Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.292
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Microbiology (Reading) ; 170(4)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38753417

RESUMO

Salmonella enterica subsp. enterica Typhimurium and its monophasic variant I 1;4,[5],12:i:- (MVST) are responsible for thousands of reported cases of salmonellosis each year in Canada, and countries worldwide. We investigated S. Typhimurium and MVST isolates recovered from raw shellfish harvested in Atlantic Canada by the Canadian Food Inspection Agency (CFIA) over the past decade, to assess the potential impact of these isolates on human illness and to explore possible routes of shellfish contamination. Whole-genome sequence analysis was performed on 210 isolates of S. Typhimurium and MVST recovered from various food sources, including shellfish. The objective was to identify genetic markers linked to ST-99, a sequence type specifically associated with shellfish, which could explain their high prevalence in shellfish. We also investigated the genetic similarity amongst CFIA ST-99 isolates recovered in different years and geographical locations. Finally, the study aimed to enhance the molecular serotyping of ST-99 isolates, as they are serologically classified as MVST but are frequently misidentified as S. Typhimurium through sequence analysis. To ensure recovery of ST-99 from shellfish was not due to favourable growth kinetics, we measured the growth rates of these isolates relative to other Salmonella and determined that ST-99 did not have a faster growth rate and/or shorter lag phase than other Salmonella evaluated. The CFIA ST-99 isolates from shellfish were highly clonal, with up to 81 high-quality single nucleotide variants amongst isolates. ST-99 isolates both within the CFIA collection and those isolated globally carried numerous unique deletions, insertions and mutations in genes, including some considered important for virulence, such as gene deletions in the type VI secretion system. Interestingly, several of these genetic characteristics appear to be unique to North America. Most notably was a large genomic region showing a high prevalence in genomes from Canadian isolates compared to those from the USA. Although the functions of the majority of the proteins encoded within this region remain unknown, the genes umuC and umuD, known to be protective against UV light damage, were present. While this study did not specifically examine the effects of mutations and insertions, results indicate that these isolates may be adapted to survive in specific environments, such as ocean water, where wild birds and/or animals serve as the natural hosts. Our hypothesis is reinforced by a global phylogenetic analysis, which indicates that isolates obtained from North American shellfish and wild birds are infrequently connected to isolates from human sources. These findings suggest a distinct ecological niche for ST-99, potentially indicating their specialization and adaptation to non-human hosts and environments, such as oceanic habitats.


Assuntos
Tipagem de Sequências Multilocus , Salmonella typhimurium , Frutos do Mar , Frutos do Mar/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/classificação , Canadá , Sequenciamento Completo do Genoma , Animais , Humanos , Genoma Bacteriano , Microbiologia de Alimentos , Filogenia
2.
Allergy ; 79(5): 1317-1328, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38462795

RESUMO

BACKGROUND: The epidemiology and management of anaphylaxis are not well-reported in Asia. METHODS: A regional pediatric anaphylaxis registry was established by the Asia-Pacific Research Network for Anaphylaxis (APRA), using standardized protocols for prospective data collection, to evaluate the triggers and management of anaphylaxis in the Asia-Pacific region. Pediatric patients below 18 years presenting with anaphylaxis across four Asian countries/cities (Thailand, Singapore, Hong Kong (HK), and Qingdao) were included. Allergen triggers, symptoms, anaphylaxis severity, and management were compared. RESULTS: Between 2019 and 2022, 721 anaphylaxis episodes in 689 patients from 16 centers were identified. The mean age at anaphylaxis presentation was 7.0 years (SD = 5.2) and 60% were male. Food was the most common trigger (62%), particularly eggs and cow's milk in children aged 3 years and below. In school-age children, nut anaphylaxis was most common in HK and Singapore, but was rare in the other countries, and wheat was the top allergen in Bangkok. Shellfish anaphylaxis was most common in children aged 7-17. Adrenaline was administered in 60% of cases, with 9% given adrenaline before hospital arrival. Adrenaline devices were prescribed in up to 82% of cases in Thailand but none in Qingdao. CONCLUSIONS: The APRA identified food as the main trigger of anaphylaxis in children, but causative allergens differed even across Asian countries. Fewer than two-thirds of cases received adrenaline treatment, pre-hospital adrenaline usage was low, and adrenaline device prescription remained suboptimal. The registry recognizes an unmet need to strengthen anaphylaxis care and research in Asia-Pacific.


Assuntos
Anafilaxia , Humanos , Anafilaxia/epidemiologia , Anafilaxia/etiologia , Anafilaxia/terapia , Criança , Masculino , Feminino , Pré-Escolar , Ásia/epidemiologia , Adolescente , Hipersensibilidade Alimentar/epidemiologia , Hipersensibilidade Alimentar/terapia , Lactente , Alérgenos/imunologia , Gerenciamento Clínico , Epinefrina/uso terapêutico , Epinefrina/administração & dosagem , Sistema de Registros
3.
Chemistry ; 30(18): e202304238, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270276

RESUMO

Saxitoxin (STX, 1) is a representative compound of paralytic shellfish toxins (PSTs) that are produced by marine dinoflagellates and freshwater cyanobacteria. Although several pathways have been proposed for the biosynthesis of STX, the order of ring and side chain hydroxylation, and formation of the tricyclic skeleton have not been well established. In this study, 12,12-dideoxy-decarbamoyloxySTX (dd-doSTX, 2), the most reduced STX analogue having the tricyclic skeleton, and its analogues, 12ß-deoxy-doSTX (12ß-d-doSTX, 3), 12α-deoxy-doSTX (12α-d-doSTX, 4), and doSTX (5), were synthesized, and these compounds were screened in the toxic microalgae using high-resolution LCMSMS. dd-doSTX (2) and 12ß-d-doSTX (3) were identified in the PSTs-producing dinoflagellates (Alexandrium catenella, A. pacificum, and/or Gymnodinium catenatum) and in the cyanobacterium Dolichospermum circinale (TA04). doSTX (5), previously isolated from the dinoflagellate G. catenatum, was also identified in D. circinale (TA04). Furthermore, the conversion of 2 to 3, and 4 to 5, by SxtT with VanB, a reported Rieske oxygenase and its redox partner in STX biosynthesis, was confirmed. These results support that 2 is a possible biosynthetic precursor of STX, and that ring and side-chain hydroxylations proceed after cyclization.


Assuntos
Dinoflagellida , Microalgas , Saxitoxina/análogos & derivados , Saxitoxina/química , Oxigenases
4.
Environ Sci Technol ; 58(16): 6924-6933, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38608723

RESUMO

Paralytic shellfish toxins (PSTs) produced by marine dinoflagellates significantly impact shellfish industries worldwide. Early detection on-farm and with minimal training would allow additional time for management decisions to minimize economic losses. Here, we describe and test a standardized workflow based on the detection of sxtA4, an initial gene in the biosynthesis of PSTs. The workflow is simple and inexpensive and does not require a specialized laboratory. It consists of (1) water collection and filtration using a custom gravity sampler, (2) buffer selection for sample preservation and cell lysis for DNA, and (3) an assay based on a region of sxtA, DinoDtec lyophilized quantitative polymerase chain reaction (qPCR) assay. Water samples spiked with Alexandrium catenella showed a cell recovery of >90% when compared to light microscopy counts. The performance of the lysis method (90.3% efficient), Longmire's buffer, and the DinoDtec qPCR assay (tested across a range of Alexandrium species (90.7-106.9% efficiency; r2 > 0.99)) was found to be specific, sensitive, and efficient. We tested the application of this workflow weekly from May 2016 to 30th October 2017 to compare the relationship between sxtA4 copies L-1 in seawater and PSTs in mussel tissue (Mytilus galloprovincialis) on-farm and spatially (across multiple sites), effectively demonstrating an ∼2 week early warning of two A. catenella HABs (r = 0.95). Our tool provides an early, accurate, and efficient method for the identification of PST risk in shellfish aquaculture.


Assuntos
Aquicultura , Dinoflagellida , Proliferação Nociva de Algas , Toxinas Marinhas , Fluxo de Trabalho , Animais , Frutos do Mar , Fazendas , Intoxicação por Frutos do Mar
5.
Anal Bioanal Chem ; 416(8): 1983-1995, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358533

RESUMO

Phytotoxins produced by marine microalgae, such as paralytic shellfish toxins (PSTs), can accumulate in bivalve molluscs, representing a human health concern due to the life-threatening symptoms they cause. To avoid the commercialization of contaminated bivalves, monitoring programs were established in the EU. The purpose of this work is the implementation of a PST transforming enzyme-carbamoylase-in an impedimetric test for rapid simultaneous detection of several carbamate and N-sulfocarbamoyl PSTs. Carbamoylase hydrolyses carbamate and sulfocarbamoyl toxins, which may account for up to 90% of bivalve toxicity related to PSTs. Conformational changes of carbamoylase accompanying enzymatic reactions were probed by Fourier transform mid-infrared spectroscopy (FT-MIR) and electrochemical impedance spectroscopy (EIS). Furthermore, a combination of EIS with a metal electrode and a carbamoylase-based assay was employed to harness changes in the enzyme conformation and adsorption on the electrode surface during the enzymatic reaction as an analytical signal. After optimization of the working conditions, the developed impedimetric e-tongue could quantify N-sulfocarbamoyl toxins with a detection limit of 0.1 µM. The developed e-tongue allows the detection of these toxins at concentration levels observed in bivalves with PST toxicity close to the regulatory limit. The quantification of a sum of N-sulfocarbamoyl PSTs in naturally contaminated mussel extracts using the developed impedimetric e-tongue has been demonstrated.


Assuntos
Bivalves , Intoxicação por Frutos do Mar , Animais , Humanos , Toxinas Marinhas/química , Nariz Eletrônico , Bivalves/química , Frutos do Mar/análise , Carbamatos , Intoxicação por Frutos do Mar/etiologia
6.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38944416

RESUMO

AIMS: Shellfish production areas are classified for suitability for human consumption using counts of Escherichia coli in shellfish samples. Two alternative laboratory methods are approved in the European Union and UK for measuring E. coli in shellfish samples; the most probable number (MPN) and pour plate methods. These methods have inherently different statistical uncertainty and may give different counts for the same sample. Using two approaches: simulated data and spiking experiments, we investigate the theoretical properties of the two methods to determine their reliability for shellfish waters classification. METHODS AND RESULTS: Assuming a Poisson distribution of E. coli in shellfish samples, we simulate concentrations in 10 000 samples using the MPN and pour plate methods. We show that for higher concentrations of E. coli the pour plate method becomes increasingly more reliable than the MPN method. The MPN method has higher probabilities than pour plate of generating results exceeding shellfish classification thresholds, while conversely having higher probabilities of failing to detect counts that exceed regulatory thresholds. The theoretical analysis also demonstrates that the MPN method can produce genuine extreme outliers, even when E. coli are randomly distributed within the sampled material. A laboratory spiking experiment showed results consistent with the theoretical analysis, suggesting the Poisson assumption used in the theoretical analysis is reasonable. CONCLUSION: The large differences in statistical properties between the pour plate and MPN methods should be taken into consideration in classifying shellfish beds, with the pour plate method being more reliable over the crucial range of E. coli concentrations used to determine class boundaries.


Assuntos
Escherichia coli , Frutos do Mar , Escherichia coli/isolamento & purificação , Frutos do Mar/microbiologia , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Animais , Contaminação de Alimentos/análise , Humanos , Distribuição de Poisson , Reprodutibilidade dos Testes
7.
Environ Res ; 245: 117976, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141922

RESUMO

To better understand the ecological effects of mariculture, the diversity distribution, determinant and interaction of microeukaryote communities from fish cage and suspended shellfish farming were investigated in three bays of South China Coast. Our alpha and beta diversity analyses showed that the difference of the microeukaryote community between fish and shellfish farming was more significant at local than regional scale, and microeukaryotes respond more to spatial effect than mariculture effect at regional scale. Mantel test, variation partitioning analysis and co-occurrence network analysis revealed that the environmental factors especially chemical and biotic factors contributed more to community assembly in fish than shellfish farming. Based on the comparisons of community composition and determinant between fish and shellfish farming, the effect mechanisms of the two farming types on microeukaryote community were proposed. Fish farming brings significant environmental variation and thus has strong bottom-up impacts on microeukaryotes, while shellfish farming exerts a grazing pressure on microeukaryotes by filter-feeding and has top-down control to them. Furthermore, the network stability analyses revealed weaker community stability in fish than shellfish farming, suggesting that the microeukaryote community was more sensitive to environmental change deduced by fish than shellfish farming. Overall, this study revealed the different influencing mechanisms of fish and shellfish mariculture on microeukaryotes, which will improve the understanding of the ecological effects of mariculture and provide guidance for the management of mariculture under future environmental pressures.


Assuntos
Aquicultura , Frutos do Mar , Animais , Peixes , Agricultura , China
8.
Environ Res ; 248: 118282, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295974

RESUMO

The escalating consumer demand for crabs results in a growing amount of waste, including shells, claws, and other non-edible parts. The resulting crab shell waste (CSW) is disposed of via incineration or landfills which causes environmental pollution. CSW represents a potential biological resource that can be transformed into valuable resources via pyrolysis technique. In this study, microwave pyrolysis of CSW using self-purging, vacuum, and steam activation techniques was examined to determine the biochar production yield and its performance in treating palm oil mill effluent (POME). The biochar produced through microwave pyrolysis exhibits yields ranging from 50 to 61 wt%, showing a hard texture, low volatile matter content (≤34.1 wt%), and high fixed carbon content (≥58.3 wt%). The KOH-activated biochar demonstrated a surface area of up to 177 m2/g that is predominantly composed of mesopores, providing a good amount of adsorption sites for use as adsorbent. The biochar activated with steam removed 8.3 mg/g of BOD and 42 mg/g of COD from POME. The results demonstrate that microwave pyrolysis of CSW is a promising technology to produce high-quality biochar as an adsorbent for POME treatment.


Assuntos
Braquiúros , Carvão Vegetal , Animais , Óleo de Palmeira , Micro-Ondas , Pirólise , Vapor , Resíduos Industriais/análise
9.
Environ Res ; 252(Pt 2): 118944, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636647

RESUMO

Paralytic shellfish toxins (PST) in shellfish products have led to severe risks to human health. To monitor the risk, the Canadian Shellfish Sanitation Program has been collecting longitudinal PST measurements in blue mussel (Mytilus edulis) and soft-shell clam (Mya arenaria) samples in six coastal provinces of Canada. The spatial distributions of major temporal variation patterns were studied via Functional Principal Component Analysis. Seasonal increases in PST contamination were found to vary the most in terms of magnitude along the coastlines, which provides support for location-specific management of the time-sensitive PST contamination. In British Columbia, the first functional principal component (FPC1) indicated the variance among the magnitudes, while FPC2 indicated the seasonality of the PST levels. The temporal variations tended to be positively correlated with the abundance of dianoflagellates Alexandrium spp., and negatively with precipitation and inorganic nutrients. These findings indicate the underlying mechanism of PST variation in various geographical settings. In New Brunswick, Prince Edward, and Nova Scotia, the top FPCs indicated that the PST contamination differed mostly in the seasonal increase of the PST level during summer.


Assuntos
Toxinas Marinhas , Estações do Ano , Animais , Estudos Longitudinais , Toxinas Marinhas/análise , Canadá , Monitoramento Ambiental , Mytilus edulis , Bivalves , Análise de Componente Principal , Dinoflagellida , Intoxicação por Frutos do Mar
10.
Nutr Res Rev ; : 1-11, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38343136

RESUMO

Mollusc and crustacean consumption in the first 1000 d may improve maternal and child health by providing essential nutrients. However, in some contexts, molluscs and crustaceans have been associated with allergies and environmental contamination, potentially leading to adverse health and development outcomes. It is unclear whether the health benefits of consuming molluscs and crustaceans, collectively classified as shellfish in nutrition, are outweighed by the potential risks to pregnant women and children. We conducted a scoping review (PROSPERO: CRD42022320454) in PubMed, Scopus and EBSCO Global Health of articles published between January 2000 and March 2022 that assessed shellfish consumption during pregnancy, lactation or childhood (0-2 years) in relation to maternal health, child health or child development. A total of forty-six articles were included in this review. Overall, shellfish consumption was associated with higher biomarkers of environmental contaminants, with mercury being the most studied and having the strongest evidence base. The limited research on nutritional biomarker status shows an association between shellfish consumption and iodine status. Preterm birth was not associated with shellfish consumption, but newborn anthropometry showed mixed results, with several studies reporting lower birth weight with higher shellfish consumption. The few studies that examined child development and maternal health outcomes reported no significant associations. This review revealed trade-off health risks and benefits with inclusion of molluscs and crustaceans in the dietary patterns of mothers and young children. More research is needed to understand how these aquatic animal-source foods may be safely consumed and leveraged for improving human nutrition.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38886126

RESUMO

Dinophysistoxin 1 (DTX1, 1) and okadaic acid (OA, 2), produced by the dinoflagellates Dinophysis spp. and Prorocentrum spp., are primary diarrhetic shellfish toxins (DSTs), which may cause gastric illness in people consuming such as bivalves. Both compounds convert to dinophysistoxin 3 (DTX3, 3; generic name for 1 and 2 with fatty acids conjugated at 7-OH) in bivalves. The enzyme okadaic acid O-acyl transferase (OOAT) is a membrane protein found in the microsomes of the digestive glands of bivalves. In this study, we established an in vitro enzymatic conversion reaction using 4-nitro-2,1,3-benzoxadiazole (NBD)-OA (4), an OA derivative conjugated with (R)-(-)-4-nitro-7-(3-aminopyrrolidin-1-yl)-2,1,3-benzoxadiazole (NBD-APy) on 1-CO2H, as a substrate. We detected the enzymatically produced 3, NBD-7-O-palmitoyl-OA (NBD-Pal-OA), using high-performance liquid chromatography-fluorescence detection. We believe that an OOAT assay using 4 will facilitate the fractionation and isolation of OOAT in the future.

12.
Dis Aquat Organ ; 158: 1-20, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602294

RESUMO

Climate change and the associated environmental temperature fluctuations are contributing to increases in the frequency and severity of disease outbreaks in both wild and farmed aquatic species. This has a significant impact on biodiversity and also puts global food production systems, such as aquaculture, at risk. Most infections are the result of complex interactions between multiple pathogens, and understanding these interactions and their co-evolutionary mechanisms is crucial for developing effective diagnosis and control strategies. In this review, we discuss current knowledge on bacteria-bacteria, virus-virus, and bacterial and viral co-infections in aquaculture as well as their co-evolution in the context of global warming. We also propose a framework and different novel methods (e.g. advanced molecular tools such as digital PCR and next-generation sequencing) to (1) precisely identify overlooked co-infections, (2) gain an understanding of the co-infection dynamics and mechanisms by knowing species interactions, and (3) facilitate the development multi-pathogen preventive measures such as polyvalent vaccines. As aquaculture disease outbreaks are forecasted to increase both due to the intensification of practices to meet the protein demand of the increasing global population and as a result of global warming, understanding and treating co-infections in aquatic species has important implications for global food security and the economy.


Assuntos
Coinfecção , Animais , Coinfecção/epidemiologia , Coinfecção/veterinária , Aquicultura , Bactérias , Mudança Climática
13.
Mar Drugs ; 22(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38921550

RESUMO

Although lipophilic shellfish toxins (LSTs) pose a significant threat to the health of seafood consumers, their systematic investigation and risk assessment remain scarce. The goals of this study were as follows: (1) analyze LST levels in commercially available shellfish in Zhejiang province, China, and determine factors influencing LST distribution; (2) assess the acute dietary risk of exposure to LSTs for local consumers during the red tide period; (3) explore potential health risks of LSTs in humans; and (4) study the acute risks of simultaneous dietary exposure to LSTs and paralytic shellfish toxins (PSTs). A total of 546 shellfish samples were collected. LSTs were detected in 89 samples (16.3%) at concentrations below the regulatory limits. Mussels were the main shellfish species contaminated with LSTs. Spatial variations were observed in the yessotoxin group. Acute exposure to LSTs based on multiple scenarios was low. The minimum tolerable exposure durations for LSTs calculated using the mean and the 95th percentile of consumption data were 19.7 and 4.9 years, respectively. Our findings showed that Zhejiang province residents are at a low risk of combined exposure to LSTs and PSTs; however, the risk may be higher for children under 6 years of age in the extreme scenario.


Assuntos
Exposição Dietética , Toxinas Marinhas , Frutos do Mar , China , Humanos , Frutos do Mar/análise , Toxinas Marinhas/análise , Toxinas Marinhas/toxicidade , Animais , Medição de Risco , Exposição Dietética/análise , Intoxicação por Frutos do Mar/prevenção & controle , Intoxicação por Frutos do Mar/etiologia , Contaminação de Alimentos/análise , Adulto , Criança , Pessoa de Meia-Idade , Alimentos Marinhos/análise , Pré-Escolar , Bivalves/química , Feminino , Adulto Jovem
14.
Mar Drugs ; 22(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38535470

RESUMO

Cyclic imines are a class of lipophilic shellfish toxins comprising gymnodimines, spirolides, pinnatoxins, portimines, pteriatoxins, prorocentrolides, spiro-prorocentrimine, symbiomines and kabirimine. They are structurally diverse, but all share an imine moiety as part of a bicyclic ring system. These compounds are produced by marine microalgal species and are characterized by the rapid death that they induce when injected into mice. Cyclic imines have been detected in a range of shellfish species collected from all over the world, which raises the question as to whether they present a food safety risk. The European Food Safety Authority (EFSA) considers them to be an emerging food safety issue, and in this review, the risk posed by these toxins to shellfish consumers is assessed by collating all available occurrence and toxicity data. Except for pinnatoxins, the risk posed to human health by the cyclic imines appears low, although this is based on only a limited dataset. For pinnatoxins, two different health-based guidance values have been proposed at which the concentration should not be exceeded in shellfish (268 and 23 µg PnTX/kg shellfish flesh), with the discrepancy caused by the application of different uncertainty factors. Pinnatoxins have been recorded globally in multiple shellfish species at concentrations of up to 54 times higher than the lower guidance figure. Despite this observation, pinnatoxins have not been associated with recorded human illness, so it appears that the lower guidance value may be conservative. However, there is insufficient data to generate a more robust guidance value, so additional occurrence data and toxicity information are needed.


Assuntos
Microalgas , Alimentos Marinhos , Humanos , Animais , Camundongos , Frutos do Mar , Inocuidade dos Alimentos , Iminas
15.
Mar Drugs ; 22(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38393035

RESUMO

Paralytic shellfish toxins (PSTs) are widely distributed in shellfish along the coast of China, causing a serious threat to consumer health; however, there is still a lack of large-scale systematic investigations and risk assessments. Herein, 641 shellfish samples were collected from March to November 2020, and the PSTs' toxicity was detected via liquid chromatography-tandem mass spectrometry. Furthermore, the contamination status and potential dietary risks of PSTs were discussed. PSTs were detected in 241 shellfish samples with a detection rate of 37.60%. The average PST toxicities in mussels and ark shells were considerably higher than those in other shellfish. The PSTs mainly included N-sulfonylcarbamoyl toxins (class C) and carbamoyl toxins (class GTX), and the highest PST toxicity was 546.09 µg STX eq. kg-1. The PST toxicity in spring was significantly higher than those in summer and autumn (p < 0.05). Hebei Province had the highest average PST toxicity in spring. An acute exposure assessment showed that consumers in Hebei Province had a higher dietary risk, with mussels posing a significantly higher dietary risk to consumers. This research provides reference for the green and sustainable development of the shellfish industry and the establishment of a shellfish toxin prevention and control system.


Assuntos
Bivalves , Intoxicação por Frutos do Mar , Animais , Toxinas Marinhas/química , Intoxicação por Frutos do Mar/etiologia , Intoxicação por Frutos do Mar/prevenção & controle , Intoxicação por Frutos do Mar/diagnóstico , Espectrometria de Massas em Tandem/métodos , Frutos do Mar/análise , Bivalves/química , Medição de Risco , China
16.
Mar Drugs ; 22(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38535448

RESUMO

Shellfish poisoning is a common food poisoning. To comprehensively characterize proteome changes in the whole brain due to shellfish poisoning, Tandem mass tag (TMT)-based differential proteomic analysis was performed with a low-dose chronic shellfish poisoning model in mice. A total of 6798 proteins were confidently identified, among which 123 proteins showed significant changes (fold changes of >1.2 or <0.83, p < 0.05). In positive regulation of synaptic transmission, proteins assigned to a presynaptic membrane (e.g., Grik2) and synaptic transmission (e.g., Fmr1) changed. In addition, altered proteins in nervous system development were observed, suggesting that mice suffered nerve damage due to the nervous system being activated. Ion transport in model mice was demonstrated by a decrease in key enzymes (e.g., Kcnj11) in voltage-gated ion channel activity and solute carrier family (e.g., Slc38a3). Meanwhile, alterations in transferase activity proteins were observed. In conclusion, these modifications observed in brain proteins between the model and control mice provide valuable insights into understanding the functional mechanisms underlying shellfish poisoning.


Assuntos
Doenças Transmitidas por Alimentos , Intoxicação por Frutos do Mar , Animais , Camundongos , Proteômica , Alimentos Marinhos , Encéfalo , Proteína do X Frágil da Deficiência Intelectual
17.
Mar Drugs ; 22(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535454

RESUMO

Muscle atrophy is a detrimental and injurious condition that leads to reduced skeletal muscle mass and disruption of protein metabolism. Oyster (Crassostrea nippona) is a famous and commonly consumed shellfish in East Asia and has become a popular dietary choice worldwide. The current investigation evaluated the efficacy of C. nippona against muscle atrophy, which has become a severe health issue. Mammalian skeletal muscles are primarily responsible for efficient metabolism, energy consumption, and body movements. The proteins that regulate muscle hypertrophy and atrophy are involved in muscle growth. C. nippona extracts were enzymatically hydrolyzed using alcalase (AOH), flavourzyme (FOH), and protamex (POH) to evaluate their efficacy in mitigating dexamethasone-induced muscle damage in C2C12 cells in vitro. AOH exhibited notable cell proliferative abilities, promoting dose-dependent myotube formation. These results were further solidified by protein expression analysis. Western blot and gene expression analysis via RT-qPCR demonstrated that AOH downregulated MuRF-1, Atrogin, Smad 2/3, and Foxo-3a, while upregulating myogenin, MyoD, myosin heavy chain expression, and mTOR, key components of the ubiquitin-proteasome and mTOR signaling pathways. Finally, this study suggests that AOH holds promise for alleviating dexamethasone-induced muscle atrophy in C2C12 cells in vitro, offering insights for developing functional foods targeting conditions akin to sarcopenia.


Assuntos
Crassostrea , Animais , Atrofia Muscular , Suplementos Nutricionais , Serina-Treonina Quinases TOR , Dexametasona , Mamíferos
18.
Ecotoxicol Environ Saf ; 273: 116146, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412634

RESUMO

Filter-feeding bivalves could accumulate paralytic shellfish toxins (PSTs) produced by harmful dinoflagellates through diet. Despite that bivalves are resistant to these neurotoxins due to possessing PST-resistant sodium channel, exposure to PSTs-producing dinoflagellates impair bivalve survival. We hypothesized that ingesting PSTs-producing dinoflagellates may influence the gut microbiota, and then the health of bivalves. To test this idea, we compared the gut microbiota of the scallop Patinopecten yessoensis, after feeding with PST-producing or non-toxic dinoflagellates. Exposure to PSTs-producing dinoflagellates resulted in a decline of gut microbial diversity and a disturbance of community structure, accompanied by a significant increase in the abundance and richness of pathogenic bacteria, represented by Vibrio. Moreover, network analysis demonstrated extensive positive correlations between pathogenic bacteria abundances and PSTs concentrations in the digestive glands of the scallops. Furthermore, isolation of a dominant Vibrio strain and its genomic analysis revealed a variety of virulence factors, including the tolC outer membrane exporter, which were expressed in the gut microbiota. Finally, the infection experiment demonstrated scallop mortality caused by the isolated Vibrio strain; further, the pathogenicity of this Vibrio strain was attenuated by a mutation in the tolC gene. Together, these findings demonstrated that the PSTs may affect gut microbiota via direct and taxa-specific interactions with opportunistic pathogens, which proliferate after transition from seawater to the gut environment. The present study has revealed novel mechanisms towards deciphering the puzzles in environmental disturbances-caused death of an important aquaculture species.


Assuntos
Bivalves , Dinoflagellida , Microbioma Gastrointestinal , Pectinidae , Intoxicação por Frutos do Mar , Toxinas Biológicas , Animais , Dinoflagellida/química , Disbiose , Frutos do Mar
19.
Foodborne Pathog Dis ; 21(1): 27-35, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37878812

RESUMO

Norovirus (NoV) is an enteric virus with foodborne transmission. Bivalve shellfish are a main source of infections and outbreaks. In Italy a voluntary based monitoring plan to check the safety of bivalve shellfish was set up at provincial level. This study describes the occurrence and distribution of NoV in the Northern Adriatic Sea and in the Ligurian Sea. From October 2018 to September 2020, 807 bivalve shellfish samples (n = 205 oysters, n = 182 mussels, n = 348 clams, n = 72 other bivalve shellfish) were tested by One-Step Retrotranscription Real-time polymerase chain reaction for NoV GI and GII and quantified according to the ISO 15216-2:2013 and ISO 15216-1:2017. Positive samples were further analyzed to determine genotype by sequencing of the ORF1/ORF2 junction of the viral genome. A total of 126 samples were positive for NoV, mussels, and oysters had the highest probability of being positive and positive samples were found mainly in the colder season. Of these samples, 46% were NoV GII, 13% NoV GI, and 40% carried both genogroups. Thirty-seven samples were typeable (GI n = 12 and GII n = 25) with GI samples belonging to four genotypes and GII samples belonging to five genotypes. GII.3 genotype was the most prevalent, followed by GII.4, particularly Sydney 2012 subtype, a leading cause of infections worldwide, was found in three oysters' and three clams' samples. The phylogenetic analysis revealed a high heterogeneity among the species that are scattered in several clusters. Considering the low infectious dose the overall presence of NoV in edible shellfish, particular those to be eaten raw or undercooked, is moderately high. The presence of genotypes frequently involved in human infections strengthens the need for ongoing monitoring, which should be extended at national level.


Assuntos
Bivalves , Infecções por Caliciviridae , Norovirus , Ostreidae , Animais , Humanos , Genótipo , Norovirus/genética , Filogenia , Frutos do Mar , Itália/epidemiologia , Oceanos e Mares
20.
J Therm Biol ; 119: 103776, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163416

RESUMO

Rising occurrence of extreme warming events are profoundly impacting ecosystems, altering their functioning and services with significant socio-economic consequences. Particularly susceptible to heatwaves are intertidal shellfish beds, located in estuarine areas already stressed by factors such as rainfall events, red tides, eutrophication, and pollution. In Galicia, Northwestern Spain, these beds support vital shellfisheries, featuring the native clam Ruditapes decussatus and the non-indigenous R. philippinarum. Over recent decades, these populations have experienced notable abundance shifts due to various anthropogenic impacts, including climate change. In this habitat, patches of the seagrass Zostera noltei that coexist with bare sand can act as thermal refuges for benthic organisms such as clams. To assess the impact of heatwaves on these ecosystems, a mesocosm experiment was conducted. Juveniles of both clam species in two habitat types-bare sand and sand with Z. noltei-were exposed to simulated atmospheric heatwaves during diurnal low tide for four consecutive days. Subsequent transcriptomic analysis revealed that high temperatures had a more pronounced impact on the transcriptome of R. philippinarum compared to R. decussatus. The habitat type played a crucial role in mitigating heat stress in R. philippinarum, with the presence of Z. noltei notably ameliorating the transcriptomic response. These findings have direct applications in shellfishery management, emphasizing the importance of preserving undisturbed patches of Z. noltei as thermal refuges, contributing to the mitigation of heatwave effects on shellfish populations.


Assuntos
Bivalves , Transcriptoma , Animais , Ecossistema , Areia , Bivalves/genética , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa