RESUMO
The recent emergence of stimuli-responsive, shape-shifting materials offers promising applications in fields as different as soft robotics, aeronautics, or biomedical engineering. Targeted shapes or movements are achieved from the advantageous coupling between some stimulus and various materials such as liquid crystalline elastomers, magnetically responsive soft materials, swelling hydrogels, etc. However, despite the large variety of strategies, they are strongly material dependent and do not offer the possibility to choose between reversible and irreversible transformations. Here, we introduce a strategy applicable to a wide range of materials yielding systematically reversible or irreversible shape transformations of soft ribbed sheets with precise control over the local curvature. Our approach-inspired by the spore-releasing mechanism of the fern sporangium-relies on the capillary deformation of an architected elastic sheet impregnated by an evaporating liquid. We develop an analytical model combining sheet geometry, material stiffness, and capillary forces to rationalize the onset of such deformations and develop a geometric procedure to inverse program target shapes requiring fine control over the curvature gradient. We finally demonstrate the potential irreversibility of the transformation by UV-curing a photosensitive evaporating solution and show that the obtained shells exhibit enhanced mechanical stiffness.
Assuntos
Robótica , Polímeros Responsivos a Estímulos , Elastômeros/química , Fenômenos Mecânicos , Engenharia Biomédica , Hidrogéis/química , Robótica/métodosRESUMO
Industrial economic models of natural resource management often incentivize the sequential harvesting of resources based on profitability, disproportionately targeting the higher-value elements of the environment. In fisheries, this issue is framed as a problem of "fishing down the food chain" when these elements represent different trophic levels or sequential depletion more generally. Harvesting that focuses on high grading the most profitable, productive, and accessible components of environmental gradients is also thought to occur in the forestry sector. Such a paradigm is inconsistent with a stewardship ethic, entrenched in the forestry literature, that seeks to maintain or enhance forest condition over time. We ask 1) how these conflicting paradigms have influenced patterns of forest harvesting over time and 2) whether more recent conservation-oriented policies influenced these historical harvesting patterns. We use detailed harvest data over a 47-y period and aggregated time series data that span over a century on the central coast of British Columbia, Canada to assess temporal changes in how logging is distributed among various classes of site productivity and terrain accessibility, corresponding to timber value. Most of this record shows a distinct trend of harvesting shifting over time to less productive stands, with some evidence of harvesting occurring in increasingly less accessible forests. However, stewardship-oriented policy changes enacted in the mid-1990s appear to have strongly affected these trends. This illustrates both a profit-maximizing tendency to log down the value chain when choices are unconstrained and the potential of policy choices to impose a greater stewardship ethic on harvesting behavior.
Assuntos
Conservação dos Recursos Naturais , Florestas , Colúmbia Britânica , Agricultura Florestal , Políticas , ÁrvoresRESUMO
Cells communicate with each other to coordinate their gene activities at the population level through signaling pathways. It has been shown that many gene activities are oscillatory and that the frequency and phase of oscillatory gene expression encode various types of information. However, whether or how such oscillatory information is transmitted from cell to cell remains unknown. Here, we developed an integrated approach that combines optogenetic perturbations and single-cell bioluminescence imaging to visualize and reconstitute synchronized oscillatory gene expression in signal-sending and signal-receiving processes. We found that intracellular and intercellular periodic inputs of Notch signaling entrain intrinsic oscillations by frequency tuning and phase shifting at the single-cell level. In this way, the oscillation dynamics are transmitted through Notch signaling, thereby synchronizing the population of oscillators. Thus, this approach enabled us to control and monitor dynamic cell-to-cell transfer of oscillatory information to coordinate gene expression patterns at the population level.
Assuntos
Comunicação Celular/fisiologia , Medições Luminescentes , Optogenética , Transdução de Sinais , Análise de Célula Única/métodos , Animais , Linhagem Celular , Regulação da Expressão Gênica , Camundongos , Receptores Notch/metabolismoRESUMO
BACKGROUND: Men and women with a migration background comprise an increasing proportion of incident human immunodeficiency virus (HIV) cases across Western Europe. METHODS: To characterize sources of transmission in local transmission chains, we used partial HIV consensus sequences with linked demographic and clinical data from the opt-out AIDS Therapy Evaluation in the Netherlands (ATHENA) cohort of people with HIV in the Netherlands and identified phylogenetically and epidemiologically possible HIV transmission pairs in Amsterdam. We interpreted these in the context of estimated infection dates, and quantified population-level sources of transmission to foreign-born and Dutch-born Amsterdam men who have sex with men (MSM) within Amsterdam transmission chains. RESULTS: We estimate that Dutch-born MSM were the predominant sources of infections among all Amsterdam MSM who acquired their infection locally in 2010-2021, and among almost all foreign-born Amsterdam MSM subpopulations. Stratifying by 2-year intervals indicated time trends in transmission dynamics, with a majority of infections originating from foreign-born MSM since 2016, although uncertainty ranges remained wide. CONCLUSIONS: Native-born MSM have predominantly driven HIV transmissions in Amsterdam in 2010-2021. However, in the context of rapidly declining incidence in Amsterdam, the contribution from foreign-born MSM living in Amsterdam is increasing, with some evidence that most local transmissions have been from foreign-born Amsterdam MSM since 2016.
Assuntos
Infecções por HIV , Homossexualidade Masculina , Filogenia , Humanos , Masculino , Países Baixos/epidemiologia , Infecções por HIV/transmissão , Infecções por HIV/virologia , Infecções por HIV/epidemiologia , Homossexualidade Masculina/estatística & dados numéricos , Adulto , Incidência , HIV-1/genética , HIV-1/classificação , Emigrantes e Imigrantes/estatística & dados numéricos , Estudos de Coortes , Pessoa de Meia-Idade , Minorias Sexuais e de GêneroRESUMO
The importance of neuronal glutamate to synaptic transmission throughout the brain illustrates the immense therapeutic potential and safety risks of targeting this system. Astrocytes also release glutamate, the clinical relevance of which is unknown as the range of brain functions reliant on signaling from these cells hasn't been fully established. Here, we investigated system xc- (Sxc), which is a glutamate release mechanism with an in vivo rodent expression pattern that is restricted to astrocytes. As most animals do not express Sxc, we first compared the expression and sequence of the obligatory Sxc subunit xCT among major classes of vertebrate species. We found xCT to be ubiquitously expressed and under significant negative selective pressure. Hence, Sxc likely confers important advantages to vertebrate brain function that may promote biological fitness. Next, we assessed brain function in male genetically modified rats (MSxc) created to eliminate Sxc activity. Unlike other glutamatergic mechanisms, eliminating Sxc activity was not lethal and didn't alter growth patterns, telemetry measures of basic health, locomotor activity, or behaviors reliant on simple learning. However, MSxc rats exhibited deficits in tasks used to assess cognitive behavioral control. In a pavlovian conditioned approach, MSxc rats approached a food-predicted cue more frequently than WT rats, even when this response was punished. In attentional set shifting, MSxc rats displayed cognitive inflexibility because of an increased frequency of perseverative errors. MSxc rats also displayed heightened cocaine-primed drug seeking. Hence, a loss of Sxc-activity appears to weaken control over nonreinforced or negative-outcome behaviors without altering basic brain function.SIGNIFICANCE STATEMENT Glutamate is essential to synaptic activity throughout the brain, which illustrates immense therapeutic potential and risk. Notably, glutamatergic mechanisms are expressed by most types of brain cells. Hence, glutamate likely encodes multiple forms of intercellular signaling. Here, we hypothesized that the selective manipulation of astrocyte to neuron signaling would alter cognition without producing widespread brain impairments. First, we eliminated activity of the astrocytic glutamate release mechanism, Sxc, in rat. This impaired cognitive flexibility and increased expression of perseverative, maladaptive behaviors. Notably, eliminating Sxc activity did not alter metrics of health or noncognitive brain function. These data add to recent evidence that the brain expresses cognition-specific molecular mechanisms that could lead to highly precise, safe medications for impaired cognition.
Assuntos
Astrócitos , Ácido Glutâmico , Ratos , Masculino , Animais , Ácido Glutâmico/metabolismo , Astrócitos/metabolismo , Transmissão Sináptica , Encéfalo/metabolismo , Neurônios/metabolismoRESUMO
Motor interference, where new skill acquisition disrupts the performance of a previously learned skill, is a critical yet underexplored factor in gait rehabilitation post-stroke. This study investigates the interference effects of two different practice schedules, applying interleaved (ABA condition) and intermittent (A-A condition) pulling force to the pelvis during treadmill walking, on lateral pelvis shifting towards the paretic leg in individuals with stroke. Task A involved applying resistive pelvis force (pulling towards the non-paretic side), and Task B applied assistive force (pulling towards the paretic side) at the stance phase of the paretic leg during walking. Sixteen individuals with chronic stroke were tested for gait pattern changes, including lateral pelvis shifting and spatiotemporal gait parameters, and neurophysiological changes, including muscle activity in the paretic leg and beta band absolute power in the lesioned cortical areas. A-A condition demonstrated increased lateral pelvis shifting towards the paretic side, extended paretic stance time and longer non-paretic step length after force release while ABA condition did not show any changes. These changes in gait pattern after A-A condition were accompanied by increased muscle activities of the ankle plantarflexors, and hip adductors/abductors. A-A condition demonstrated greater changes in beta band power in the sensorimotor regions compared to ABA condition. These findings suggest that while walking practice with external force to the pelvis can improve lateral pelvis shifting towards the paretic leg post-stroke, practicing a new pelvis shifting task in close succession may hinder the performance of a previously obtained lateral pelvis shifting pattern during walking.
Assuntos
Pelve , Acidente Vascular Cerebral , Caminhada , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Caminhada/fisiologia , Idoso , Acidente Vascular Cerebral/fisiopatologia , Pelve/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos , Paresia/fisiopatologia , Paresia/etiologia , Perna (Membro)/fisiopatologia , Músculo Esquelético/fisiopatologia , Adulto , Marcha/fisiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/etiologiaRESUMO
To better understand neural processing during adaptive learning of stimulus-response-reward contingencies, we recorded synchrony of neuronal activity in anterior cingulate cortex (ACC) and hippocampal rhythms in male rats acquiring and switching between spatial and visual discrimination tasks in a Y-maze. ACC population activity as well as single unit activity shifted shortly after task rule changes or just before the rats adopted different task strategies. Hippocampal theta oscillations (associated with memory encoding) modulated an elevated proportion of rule-change responsive neurons (70%), but other neurons that were correlated with strategy-change, strategy value and reward-rate were not. However, hippocampal sharp wave-ripples modulated significantly higher proportions of rule-change, strategy-change and reward-rate responsive cells during post-session sleep but not pre-session sleep. This suggests an underestimated mechanism for hippocampal mismatch and contextual signals to facilitate ACC to detect contingency changes for cognitive flexibility, a function that is attenuated after it is damaged.
Assuntos
Giro do Cíngulo , Hipocampo , Neurônios , Ritmo Teta , Animais , Giro do Cíngulo/fisiologia , Ritmo Teta/fisiologia , Masculino , Hipocampo/fisiologia , Neurônios/fisiologia , Ratos , Aprendizagem em Labirinto/fisiologia , Recompensa , Ratos Long-Evans , Sono/fisiologiaRESUMO
Attentional set shifting refers to the ease with which the focus of attention is directed and switched. Cognitive tasks, such as the widely used CANTAB IED, reveal great variation in set shifting ability in the general population, with notable impairments in those with psychiatric diagnoses. The attentional and learning processes underlying this cognitive ability and how they lead to the observed variation remain unknown. To directly test this, we used a modelling approach on two independent large-scale online general-population samples performing CANTAB IED, with one including additional psychiatric symptom assessment. We found a hierarchical model that learnt both feature values and dimension attention best explained the data and that compulsive symptoms were associated with slower learning and higher attentional bias to the first relevant stimulus dimension. These data showcase a new methodology to analyse data from the CANTAB IED task, as well as suggest a possible mechanistic explanation for the variation in set shifting performance, and its relationship to compulsive symptoms.
Assuntos
Atenção , Individualidade , Reforço Psicológico , Humanos , Masculino , Feminino , Adulto , Atenção/fisiologia , Adulto Jovem , Modelos Psicológicos , Pessoa de Meia-Idade , Adolescente , Testes NeuropsicológicosRESUMO
Fluorophores with color-shifting characteristics have attracted enormous research interest in the quantitative application of RNA sensors. It reports here a simple synthesis, luminescent properties, and co-transcription ability of de-conjugated triphenylmethane leucomalachite green (LMG). This novel clusteroluminescence fluorophore is rapidly synthesized from malachite green (MG) in reductive transcription system containing dithiothreitol, emitting fluorescence in the UV region through space conjugation. The co-transcribed MG RNA aptamer (MGA) bound to the ligand, resulting in red fluorescence from the through-bond conjugation. Given the equilibrated color-shifting fluorophores, they are rationally employed in a 3WJ-based rolling circle transcription switch, with the target-aptamer acting as an activator to achieve steric allosterism. This one-pot system allows the target to compete continuously for allosteric sites, and the activated transcription switches continue to amplify MGA forward, achieving accurate Aflatoxin 1 quantification at the picomolar level in 1 h. Due to the programmability of this RNA sensor, the design method of target-competitive aptamers is standardized, making it universally applicable.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Corantes Fluorescentes , RNA , Compostos de Sulfidrila , Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Compostos de Sulfidrila/química , Técnicas Biossensoriais/métodos , RNA/química , Cor , Corantes de RosanilinaRESUMO
The advanced design of rare-earth-doped (RE-doped) fluoride nanoparticles has expanded their applications ranging from anticounterfeiting luminescence and contactless temperature measurement to photodynamic therapy. Several recent studies have focused on developing rare morphologies of RE-doped nanoparticles. Distinct physical morphologies of RE-doped fluoride materials set them apart from contemporary nanoparticles. Every unusual structure holds the potential to dramatically improve the physical performance of nanoparticles, resulting in a remarkable revolution and a wide range of applications. This comprehensive review serves as a guide offering insights into various uniquely structured nanoparticles, including hollow, dumbbell-shaped, and peasecod-like forms. It aims to cater to both novices and experts interested in exploring the morphological transformations of nanoparticles. Discovering new energy transfer pathways and enhancing the optical application performance have been long-term challenges for which new solutions can be found in old papers. In the future, nanoparticle morphology design is expected to involve more refined microphysical methods and chemically-induced syntheses. Targeted modification of nanoparticle morphology and the aggregation of nanoparticles of various shapes can provide the advantages of different structures and enhance the universality of nanoparticles.
RESUMO
Biological photo-responsive ion channels play important roles in the important metabolic processes of living beings. To mimic the unique functions of biological prototypes, the transition metal dichalcogenides, owing to their excellent mechanical, electrical, and optical properties, are already used for artificial intelligent channel constructions. However, there remain challenges to building artificial bio-semiconductor nanochannels with finely tuned band gaps for accurately simulating or regulating ion transport. Here, two well-designed peptides are employed for the WS2 nanosheets functionalization with the sequences of PFPFPFPFC and DFDFDFDFC (PFC and DFC; P: proline, D: aspartate, and F: phenylalanine) through cysteine (Cys, C) linker, and an asymmetric peptide-WS2 membrane (AP-WS2M) could be obtained via self-assembly of peptide-WS2 nanosheets. The AP-WS2M could realize the photo-driven anti-gradient ion transport and vis-light enhanced osmotic energy conversion by well-designed working patterns. The photo-driven ion transport mechanism stems from a built-in photovoltaic motive force with the help of formed type II band alignment between the PFC-WS2 and DFC-WS2. As a result, the ions would be driven across the channels of the membrane for different applications. The proposed system provides an effective solution for building photo-driven biomimetic 2D bio-semiconductor ion channels, which could be extensively applied in the fields of drug delivery, desalination, and energy conversion.
Assuntos
Canais Iônicos , Transporte de Íons , Peptídeos , Peptídeos/química , Canais Iônicos/metabolismo , Canais Iônicos/química , LuzRESUMO
Palaeogeological events and climate oscillations profoundly impact the demographics and distributions of small-range species, increasing the extinction risk. The largest water strider worldwide, Gigantometra gigas (Hemiptera: Gerridae), exhibits restricted distributions in Vietnam and southern China. Herein, we generated three genomic datasets (mitogenomes, 146 nuclear protein-coding genes and single nucleotide polymorphisms) with ecological niche modelling (ENM) to explicitly test whether the present-day distribution of G. gigas actually resulted from geographical and climatic effects. We found that the origin of this largest water strider reached the divergence time of the genus within Gerridae, providing a greater opportunity to explore its response to geographic movements. The right-lateral motion of the Red River Fault facilitated the divergence of two phylogeographic lineages, resulting in the "north-south component" genetic pattern in G. gigas. The Hainan and southeast Vietnam populations of the southern linage were completely separated by the Beibu Gulf but exhibited similar genetic compositions, confirming that Hainan had a continental origin and that Hainan Island joined with the Indo-China Peninsula to promote gene exchange among populations. Additionally, we noticed the low genetic diversity but long demographic history of the northern lineage, which displayed population dynamics opposite to those of other organisms. Integrating the demographic changes and ENM findings revealed that suitable habitat contraction and rapid demographic decline during the Last Glacial Maximum (LGM) triggered the low genetic diversity of the northern lineage. Overall, the demographic history of the largest water strider was mainly shaped by geographical features, and first provided evidence from the phylogeographic perspective of aquatic insects to support the hypothesis of Hainan Island shifting.
Assuntos
Rios , Água , Filogeografia , Filogenia , China , Variação Genética , DNA Mitocondrial/genéticaRESUMO
Changes to body size and shape have been identified as potential adaptive responses to climate change, but the pervasiveness of these responses has been questioned. To address this, we measured body and appendage size from 5013 museum bird skins of 78 ecologically and evolutionary diverse Australian species. We found that morphological change is a shared response to climate change across birds. Birds increased relative bill surface area, tarsus length, and relative wing length through time, consistent with expectations of increasing appendage size as climates warm. Furthermore, birds decreased in absolute wing length, consistent with the expectation of decreasing body size in warmer climates. Interestingly, these trends were generally consistent across different diets and migratory and thermoregulatory behaviors. Shorter term responses to higher temperatures were contrary to long-term effects for appendages, wherein relative appendage size decreased after hotter years, indicating the complex selective pressures acting on birds as temperatures rise with climate change. Overall, our findings support the notion that morphological adaptation is a widespread response to climate change in birds that is independent of other ecological traits.
Assuntos
Aves , Tamanho Corporal , Mudança Climática , Animais , Austrália , Aves/fisiologia , Aves/anatomia & histologia , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologiaRESUMO
A DFT-based computational study is carried out to delve into the interplay between hyperconjugation and rehybridization effects underlying the formation of blue- or red-shifting H-bonds (HBs) in 1 : 1 complexes of cyclic ethers (HB acceptor) of varying ring-size with haloforms, CHF3 and CHCl3 (HB donor). The calculations reveal that with decreasing angular strain (increasing ring-size) of the cyclic ethers, the extent of blue-shift increases for 1 : 1 complexes with CHF3, while a reverse sequence is observed with CHCl3, eventually leading to a red-shifting HB in the oxepane : CHCl3 complex. It is noted that the trend in the shift of C-H stretching fundamental is not mirrored by the C-H bond length or interaction energies for both the systems studied, that is, the low sensitivity of the changes on the strain on the O-atom of HB acceptor (cyclic ethers) is to be emphasized.
RESUMO
BACKGROUND: HIV services in Tanzania are facility-based but facilities are often overcrowded. Differentiated care models (DCM) have been introduced into the National Guidelines. We piloted a Community Health Worker (CHW)-led HIV treatment club model (CHW-DCM) in an urban region, and assessed its effectiveness in comparison to the standard of care (SoC, facility-based model), in terms of stability in care, loss to follow-up (LTFU) and treatment adherence. METHODS: In two clinics in the Shinyanga region, clients established on ART (defined as stable clients by national guidelines as on first-line ART >6 months, undetectable viral load, no opportunistic infections or pregnancy, and good adherence) were offered CHW-DCM. This prospective cohort study included all stable clients who enrolled in CHW-DCM between July 2018 and March 2020 (CHW-DCM) and compared them to stable clients who remained in SoC during that period. Multivariable Cox regression models were used to analyse factors associated with continued stability in care and the risk of LTFU during 18 months of follow-up; treatment adherence was assessed by pill count and compared using Chi-square tests. RESULTS: Of 2472 stable clients, 24.5% received CHW-DCM and 75.5% SoC. CHW-DCM clients were slightly older (mean 42.8 vs. 37.9 years) and more likely to be female (36.2% vs. 32.2%). Treatment adherence was better among CHW-DCM than SoC: 96.6% versus 91.9% and 98.5% versus 92.2%, respectively (both p = 0.001). SoC clients were more likely to not remain stable over time than CHW-DCM (adjusted Hazard ratio [AHR] = 2.68; 95% CI: 1.86-3.90). There was no difference in LTFU (adjusted hazard ratio [AHR] = 1.54; 95%CI: 0.82-2.93). CONCLUSION: Clients attending CHW-DCM demonstrated better stability in care and treatment adherence than SoC, and the risk of LTFU was not increased. These findings demonstrate the potential of CHW in delivering community-based HIV services in the local Tanzanian context. These results could be used to extend this CHW-DCM model to similar settings.
Assuntos
Fármacos Anti-HIV , Infecções por HIV , Gravidez , Humanos , Feminino , Masculino , Infecções por HIV/tratamento farmacológico , Tanzânia/epidemiologia , Seguimentos , Fármacos Anti-HIV/uso terapêutico , Estudos Prospectivos , Agentes Comunitários de SaúdeRESUMO
PURPOSE OF REVIEW: Despite highly effective biomedical HIV pre-exposure prophylaxis (PrEP) options, suboptimal PrEP uptake impedes progress towards ending the epidemic in the United States of America (USA). Implementation science bridges what we know works in controlled clinical trial settings to the context and environment in which efficacious tools are intended to be deployed. In this review, we focus on strategies that target PrEP use barriers at the system or structural level, exploring the implications and opportunities in the context of the fragmented USA healthcare system. RECENT FINDINGS: Task shifting could increase PrEP prescribers, but effectiveness evidence is scarce in the USA, and generally focused in urban settings. Integration of PrEP within existing healthcare infrastructure concentrates related resources, but demonstration projects rarely present the resource implications of redirecting staff. Changing the site of service via expanded telehealth could improve access to more rural populations, though internet connectivity, technology access, and challenges associated with determining biomedical eligibility remain logistical barriers for some of the highest burden communities in the USA. Finally, a tailored care navigation and coordination approach has emerged as a highly effective component of PrEP service provision, attempting to directly modify the system-level determinants of PrEP use experienced by the individual. We highlight recent advances and evidence surrounding task shifting, integration, service delivery, and tailoring. With the exception of tailored care navigation, evidence is mixed, and the downstream impact and sustainability of task shifting and care integration require further attention. To maximize PrEP outcomes, research will need to continue to examine the interplay between individuals, clinics, and the healthcare system and associated policies within which they operate.
Assuntos
Fármacos Anti-HIV , Infecções por HIV , Profilaxia Pré-Exposição , Telemedicina , Humanos , Estados Unidos/epidemiologia , Infecções por HIV/prevenção & controle , Infecções por HIV/tratamento farmacológico , Fármacos Anti-HIV/uso terapêutico , Atenção à SaúdeRESUMO
BACKGROUND AND AIMS: There are intrinsic conflicts between signalling to mutualists and concealing (camouflaging) from antagonists. Like animals, plants also use camouflage as a defence against herbivores. However, this can potentially reduce their attractiveness to pollinators. METHODS: Using Fritillaria delavayi, an alpine camouflaged plant with inter-population floral colour divergence, we tested the influence of floral trait differences on reproduction. We conducted pollination experiments, measured floral morphological characteristics, estimated floral colours perceived by pollinators, analysed floral scent and investigated reproductive success in five populations. KEY RESULTS: We found that the reproduction of F. delavayi depends on pollinators. Under natural conditions, a flower-camouflaged population had 100 % fruit set and similar seed set to three out of four yellow-flowered populations. Bumblebees are important pollinators in the visually conspicuous yellow-flowered populations, whereas flies are the only pollinator in the flower-camouflaged population, visiting flowers more frequently than bumblebees. The camouflaged flowers cannot be discriminated from the rock background as perceived by pollinators, but may be located by flies through olfactory cues. CONCLUSIONS: Collectively, our results demonstrate that the flower-camouflaged population has different reproductive traits from the visually conspicuous yellow-flowered populations. A pollinator shift from bumblebees to flies, combined with high visitation frequency, compensates for the attractiveness disadvantage in camouflaged plants.
Assuntos
Flores , Fritillaria , Polinização , Reprodução , Polinização/fisiologia , Animais , Flores/fisiologia , Flores/anatomia & histologia , Reprodução/fisiologia , Abelhas/fisiologia , Fritillaria/fisiologia , Dípteros/fisiologia , Cor , Frutas/fisiologia , Mimetismo Biológico/fisiologia , Pigmentação/fisiologiaRESUMO
Exposure to valproic acid (VPA), a common anti-seizure medication, in utero is a risk factor for autism spectrum disorder (ASD). People with ASD often display changes in the cerebellum, including volume changes, altered circuitry, and changes in Purkinje cell populations. ASD is also characterized by changes in the medial prefrontal cortex (mPFC), where excitatory/inhibitory balance is often altered. This study exposed rats to a high dose of VPA during gestation and assessed cognition and anxiety-like behaviors during young adulthood using a set-shifting task and the elevated plus maze. Inhibitory parvalbumin-expressing (PV +) neuron counts were assessed in the mPFC and cerebellar lobules VI and VII (Purkinje cell layers), which are known to modulate cognition. VPA males had increased PV + counts in crus I and II of lobule VII. VPA males also had decreased parvalbumin-expressing neuron counts in the mPFC. It was also found that VPA-exposed rats, regardless of sex, had increased parvalbumin-expressing Purkinje cell counts in lobule VI. In males, this was associated with impaired intra-dimensional shifting on a set-shifting task. Purkinje cell over proliferation may be contributing to the previously observed increase in volume of Lobule VI. These findings suggest that altered inhibitory signaling in cerebellar-frontal circuits may contribute to the cognitive deficits that occur within ASD.
Assuntos
Cerebelo , Neurônios , Parvalbuminas , Córtex Pré-Frontal , Animais , Parvalbuminas/metabolismo , Masculino , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/efeitos dos fármacos , Cerebelo/patologia , Cerebelo/efeitos dos fármacos , Ratos , Neurônios/fisiologia , Neurônios/patologia , Feminino , Gravidez , Ácido Valproico/farmacologia , Contagem de Células , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos Sprague-DawleyRESUMO
Silicon solar cell is the most mature photovoltaic conversion device, and in order to further improve the performance of the device, application of downshifting films has become a research hotspot. In this paper, CsPbBr3perovskite quantum dot/EVA composite adhesive film was prepared by melting method with CsPbBr3perovskite quantum dot film under solution processing as masterbatch and EVA particles as excipient. The effect of synthesis conditions on the luminescence properties of the composite films were thoroughly studied. The optimized CsPbBr3perovskite quantum dot/EVA composite adhesive film has excellent performance, and its light transmission reaches 85%. The CsPbBr3perovskite quantum dot/EVA composite adhesive film absolutely improves the efficiency of silicon solar cells by 1.08%, which is much higher than that of pure EVA adhesive film (0.63%). In addition, the device efficiencies have almost no change after 30 d in the air, maintaining the working stability of the device and contributing to industrial applications. This study provides a novel, industrial and low-cost synthesis route for the synthesis of CsPbBr3perovskite quantum dot/EVA composite adhesive film, which is expected to have broad application.
RESUMO
Poly(2-(N,N-dimethylamino)ethyl acrylate) (PDMAEA) is a promising charge-shifting polycation with the capacity to form a range of morphologically distinct polyelectrolyte assemblies. Nevertheless, the basic character of the monomer and its hydrolytic instability impedes its controlled synthesis to higher molecular weight (MW). Herein, the reversible addition-fragmentation chain transfer polymerization of DMAEA is reported using a tert-butanol/V70 initiator/trithiocarbonate-based chain transfer agent (CTA) polymerization setup. The CTA instability is demonstrated in the presence of the unprotonated tertiary amino group of the DMAEA monomer, which limits the control over the conversion and MW of the polymer. In contrast, the shielding of the amino groups by their protonation leads to polymerization with high conversions and excellent control over MWs of polymer up to 100 000 g mol-1. Hydrolytic degradation study at pH values ranging from 5 to 9 reveals that both basic and protonated PDMAEA undergo a pH-dependent hydrolysis. The proposed polymerization conditions provide a means of synthesizing PDMAEA with well-controlled characteristics, which are beneficial for controlling the complexation processes during the formation of various polyelectrolyte assemblies.