs a relaxed box size for energy conservation (EC). Sharpening experiments were conducted over three study sites in California, and results were evaluated visually and quantitatively against LST data from unmanned aerial vehicles (UAV) flights and from Landsat 8. Over the three sites, the modified DMS technique showed improved sharpening accuracy over the standard DMS for both ECOSTRESS and VIIRS, suggesting the effectiveness of relaxing EC box in relieving misalignment-induced errors. To achieve reasonable accuracy while minimizing loss of spatial detail due to the EC box size increase, an optimal EC box size of 180-270 m was identified for ECOSTRESS and about 780 m for VIIRS data based on experiments from the three sites. Results from this work will facilitate the development of a prototype system that generates high spatiotemporal resolution LST products for improved agricultural water use monitoring by synthesizing multi-source remote sensing data.

20.
Sensors (Basel) ; 20(7)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276451

RESUMO

KOMPSAT-3, a Korean earth observing satellite, provides the panchromatic (PAN) band and four multispectral (MS) bands. They can be fused to obtain a pan-sharpened image of higher resolution in both the spectral and spatial domain, which is more informative and interpretative for visual inspection. In KOMPSAT-3 Advanced Earth Imaging Sensor System (AEISS) uni-focal camera system, the precise sensor alignment is a prerequisite for the fusion of MS and PAN images because MS and PAN Charge-Coupled Device (CCD) sensors are installed with certain offsets. In addition, exterior effects associated with the ephemeris and terrain elevation lead to the geometric discrepancy between MS and PAN images. Therefore, we propose a rigorous co-registration of KOMPSAT-3 MS and PAN images based on physical sensor modeling. We evaluated the impacts of CCD line offsets, ephemeris, and terrain elevation on the difference in image coordinates. The analysis enables precise co-registration modeling between MS and PAN images. An experiment with KOMPSAT-3 images produced negligible geometric discrepancy between MS and PAN images.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa