Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.358
Filtrar
1.
Development ; 150(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36971487

RESUMO

Our understanding of the molecular events driving cell specification in early mammalian development relies mainly on mouse studies, and it remains unclear whether these mechanisms are conserved across mammals, including humans. We have shown that the establishment of cell polarity via aPKC is a conserved event in the initiation of the trophectoderm (TE) placental programme in mouse, cow and human embryos. However, the mechanisms transducing cell polarity into cell fate in cow and human embryos are unknown. Here, we have examined the evolutionary conservation of Hippo signalling, which is thought to function downstream of aPKC activity, in four different mammalian species: mouse, rat, cow and human. In all four species, inhibition of the Hippo pathway by targeting LATS kinases is sufficient to drive ectopic TE initiation and downregulation of SOX2. However, the timing and localisation of molecular markers differ across species, with rat embryos more closely recapitulating human and cow developmental dynamics, compared with the mouse. Our comparative embryology approach uncovered intriguing differences as well as similarities in a fundamental developmental process among mammals, reinforcing the importance of cross-species investigations.


Assuntos
Via de Sinalização Hippo , Transdução de Sinais , Bovinos , Humanos , Feminino , Gravidez , Camundongos , Ratos , Animais , Transdução de Sinais/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Blastocisto/metabolismo , Placenta/metabolismo , Mamíferos/metabolismo , Linhagem da Célula
2.
J Pathol ; 262(2): 147-160, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38010733

RESUMO

TP53 is the most frequently mutated gene in human cancer. This gene shows not only loss-of-function mutations but also recurrent missense mutations with gain-of-function activity. We have studied the primary bone malignancy osteosarcoma, which harbours one of the most rearranged genomes of all cancers. This is odd since it primarily affects children and adolescents who have not lived the long life thought necessary to accumulate massive numbers of mutations. In osteosarcoma, TP53 is often disrupted by structural variants. Here, we show through combined whole-genome and transcriptome analyses of 148 osteosarcomas that TP53 structural variants commonly result in loss of coding parts of the gene while simultaneously preserving and relocating the promoter region. The transferred TP53 promoter region is fused to genes previously implicated in cancer development. Paradoxically, these erroneously upregulated genes are significantly associated with the TP53 signalling pathway itself. This suggests that while the classical tumour suppressor activities of TP53 are lost, certain parts of the TP53 signalling pathway that are necessary for cancer cell survival and proliferation are retained. In line with this, our data suggest that transposition of the TP53 promoter is an early event that allows for a new normal state of genome-wide rearrangements in osteosarcoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Criança , Adolescente , Humanos , Genes p53 , Osteossarcoma/genética , Osteossarcoma/patologia , Mutação , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Regiões Promotoras Genéticas/genética , Fusão Gênica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Exp Cell Res ; 434(1): 113876, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070859

RESUMO

Over the past two decades, polycomb repressive complex 2(PRC2) has emerged as a vital repressive complex in overall cell fate determination. In mammals, enhancer of zeste homolog 2 (EHZ2), which is the core component of PRC2, has also been recognized as an important regulator of inflammatory, redox, tumorigenesis and damage repair signalling networks. To exert these effects, EZH2 must regulate target genes epigenetically or interact directly with other gene expression-regulating factors, such as LncRNAs and microRNAs. Our review provides a comprehensive summary of research advances, discoveries and trends regarding the regulatory mechanisms between EZH2 and reactive oxygen species (ROS). First, we outline novel findings about how EZH2 regulates the generation of ROS at the molecular level. Then, we summarize how oxidative stress controls EHZ2 alteration (upregulation, downregulation, or phosphorylation) via various molecules and signalling pathways. Finally, we address why EZH2 and oxidative stress have an undefined relationship and provide potential future research ideas.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Complexo Repressor Polycomb 2/genética , Estresse Oxidativo , Mamíferos/metabolismo
4.
J Cell Mol Med ; 28(11): e18442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842135

RESUMO

Epithelial-mesenchymal transition (EMT) and its reversal process are important potential mechanisms in the development of HCC. Selaginella doederleinii Hieron is widely used in Traditional Chinese Medicine for the treatment of various tumours and Amentoflavone is its main active ingredient. This study investigates the mechanism of action of Amentoflavone on EMT in hepatocellular carcinoma from the perspective of bioinformatics and network pharmacology. Bioinformatics was used to screen Amentoflavone-regulated EMT genes that are closely related to the prognosis of HCC, and a molecular prediction model was established to assess the prognosis of HCC. The network pharmacology was used to predict the pathway axis regulated by Amentoflavone. Molecular docking of Amentoflavone with corresponding targets was performed. Detection and evaluation of the effects of Amentoflavone on cell proliferation, migration, invasion and apoptosis by CCK-8 kit, wound healing assay, Transwell assay and annexin V-FITC/propidium iodide staining. Eventually three core genes were screened, inculding NR1I2, CDK1 and CHEK1. A total of 590 GO enrichment entries were obtained, and five enrichment results were obtained by KEGG pathway analysis. Genes were mainly enriched in the p53 signalling pathway. The outcomes derived from both the wound healing assay and Transwell assay demonstrated significant inhibition of migration and invasion in HCC cells upon exposure to different concentrations of Amentoflavone. The results of Annexin V-FITC/PI staining assay showed that different concentrations of Amentoflavone induces apoptosis in HCC cells. This study revealed that the mechanism of Amentoflavone reverses EMT in hepatocellular carcinoma, possibly by inhibiting the expression of core genes and blocking the p53 signalling pathway axis to inhibit the migration and invasion of HCC cells.


Assuntos
Apoptose , Biflavonoides , Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Transdução de Sinais , Proteína Supressora de Tumor p53 , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Biflavonoides/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Transdução de Sinais/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Biologia Computacional/métodos
5.
J Cell Mol Med ; 28(10): e18391, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38809918

RESUMO

TH1L (also known as NELF-C/D) is a member of the Negative Elongation Factor (NELF) complex, which is a metazoan-specific factor that regulates RNA Polymerase II (RNAPII) pausing and transcription elongation. However, the function and molecular mechanisms of TH1L in cancer progression are still largely unknown. In this study, we found that TH1L was highly expressed in colorectal cancer (CRC) tissues and the faeces of CRC patients. Overexpression of TH1L significantly enhanced the proliferation and migration of CRC cells, while its knockdown markedly suppressed these processes. In mechanism, RNA sequencing revealed that CCL20 was upregulated in TH1L-overexpressed CRC cells, leading to activation of the NF-κB signalling pathway. Rescue assays showed that knockdown of CCL20 could impair the tumour-promoting effects of THIL in CRC cells. Taken together, these results suggest that TH1L may play a vital role via the CCL20/NF-κB signalling pathway in CRC proliferation and migration and may serve as a potential target for diagnosis and therapy of CRC.


Assuntos
Movimento Celular , Proliferação de Células , Quimiocina CCL20 , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , NF-kappa B , Transdução de Sinais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Movimento Celular/genética , Quimiocina CCL20/metabolismo , Quimiocina CCL20/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , NF-kappa B/metabolismo
6.
J Cell Mol Med ; 28(17): e70035, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39245790

RESUMO

Diabetes-related bone loss represents a significant complication that persistently jeopardizes the bone health of individuals with diabetes. Primary cilia proteins have been reported to play a vital role in regulating osteoblast differentiation in diabetes-related bone loss. However, the specific contribution of KIAA0753, a primary cilia protein, in bone loss induced by diabetes remains unclear. In this investigation, we elucidated the pivotal role of KIAA0753 as a promoter of osteoblast differentiation in diabetes. RNA sequencing demonstrated a marked downregulation of KIAA0753 expression in pro-bone MC3T3 cells exposed to a high glucose environment. Diabetes mouse models further validated the downregulation of KIAA0753 protein in the femur. Diabetes was observed to inhibit osteoblast differentiation in vitro, evidenced by downregulating the protein expression of OCN, OPN and ALP, decreasing primary cilia biosynthesis, and suppressing the Hedgehog signalling pathway. Knocking down KIAA0753 using shRNA methods was found to shorten primary cilia. Conversely, overexpression KIAA0753 rescued these changes. Additional insights indicated that KIAA0753 effectively restored osteoblast differentiation by directly interacting with SHH, OCN and Gli2, thereby activating the Hedgehog signalling pathway and mitigating the ubiquitination of Gli2 in diabetes. In summary, we report a negative regulatory relationship between KIAA0753 and diabetes-related bone loss. The clarification of KIAA0753's role offers valuable insights into the intricate mechanisms underlying diabetic bone complications.


Assuntos
Diferenciação Celular , Proteínas Associadas aos Microtúbulos , Osteoblastos , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Linhagem Celular , Cílios/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteogênese/genética , Proteínas Associadas aos Microtúbulos/metabolismo
7.
J Cell Mol Med ; 28(11): e18366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38856956

RESUMO

Ischemic stroke is one of the main causes of disability and death. However, recanalization of occluded cerebral arteries is effective only within a very narrow time window. Therefore, it is particularly important to find neuroprotective biological targets for cerebral artery recanalization. Here, gene expression profiles of datasets GSE160500 and GSE97537 were downloaded from the GEO database, which were related to ischemic stroke in rats. Olfactory receptor 78 (Olfr78) was screened, and which highly associated with Calcium signalling pathway and MAPK pathway. Interacting protein of Olfr78, Prkaca, was predicted by STRING, and their interaction was validated by Co-IP analysis. Then, a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a neuronal cell model stimulated by oxygen-glucose deprivation/reoxygenation (OGD/R) were constructed, and the results showed that expression of Olfr78 and Prkaca was downregulated in MCAO rats and OGD/R-stimulated neurons. Overexpression of Olfr78 or Prkaca inhibited the secretion of inflammatory factors, Ca2+ overload, and OGD/R-induced neuronal apoptosis. Moreover, Overexpression of Prkaca increased protein levels of cAMP, PKA and phosphorylated p38 in OGD/R-stimulated neurons, while SB203580, a p38 inhibitor, treatment inhibited activation of the cAMP/PKA-MAPK pathway and counteracted the effect of Olfr78 overexpression on improvement of neuronal functions. Meanwhile, overexpression of Olfr78 or Prkaca markedly inhibited neuronal apoptosis and improved brain injury in MCAO/R rats. In conclusion, overexpression of Olfr78 inhibited Ca2+ overload and reduced neuronal apoptosis in MCAO/R rats by promoting Prkaca-mediated activation of the cAMP/PKA-MAPK pathway, thereby improving brain injury in cerebral ischaemia-reperfusion.


Assuntos
AMP Cíclico , Receptores Odorantes , Traumatismo por Reperfusão , Transdução de Sinais , Animais , Masculino , Ratos , Apoptose , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/metabolismo , Ratos Sprague-Dawley , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética
8.
J Cell Mol Med ; 28(3): e18116, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38214394

RESUMO

Liver fibrosis is a common chronic hepatic disease. This study aimed to investigate the effect of pitavastatin (Pit) against thioacetamide (TAA)-induced liver fibrosis. Rats were divided into four groups: (1) control group; (2) TAA group (100 mg/kg, i.p.) three times weekly for 2 weeks; (3 and 4) TAA/Pit-treated group, in which Pit was administered orally (0.4 and 0.8 mg/kg/day) for 2 weeks following TAA injections. TAA caused liver damage manifested by elevated serum transaminases, reduced albumin and histological alterations. Hepatic malondialdehyde (MDA) was increased, and glutathione (GSH) and superoxide dismutase (SOD) were decreased in TAA-administered rats. TAA upregulated the inflammatory markers NF-κB, NF-κB p65, TNF-α and IL-6. Treatment with Pit ameliorated serum transaminases, elevated serum albumin and prevented histopathological changes in TAA-intoxicated rats. Pit suppressed MDA, NF-κB, NF-κB p65, the inflammatory cytokines and PI3K mRNA in TAA-intoxicated rats. In addition, Pit enhanced hepatic antioxidants and boosted the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) mRNA. Moreover, immunohistological studies supported the ability of Pit to reduce liver fibrosis via suppressing p-AKT expression. In conclusion, Pit effectively prevents TAA-induced liver fibrosis by attenuating oxidative stress and the inflammatory response. The hepatoprotective efficacy of Pit was associated with the upregulation of Nrf2/HO-1 and downregulation of NF-κB and PI3K/Akt signalling pathways.


Assuntos
Heme Oxigenase-1 , Inibidores de Hidroximetilglutaril-CoA Redutases , NF-kappa B , Quinolinas , Animais , Ratos , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas/uso terapêutico , RNA Mensageiro/metabolismo , Transaminases/metabolismo , Transaminases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico
9.
J Cell Mol Med ; 28(13): e18525, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982317

RESUMO

Triple-negative breast cancer (TNBC) is often considered one of the most aggressive subtypes of breast cancer, characterized by a high recurrence rate and low overall survival (OS). It is notorious for posing challenges related to drug resistance. While there has been progress in TNBC research, the mechanisms underlying chemotherapy resistance in TNBC remain largely elusive. We collect single-cell RNA sequencing (scRNA-seq) data from five TNBC patients susceptible to chemotherapy and five resistant cases. Comprehensive analyses involving copy number variation (CNV), pseudotime trajectory, cell-cell interactions, pseudospace analysis, as well as transcription factor and functional enrichment are conducted specifically on macrophages and malignant cells. Furthermore, we performed validation experiments on clinical samples using multiplex immunofluorescence. We identified a subset of SPP1+ macrophages that secrete SPP1 signals interacting with CD44 on malignant cell surfaces, potentially activating the PDE3B pathway within malignant cells via the integrin pathway, leading to chemotherapy resistance. The abnormally enhanced SPP1 signal between macrophages and malignant cells may serve as a factor promoting chemotherapy resistance in TNBC patients. Therefore, SPP1+ macrophages could potentially serve as a therapeutic target to reduce chemotherapy resistance.


Assuntos
Comunicação Celular , Resistencia a Medicamentos Antineoplásicos , Receptores de Hialuronatos , Macrófagos , Osteopontina , Análise de Célula Única , Transcriptoma , Neoplasias de Mama Triplo Negativas , Humanos , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Osteopontina/metabolismo , Osteopontina/genética , Análise de Célula Única/métodos , Macrófagos/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Perfilação da Expressão Gênica
10.
J Cell Mol Med ; 28(7): e18183, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38506078

RESUMO

Mechanical stress is an internal force between various parts of an object that resists external factors and effects that cause an object to deform, and mechanical stress is essential for various tissues that are constantly subjected to mechanical loads to function normally. Integrins are a class of transmembrane heterodimeric glycoprotein receptors that are important target proteins for the action of mechanical stress stimuli on cells and can convert extracellular physical and mechanical signals into intracellular bioelectrical signals, thereby regulating osteogenesis and osteolysis. Integrins play a bidirectional regulatory role in bone metabolism. In this paper, relevant literature published in recent years is reviewed and summarized. The characteristics of integrins and mechanical stress are introduced, as well as the mechanisms underlying responses of integrin to mechanical stress stimulation. The paper focuses on integrin-mediated mechanical stress in different cells involved in bone metabolism and its associated signalling mechanisms. The purpose of this review is to provide a theoretical basis for the application of integrin-mediated mechanical stress to the field of bone tissue repair and regeneration.


Assuntos
Integrinas , Transdução de Sinais , Integrinas/metabolismo , Estresse Mecânico , Transdução de Sinais/fisiologia , Células Cultivadas
11.
J Cell Mol Med ; 28(3): e18097, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38164738

RESUMO

Current studies have indicated that insufficient trophoblast epithelial-mesenchymal transition (EMT), migration and invasion are crucial for spontaneous abortion (SA) occurrence and development. Exosomal miRNAs play significant roles in embryonic development and cellular communication. Hereon, we explored the roles of serum exosomes derived from SA patients on trophoblast EMT, migration and invasion. Exosomes were isolated from normal control (NC) patients with abortion for unplanned pregnancy and SA patients, then characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blotting. Exosomal miRNA profiles were identified by miRNA sequencing. The effects of serum exosomes on trophoblast migration and invasion were detected by scratch wound healing and transwell assays, and other potential mechanisms were revealed by quantitative real-time PCR (RT-PCR), western blotting and dual-luciferase reporter assay. Finally, animal experiments were used to explore the effects of exosomal miR-410-3p on embryo absorption in mice. The serum exosomes from SA patients inhibited trophoblast EMT and reduced their migration and invasion ability in vitro. The miRNA sequencing showed that miR-410-3p was upregulated in SA serum exosomes. The functional experiments showed that SA serum exosomes restrained trophoblast EMT, migration and invasion by releasing miR-410-3p. Mechanistically, SA serum exosomal miR-410-3p inhibited trophoblast cell EMT, migration and invasion by targeting TNF receptor-associated factor 6 (TRAF6) at the post-transcriptional level. Besides, SA serum exosomal miR-410-3p inhibited the p38 MAPK signalling pathway by targeting TRAF6 in trophoblasts. Moreover, milk exosomes loaded with miR-410-3p mimic reached the maternal-fetal interface and aggravated embryo absorption in female mice. Clinically, miR-410-3p and TRAF6 expression were abnormal and negatively correlated in the placental villi of SA patients. Our findings indicated that exosome-derived miR-410-3p plays an important role between SA serum and trophoblasts in intercellular communication, suggesting a novel mechanism by which serum exosomal miRNA regulates trophoblasts in SA patients.


Assuntos
Aborto Espontâneo , Exossomos , MicroRNAs , Humanos , Feminino , Gravidez , Camundongos , Animais , Exossomos/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Placenta/metabolismo , MicroRNAs/genética , Trofoblastos/metabolismo , Transição Epitelial-Mesenquimal/genética , Proliferação de Células , Movimento Celular/genética
12.
J Cell Mol Med ; 28(16): e70023, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39158533

RESUMO

Astragalus polysaccharide-containing 3D-printed scaffold shows great potential in traumatic skin repair. This study aimed to investigate its repairing effect and to combine it with proteomic technology to deeply resolve the related protein expression changes. Thirty SD rats were divided randomly into three groups (n = 10 per group): the sham-operated group, the model group and the scaffold group. Subsequently, we conducted a comparative analysis on trauma blood perfusion, trauma healing rate, histological changes, the expression of the YAP/TAZ signalling pathway and angiogenesis-related factors. Additionally, neonatal skin tissues were collected for proteomic analysis. The blood perfusion volume and wound healing recovery in the scaffold group were better than that in the model group (p < 0.05). The protein expression of STAT3, YAP, TAZ and expression of vascular-related factor A (VEGFA) in the scaffold group was higher than that in the model group (p < 0.05). Proteomic analysis showed that there were 207 differential proteins common to the three groups. Mitochondrial function, immune response, redox response, extracellular gap and ATP metabolic process were the main groups of differential protein changes. Oxidative phosphorylation, metabolic pathway, carbon metabolism, calcium signalling pathway, etc. were the main differential metabolic pathway change groups. Astragalus polysaccharide-containing 3D-printed scaffold had certain reversals of protein disorder. The Astragalus polysaccharide-containing 3D-printed scaffold may promote the VEGFs by activating the YAP/TAZ signalling pathway with the help of STAT3 into the nucleus, accelerating early angiogenesis of the trauma, correcting the protein disorder of the trauma and ultimately realizing the repair of the wound.


Assuntos
Astrágalo , Polissacarídeos , Impressão Tridimensional , Proteômica , Ratos Sprague-Dawley , Pele , Alicerces Teciduais , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Proteômica/métodos , Polissacarídeos/química , Astrágalo/química , Alicerces Teciduais/química , Pele/metabolismo , Ratos , Transdução de Sinais , Masculino
13.
J Cell Mol Med ; 28(14): e18542, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39046369

RESUMO

This study aims to investigate the relationship between toxoplasmosis and this pathway, which may be effective in the formation of epilepsy by acting through the HMGB1/RAGE/TLR4/NF-κB signalling pathway in patients with idiopathic epilepsy. In the study, four different experimental groups were formed by selecting Toxoplasma gondii IgG positive and negative patients with idiopathic epilepsy and healthy controls. Experimental groups were as follows: Group 1: Epilepsy+/Toxo- (E+, T-) (n = 10), Group 2: Epilepsy-/Toxo- (E-, T-) (n = 10), Group 3: Epilepsy-/Toxo+ (E-, T+) (n = 10), Group 4: Epilepsy+/Toxo+ (E+, T+) (n = 10). HMGB1, RAGE, TLR4, TLR1, TLR2, TLR3, IRAK1, IRAK2, IKBKB, IKBKG, BCL3, IL1ß, IL10, 1 L8 and TNFα mRNA expression levels in the HMGB/RAGE/TLR4/NF-κB signalling pathway were determined by quantitative simultaneous PCR (qRT-PCR) after collecting blood samples from all patients in the groups. Statistical analysis was performed by one-way ANOVA followed by LSD post-hoc tests, and p < 0.05 was considered to denote statistical significance. The gene expression levels of HMGB1, TLR4, IL10, IL1B, IL8, and TLR2 were significantly higher in the G1 group than in the other groups (p < 0.05). In the G3 group, RAGE and BCL3 gene expression levels were significantly higher than in the other groups (p < 0.05). In the G4 group, however, IRAK2, IKBKB, and IKBKG gene expression levels were significantly higher than in the other groups (p < 0.05). HMGB1, TLR4, IRAK2, IKBKB, IL10, IL1B, IL1B, and IL8 in this signalling pathway are highly expressed in epilepsy patients in G1 and seizures occur with the stimulation of excitatory mechanisms by acting through this pathway. The signalling pathway in epilepsy may be activated by HMGB1, TLR4, and TLR2, which are considered to increase the level of proinflammatory cytokines. In T. gondii, this pathway is activated by RAGE and BCL3.


Assuntos
Epilepsia , Proteína HMGB1 , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Toxoplasmose , Humanos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Masculino , Feminino , Epilepsia/metabolismo , Epilepsia/genética , Epilepsia/parasitologia , Adulto , Toxoplasmose/parasitologia , Toxoplasmose/metabolismo , Toxoplasmose/complicações , Toxoplasmose/sangue , Toxoplasmose/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Estudos de Casos e Controles , Adulto Jovem , Pessoa de Meia-Idade , Antígenos de Neoplasias , Proteínas Quinases Ativadas por Mitógeno
14.
J Cell Mol Med ; 28(7): e18238, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38509729

RESUMO

Heart failure with preserved ejection fraction (HFpEF) accounts for approximately 50% of total heart failure patients and is characterized by peripheral circulation, cardiac remodelling and comorbidities (such as advanced age, obesity, hypertension and diabetes) with limited treatment options. Chidamide (HBI-8000) is a domestically produced benzamide-based histone deacetylase isoform-selective inhibitor used for the treatment of relapsed refractory peripheral T-cell lymphomas. Based on our in vivo studies, we propose that HBI-8000 exerts its therapeutic effects by inhibiting myocardial fibrosis and myocardial hypertrophy in HFpEF patients. At the cellular level, we found that HBI-8000 inhibits AngII-induced proliferation and activation of CFs and downregulates the expression of fibrosis-related factors. In addition, we observed that the HFpEF group and AngII stimulation significantly increased the expression of TGF-ß1 as well as phosphorylated p38MAPK, JNK and ERK, whereas the expression of the above factors was significantly reduced after HBI-8000 treatment. Activation of the TGF-ß1/MAPK pathway promotes the development of fibrotic remodelling, and pretreatment with SB203580 (p38MAPK inhibitor) reverses this pathological change. In conclusion, our data suggest that HBI-8000 inhibits fibrosis by modulating the TGF-ß1/MAPK pathway thereby improving HFpEF. Therefore, HBI-8000 may become a new hope for the treatment of HFpEF patients.


Assuntos
Insuficiência Cardíaca , Piridinas , Humanos , Insuficiência Cardíaca/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Volume Sistólico , Recidiva Local de Neoplasia , Benzamidas/farmacologia , Fibrose
15.
J Cell Mol Med ; 28(11): e18466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847482

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome characterized by pulmonary and systemic congestion resulting from left ventricular diastolic dysfunction and increased filling pressure. Currently, however, there is no evidence on effective pharmacotherapy for HFpEF. In this study, we aimed to investigate the therapeutic effect of total xanthones extracted from Gentianella acuta (TXG) on HFpEF by establishing an high-fat diet (HFD) + L-NAME-induced mouse model. Echocardiography was employed to assess the impact of TXG on the cardiac function in HFpEF mice. Haematoxylin and eosin staining, wheat germ agglutinin staining, and Masson's trichrome staining were utilized to observe the histopathological changes following TXG treatment. The results demonstrated that TXG alleviated HFpEF by reducing the expressions of genes associated with myocardial hypertrophy, fibrosis and apoptosis. Furthermore, TXG improved cardiomyocyte apoptosis by inhibiting the expression of apoptosis-related proteins. Mechanistic investigations revealed that TXG could activate the inositol-requiring enzyme 1α (IRE1α)/X-box-binding protein 1 (Xbp1s) signalling pathway, but the knockdown of IRE1α using the IRE1α inhibitor STF083010 or siRNA-IRE1α impaired the ability of TXG to ameliorate cardiac remodelling in HFpEF models. In conclusion, TXG alleviates myocardial hypertrophy, fibrosis and apoptosis through the activation of the IRE1α/Xbp1s signalling pathway, suggesting its potential beneficial effects on HFpEF patients.


Assuntos
Apoptose , Endorribonucleases , Insuficiência Cardíaca , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteína 1 de Ligação a X-Box , Xantonas , Animais , Endorribonucleases/metabolismo , Endorribonucleases/genética , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos , Masculino , Xantonas/farmacologia , Xantonas/isolamento & purificação , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Dieta Hiperlipídica/efeitos adversos , Fibrose , Volume Sistólico/efeitos dos fármacos
16.
Growth Factors ; 42(1): 13-23, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932893

RESUMO

Danggui blood-supplementing decoction (DBsD) is an herbal preparation treating several diseases including stroke. The present study sought to investigate the potential mechanism of DBsD in ischaemic stroke (IS) using network pharmacology, molecular docking, and cell experiment. Based on the protein-protein (PPI) network analysis, MAPK1 (0.51, 12), KNG1 (0.57, 28), and TNF (0.64, 39) were found with relatively good performance in degree and closeness centrality. The functional enrichment analysis revealed that DBsD contributed to IS-related biological processes, molecule function, and presynaptic/postsynaptic cellular components. Pathway enrichment indicated that DBsD might protect IS by modulating multi-signalling pathways including the sphingolipid signalling pathway. Molecular docking verified the stigmasterol-KNG1, bifendate-TNF, and formononetin-MAPK1 pairs. Cell experiments confirmed the involvement of KNG1 and sphingolipid signalling pathway in hippocampal neuronal cell apoptosis. This study showed that DBsD can protect neuronal cell injury after IS through multiple components, multiple targets, and multiple pathways.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/tratamento farmacológico , Farmacologia em Rede , Simulação de Acoplamento Molecular , Isquemia Encefálica/tratamento farmacológico , Esfingolipídeos
17.
Eur J Neurosci ; 60(4): 4552-4568, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38978308

RESUMO

In humans and other adult mammals, axon regeneration is difficult in axotomized neurons. Therefore, spinal cord injury (SCI) is a devastating event that can lead to permanent loss of locomotor and sensory functions. Moreover, the molecular mechanisms of axon regeneration in vertebrates are not very well understood, and currently, no effective treatment is available for SCI. In striking contrast to adult mammals, many nonmammalian vertebrates such as reptiles, amphibians, bony fishes and lampreys can spontaneously resume locomotion even after complete SCI. In recent years, rapid progress in the development of next-generation sequencing technologies has offered valuable information on SCI. In this review, we aimed to provide a comparison of axon regeneration process across classical model organisms, focusing on crucial genes and signalling pathways that play significant roles in the regeneration of individually identifiable descending neurons after SCI. Considering the special evolutionary location and powerful regenerative ability of lamprey and zebrafish, they will be the key model organisms for ongoing studies on spinal cord regeneration. Detailed study of SCI in these model organisms will help in the elucidation of molecular mechanisms of neuron regeneration across species.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Vertebrados , Animais , Traumatismos da Medula Espinal/fisiopatologia , Vertebrados/fisiologia , Regeneração da Medula Espinal/fisiologia , Lampreias , Humanos , Regeneração Nervosa/fisiologia
18.
J Gen Virol ; 105(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38299799

RESUMO

Zika virus (ZIKV) is a re-emerging RNA virus and causes major public health events due to its link to severe neurological complications in foetuses and neonates. The cGAS-STING signalling pathway regulates innate immunity and plays an important role in the invasion of DNA and RNA viruses. This study reveals a distinct mechanism by which ZIKV restricts the cGAS-STING signalling to repress IFN-ß expression. ZIKV attenuates IFN-ß expression induced by DNA viruses (herpes simplex virus type 1, HSV-1) or two double-stranded DNAs (dsDNA90 and HSV120) in mouse embryonic fibroblasts (MEFs). Notably, ZIKV NS5, the viral RNA-dependent RNA polymerase, was responsible for the repression of IFN-ß. NS5 interacts with STING in the cytoplasm, suppresses IRF3 phosphorylation and nucleus localization and promotes the cleavage of STING K48-linked polyubiquitination. Furthermore, the NS5 methyltransferase (MTase) domain interacts with STING to restrict STING-induced IFN-ß expression. Interestingly, point mutation analyses of conserved methyltransferase active site residue D146 indicate that it is critical for repressing IFN-ß expression induced by STING stimulation in cGAS-STING signalling.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Domínio Catalítico , DNA , Fibroblastos/metabolismo , Imunidade Inata , Interferons , Metiltransferases/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Zika virus/fisiologia
19.
Mol Med ; 30(1): 125, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152382

RESUMO

BACKGROUND: Epimedin A (EA) has been shown to suppress extensive osteoclastogenesis and bone resorption, but the effects of EA remain incompletely understood. The aim of our study was to investigate the effects of EA on osteoclastogenesis and bone resorption to explore the corresponding signalling pathways. METHODS: Rats were randomly assigned to the sham operation or ovariectomy group, and alendronate was used for the positive control group. The therapeutic effect of EA on osteoporosis was systematically analysed by measuring bone mineral density and bone biomechanical properties. In vitro, RAW264.7 cells were treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) to induce osteoclast differentiation. Cell viability assays, tartrate-resistant acid phosphatase (TRAP) staining, and immunofluorescence were used to elucidate the effects of EA on osteoclastogenesis. In addition, the expression of bone differentiation-related proteins or genes was evaluated using Western blot analysis or quantitative polymerase chain reaction (PCR), respectively. RESULTS: After 3 months of oral EA intervention, ovariectomized rats exhibited increased bone density, relative bone volume, trabecular thickness, and trabecular number, as well as reduced trabecular separation. EA dose-dependently normalized bone density and trabecular microarchitecture in the ovariectomized rats. Additionally, EA inhibited the expression of TRAP and NFATc1 in the ovariectomized rats. Moreover, the in vitro results indicated that EA inhibits osteoclast differentiation by suppressing the TRAF6/PI3K/AKT/NF-κB pathway. Further studies revealed that the effect on osteoclast differentiation, which was originally inhibited by EA, was reversed when the TRAF6 gene was overexpressed. CONCLUSIONS: The findings indicated that EA can negatively regulate osteoclastogenesis by inhibiting the TRAF6/PI3K/AKT/NF-κB axis and that ameliorating ovariectomy-induced osteoporosis in rats with EA may be a promising potential therapeutic strategy for the treatment of osteoporosis.


Assuntos
Diferenciação Celular , NF-kappa B , Osteoclastos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Animais , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Osteoclastos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Feminino , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Camundongos , Células RAW 264.7 , Flavonoides/farmacologia , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Osteoporose/metabolismo , Osteoporose/etiologia , Ovariectomia/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos
20.
Biochem Biophys Res Commun ; 703: 149665, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38359612

RESUMO

BACKGROUND: Intrinsic brain tumours such as glioblastoma (GBM) are believed to develop from neuroglial stem or progenitor cells. GBM accounts for approximately half of gliomas. GBM has a poor prognosis and a low 5-year survival rate. Pentraxin 3 (PTX3) is overexpressed in GBM, but the potential mechanism is unclear. METHODS: Glioblastoma data from the TCGA and CGGA databases were used to analyse PTX3 expression. Subsequently, in vivo and in vitro experiments were conducted to verify the effect of PTX3 silencing in glioma cells on EMT like process and GSC maintenance. The JASPAR database was used to predict the downstream genes of PTX3. POSTN is a novel target gene of PTX3 in gliomas, and this finding was validated using a luciferase reporter gene assay. Western blotting and KEGG enrichment analysis were used to predict the downstream pathway of POSTN, and it was found that the MAPK/ERK pathway might be related to the function of POSTN. RESULTS: GBM tissues have higher levels of PTX3 expression than normal brain tissues (NBTs). In functional tests, PTX3 promoted the EMT like process of GBM cells while maintaining the stem cell characteristics of GBM stem cells and enhancing their self-renewal. Moreover, we performed a dual luciferase reporter experiment to confirm that PTX3 binds to the POSTN promoter region. In addition, the expression of key proteins in the MAPK/ERK signalling pathway was increased after PTX3 overexpression. CONCLUSION: POSTN is a direct target of PTX3 that promotes GBM growth via the MAPK/ERK signalling pathway.


Assuntos
Neoplasias Encefálicas , Proteína C-Reativa , Glioblastoma , Glioma , Componente Amiloide P Sérico , Humanos , Glioblastoma/patologia , Glioma/genética , Neoplasias Encefálicas/patologia , Luciferases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Moléculas de Adesão Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa