RESUMO
To manufacture flexible batteries, it can be a challenge for silicon base anode materials to maintain structural integrity and electrical connectivity under bending and torsion conditions. In this work, 1D silicon nanowire array structures combined with flexible carbon chains consisting of short carbon nanofibers (CNFs) and long carbon nanotubes (CNTs) are proposed. The CNFs and CNTs serve as chain joints and separate chain units, respectively, weaving the well-ordered Si nanowire array into a robust and integrated configuration. The prepared flexible and stretchable silicon array anode exhibits excellent electrochemical performance during dynamic operation. A high initial specific capacity of 2856 mAh g-1 is achieved. After 1000 cycles, a capacity retention of 60% (1602 mAh g-1) is maintained. Additionally, the capacity attenuation is less than 1% after 100 bending cycles. This excellent cycling stability is obtained with a high Si loading of 6.92 mg cm-2. This novel approach offers great promise for the development of high-loading flexible energy-storage devices.
RESUMO
Silicon anode is an appealing alternative to enhance the energy density of lithium-ion batteries due to its high capacity, but it suffers from severe capacity fade caused by its fast degradation. The crossover of dissolved transition-metal (TM) ions from the cathode to the anode is known to catalyze the decomposition of electrolyte on the graphite anode surface, but the relative impact of dissolved Mn2+ versus Ni2+ versus Co2+ on silicon anode remains to be delineated. Since all three TM ions can dissolve from LiNi1-x-yMnxCoyO2 (NMC) cathodes and migrate to the anode, here a LiFePO4 cathode is paired with SiOx anode and assess the impact by introducing a specific amount of Mn2+ or Ni2+ or Co2+ ions into the electrolyte. It is found that Mn2+ ions cause a much larger increase in SiOx electrode thickness during cycling due to increased electrolyte decomposition and solid-electrolyte interphase (SEI) formation compared to Ni2+ and Co2+ ions, similar to previous findings with graphite anode. However, with a lower impedance, the SEI formed with Mn2+ protects the Si anode from excessive degradation compared to that with Co2+ or Ni2+ ions. Thus, Mn2+ ions have a less detrimental effect on Si anodes than Co2+ or Ni2+ ions, which is the opposite of that seen with graphite anodes.
RESUMO
Lithium-ion batteries (LIBs) has been developed over the last three decades. Increased amount of silicon (Si) is added into graphite anode to increase the energy density of LIBs. However, the amount of Si is limited, due to its structural instability and poor electronic conductivity so a novel approach is needed to overcome these issues. In this work, the synthesized chromium silicide (CrSi2) doped Si nanoparticle anode material achieves an initial capacity of 1729.3 mAh g-1 at 0.2C and retains 1085 mAh g-1 after 500 cycles. The new anode also shows fast charge capability due to the enhanced electronic conductivity provided by CrSi2 dopant, delivering a capacity of 815.9 mAh g-1 at 1C after 1000 cycles with a capacity degradation rate of <0.05% per cycle. An in situ transmission electron microscopy is used to study the structural stability of the CrSi2-doped Si, indicating that the high control of CrSi2 dopant prevents the fracture of Si during lithiation and results in long cycle life. Molecular dynamics simulation shows that CrSi2 doping optimizes the crack propagation path and dissipates the fracture energy. In this work a comprehensive information is provided to study the function of metal ion doping in electrode materials.
RESUMO
The commercialization of silicon anode for lithium-ion batteries has been hindered by severe structure fracture and continuous interfacial reaction against liquid electrolytes, which can be mitigated by solid-state electrolytes. However, rigid ceramic electrolyte suffers from large electrolyte/electrode interfacial resistance, and polymer electrolyte undergoes poor ionic conductivity, both of which are worsened by volume expansion of silicon. Herein, by dispersing Li1.3Al0.3Ti1.7(PO4)3 (LATP) into poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP) and poly(ethylene oxide) (PEO) matrix, the PVDF-HFP/PEO/LATP (PHP-L) solid-state electrolyte with high ionic conductivity (1.40 × 10-3 S cm-1), high tensile strength and flexibility is designed, achieving brilliant compatibility with silicon nanosheets. The chemical interactions between PVDF-HFP and PEO, LATP increase amorphous degree of polymer, accelerating Li+ transfer. Good flexibility of the PHP-L contributes to adaptive structure variation of electrolyte with silicon expansion/shrinkage, ensuring swift interfacial ions transfer. Moreover, the solid membrane with high tensile limits electrode structural degradation and eliminates continuous interfacial growth to form stable 2D solid electrolyte interface (SEI) film, achieving superior cyclic performance to liquid electrolytes. The Si//PHP-L15//LiFePO4 solid-state full-cell exhibits stable lithium storage with 81% capacity retention after 100 cycles. This work demonstrates the effectiveness of composite solid electrolyte in addressing fundamental interfacial and performance challenges of silicon anodes.
RESUMO
Silicon (Si) is a promising anode material for high-energy-density lithium-ion batteries, but the significant volume change of Si particles during alloying/dealloying with lithium (Li) undermines the mechanical integrity of Si anode, causing electrode fracture, delamination and rapid capacity decay. Herein, a robust triple crosslinked network (TCN) binder with high ionic conductivity and hierarchical stress dissipation is reported for Si anodes, which is prepared by in situ chemical crosslinking polyacrylic acid (PAA) and melamine (MA). The triple interactions of hydrogen bonds, electrostatic interactions, and covalent amide bonds enhance the adhesion of binder to Si and synergistically promote stress dissipation within Si anodes, thus strengthening the dynamic structural stability of Si anodes during cycling. Moreover, the rapid coupling/decoupling of Li+ with the TCN binder enables an impressive Li+ transference number of 0.63 and high ionic conductivity of 1.2 × 10-4 S cm-1. Consequently, the Si-TCN anode delivers specific capacity of 2268 mAh g-1 with a high mass loading of 2 mg cm-2, high-rate performance of 1673 mAh g-1 at 5 A g-1, and stable cycling for 250 cycles at 1 A g-1, thus showing great prospects for high-energy-density Si-based batteries.
RESUMO
Silicon (Si) is a promising anode material for lithium-ion batteries, but its large volume expansion during cycling poses a challenge for the binder design. In this study, a novel gelatin binder is designed and prepared with a helical crosslinked network structure. This gelatin binder is prepared by enzymatic crosslinking and immersion in Hofmeister salt solution, which induces the formation of network and helical secondary structures. The helical crosslinked network structure can be analogous to a spring group system to effectively dissipate the stress and strain caused by the Si expansion. The gelatin binder is further partially carbonized by low-temperature pyrolysis, which improves its conductivity and stability. The Si anode with the optimized gelatin binder exhibits high initial coulombic efficiency, excellent rate performance, and long-term cycling stability. This study provides an innovative approach for the preparation of high-performance Si anodes, namely by controlling the molecular configuration of the binder to significantly improve the cycle stability, which can also be applied to other high-capacity anode materials that suffer from large volume changes during cycling.
RESUMO
Novel binder designs are shown to be fruitful in improving the electrochemical performance of silicon (Si)-based anodes. However, issues with mechanical damage from dramatic volume change and poor lithium-ion (Li+) diffusion kinetics in Si-based materials still need to be addressed. Herein, an aqueous self-repairing borate-type binder (SBG) with a web-like architecture and high ionic conductivity is designed for Si and SiO electrodes. The 3D web-like architecture of the SBG binder enables uniform stress distribution, while its self-repairing ability promotes effective stress dissipation and mechanical damage repair, thereby enhancing the damage tolerance of the electrode. The tetracoordinate boron ions ( - BO 4 - $ - {\mathrm{BO}}_4^ - $ ) in the SBG binder boosts the Li transportation kinetics of Si-based electrodes. Based on dynamic covalent and ionic conductive boronic ester bonds, the diverse requirements of the binder, including uniform stress distribution, self-repairing ability, and high ionic conductivity, can be met by simple components. Consequently, the proposed straightforward multifunction design strategy for binders based on dynamic boron chemistry provides valuable insights into fabricating high-performance Si-based anodes.
RESUMO
Binders are crucial for stabilizing the cycling performance of silicon (Si) materials by preventing Si particle pulverization during lithiation and delithiation. Poly(acrylic acid) (PAA) and carboxymethyl cellulose (CMC) are the two most studied binders for Si electrodes, with PAA being an elastic polymer and CMC a rigid polymer. Starting with the elastic PAA, in this work the impact of binder content on the cycling performance of Si electrodes is studied. It is found that regardless of Si particle size, there is an optimal binder content between 20 % and 25 % for the cycling stability of Si electrodes. On the other hand, the rigid CMC binder results in lower capacity and faster capacity fading for Si electrodes compared with the elastic PAA. AC-impedance analysis reveals that the lower capacity is due to higher grain boundary resistance (Rgb) in CMC-coated electrodes, leading to high charge-transfer resistance (Rct) and increased polarization. This high polarization triggers premature termination during the discharging process (i. e., the lithiation) of Li/Si cells, underutilizing the Si active material. Additionally, the rapid capacity fading of CMC-coated electrodes is attributed to the rigid binder's inferior ability to prevent Si particle pulverization.
RESUMO
The massive volume dilation, unsteady solid electrolyte interphase, and weak conductivity about Si have failed to bring it to practical applications, although its potential capacity is up to 4200 mAh g-1. For solving these problems, novel binary regulated silicon-carbon materials (Si/BPC) were done by a sol-gel procedure combined with single carbonization. Analytical techniques were systematically utilized to examine the effects of element doping at several gradients on morphology, structure and electrochemical properties of composites, thus the optimal content was identified. Si/BPC preserves a discharge specific capacity of 1021.6 mAh g-1with a coulomb efficiency of 99.27% after 180 cycles at 1000 mA g-1, within the upgrade than single-doped and undoped. In rate test, it has a specific capacity of 1003.2 mAh g-1at a high current density of 5000 mA g-1, quickly back towards 2838.6 mAh g-1at 200 mA g-1. The inclusion of B and P elements is linked to the electrochemical characteristics. In the co-doped carbon layers, the synergistic impact of doping B and P accelerates the diffusion kinetics of lithium ions, boosts diffusion rate of Li+, offers low electrochemical impedance (45.75 Ω). This brings more defects to provide transport carriers and induces a substantial amount of electrochemically active sites, which fosters the storage of Li+, thus making silicon material electrochemically more active and potential.
RESUMO
Silicon (Si)-based anodes are promising for next-generation lithium (Li)-ion batteries due to their high theoretical capacity (â¼3600 mAh/g). However, they suffer quantities of capacity loss in the first cycle from initial solid electrolyte interphase (SEI) formation. Here, we present an in situ prelithiation method to directly integrate a Li metal mesh into the cell assembly. A series of Li meshes are designed as prelithiation reagents, which are applied to the Si anode in battery fabrication and spontaneously prelithiate Si with electrolyte addition. Various porosities of Li meshes tune prelithiation amounts to control the degree of prelithiation precisely. Besides, the patterned mesh design enhances the uniformity of prelithiation. With an optimized prelithiation amount, the in situ prelithiated Si-based full cell shows a constant >30% capacity improvement in 150 cycles. This work presents a facile prelithiation approach to improve battery performance.
RESUMO
The practical application of silicon (Si)-based anodes faces challenges due to severe structural and interphasial degradations. These challenges are exacerbated in lithium-ion batteries (LIBs) employing Si-based anodes with high-nickel layered oxide cathodes, as significant transition-metal crossover catalyzes serious parasitic side reactions, leading to faster cell failure. While enhancing the mechanical properties of polymer binders has been acknowledged as an effective means of improving solid-electrolyte interphase (SEI) stability on Si-based anodes, an in-depth understanding of how the binder chemistry influences the SEI is lacking. Herein, a zwitterionic binder with an ability to manipulate the chemical composition and spatial distribution of the SEI layer is designed for Si-based anodes. It is evidenced that the electrically charged microenvironment created by the zwitterionic species alters the solvation environment on the Si-based anode, featuring rich anions and weakened Li+-solvent interactions. Such a binder-regulated solvation environment induces a thin, uniform, robust SEI on Si-based anodes, which is found to be the key to withstanding transition-metal deposition and minimizing their detrimental impact on catalyzing electrolyte decomposition and devitalizing bulk Si. As a result, albeit possessing comparable mechanical properties to those of commercial binders, the zwitterionic binder enables superior cycling performances in high-energy-density LIBs under demanding operating conditions.
RESUMO
Novel composite materials comprising of silicon nanoparticles (SiNPs) encapsulated with thin layers of silicon nitride and reduced graphene oxide shells (Si@Si3N4@rGO) are prepared using a simple and scalable method. The composite exhibits significantly improved cycling stability and rate capability compared to bare SiNPs. The presence of inactiveαandßphases of Si3N4increases the mechanical endurance of SiNPs. Amorphous SiNx, which is possibly present with Si3N4, also contributes to high capacity and Li-ion migration. The rGO sheath enhances the electronic conduction and improves the rate capability. 15-Si@Si3N4@rGO, which is prepared by sintering SiNPs for 15 min at 1300 °C, spontaneous-coating GO on Si@Si3N4, and reducing GO to rGO, delivers the highest specific capacity of 1396 mAh g-1after 100 cycles at a current density of 0.5 A g-1. The improved electrochemical performance of 15-Si@Si3N4@rGO is attributed to the unique combination of positive effects by Si3N4and rGO shells, in which Si3N4mitigates the issue of large volume changes of Si during charge/discharge, and rGO provides efficient electron conduction pathways. Si@Si3N4@rGO composites are likely to have great potential for a high-performance anode in lithium-ion batteries.
RESUMO
During the lithation of silicon anodes, the solid-state diffusion of lithium into LixSi follows the Arrhenius law, the resulting morphology and fracture behavior are determined by the silicon anode operation temperature. Here, we reveal the temperature dependence of the lithiation mechanics of crystalline silicon nanopillars (SiNPs) via microscopic observations of the anisotropic growth and fracture behavior. We fabricated 1D SiNP structures with various orientations (⟨100⟩, ⟨110⟩, and ⟨111⟩) as working electrodes and operated them at temperatures ranging from -20 to 40 °C. The lithiation of crystalline silicon at low temperatures exhibited preferential volume expansion along ⟨110⟩ and decreased fracture resistance. Furthermore, low temperatures caused the catastrophic fracture of amorphous silicon after the second lithiation. Our findings demonstrate the importance of silicon anode temperature control to prevent mechanical fracture during the cycle of lithium-ion batteries in harsh environments (e.g., electric vehicles in winter).
RESUMO
For Si/C anodes, achieving excellent performance with a simple fabrication process is still an ongoing challenge. Herein, we report a green, facile and scalable approach for the in situ synthesis of Si@C anodes during the electrode manufacturing process by partially carbonizing Si nanoparticles (Si NPs) and dual polymers at a relatively low temperature. Due to the proper mass ratio of the two polymer precursors and proper carbonization temperature, the resultant Si-based anode demonstrates a typical Si@C core-shell structure and has strong mechanical properties with the aid of dual-interfacial bonding between the Si NPs core and carbon shell layer, as well as between the C matrix and the underlying Cu foil. Consequently, the resultant Si@C anode shows a high specific capacity (3458.1 mAh g-1 at 0.2 A g-1), good rate capability (1039 mAh g-1 at 4 A g-1) and excellent cyclability (77.94% of capacity retention at a high current density of 1 A g-1 after 200 cycles). More importantly, the synthesis of the Si@C anode is integrated in situ into the electrode manufacturing process and, thus, significantly decreases the cost of the lithium-ion battery but without sacrificing the electrochemical performance of the Si@C anode. Our results provide a new strategy for designing next-generation, high-capacity and cost-effective batteries.
RESUMO
Chlorine (Cl)-based batteries such as Li/Cl2 batteries are recognized as promising candidates for energy storage with low cost and high performance. However, the current use of Li metal anodes in Cl-based batteries has raised serious concerns regarding safety, cost, and production complexity. More importantly, the well-documented parasitic reactions between Li metal and Cl-based electrolytes require a large excess of Li metal, which inevitably sacrifices the electrochemical performance of the full cell. Therefore, it is crucial but challenging to establish new anode chemistry, particularly with electrochemical reversibility, for Cl-based batteries. Here we show, for the first time, reversible Si redox in Cl-based batteries through efficient electrolyte dilution and anode/electrolyte interface passivation using 1,2-dichloroethane and cyclized polyacrylonitrile as key mediators. Our Si anode chemistry enables significantly increased cycling stability and shelf lives compared with conventional Li metal anodes. It also avoids the use of a large excess of anode materials, thus enabling the first rechargeable Cl2 full battery with remarkable energy and power densities of 809â Wh kg-1 and 4,277â W kg-1 , respectively. The Si anode chemistry affords fast kinetics with remarkable rate capability and low-temperature electrochemical performance, indicating its great potential in practical applications.
RESUMO
Passivation of stainless steel by additives forming mass-transport blocking layers is widely practiced, where Cr element is added into bulk Fe-C forming the Cr2 O3 -rich protective layer. Here we extend the long-practiced passivation concept to Si anodes for lithium-ion batteries, incorporating the passivator of LiF/Li2 CO3 into bulk Si. The passivation mechanism is studied by various ex situ characterizations, redox peak contour maps, thickness evolution tests, and finite element simulations. The results demonstrate that the passivation can enhance the (de)lithiation of Li-Si alloys, induce the formation of F-rich solid electrolyte interphase, stabilize the Si/LiF/Li2 CO3 composite, and mitigate the volume change of Si anodes upon cycling. The 3D passivated Si anode can fully retain a high capacity of 3701â mAh g-1 after 1500 cycles and tolerate high rates up to 50C. This work provides insight into how to construct durable Si anodes through effective passivation.
RESUMO
Micro-sized silicon (mSi) anodes offer advantages in cost and tap density over nanosized counterparts. However, its practical application still suffers from poor cyclability and low initial and later-cycle coulombic efficiency (CE), caused by the unstable solid electrolyte interphase (SEI) and irreversible lithiation of the surface oxide layer. Herein, a bifunctional fluorine (F)-free electrolyte was designed for the mSi anode to stabilize the interphase and improve the CE. A combined analysis revealed that this electrolyte can chemically pre-lithiate the native oxide layer by the reductive LiBH4 , and relieve SEI formation and accumulation to preserve the internal conductive network. The significance of this F-free electrolyte brings unprecedented F-free interphase that also enables the high-performance mSi electrode (80â wt % mSi), including high specific capacity of 2900â mAh/g, high initial CE of 94.7 % and excellent cyclability capacity retention of 94.3 % after 100â cycles at 0.2â C. This work confirms the feasibility of F-free interphase, thus opening up a new avenue toward cost-advantaged and environmentally friendly electrolytes for more emerging battery systems.
RESUMO
Recently, the frequency of combining MXene, which has unique properties such as metal-level conductivity and large specific surface area, with silicon to achieve excellent electrochemical performance has increased considerably. There is no doubt that the introduction of MXene can improve the conductivity of silicon and the cycling stability of electrodes after elaborate structure design. However, most exhaustive contacts can only improve the electrode conductivity on the plane. Herein, a MXene@Si/CNTs (HIEN-MSC) composite with hierarchical interpenetrating electroconductive networks has been synthesized by electrostatic self-assembly. In this process, the CNTs are first combined with silicon nanoparticles and then assembled with MXene nanosheets. Inserting CNTs into silicon nanoparticles can not only reduce the latter's agglomeration, but also immobilizes them on the three-dimensional conductive framework composed of CNTs and MXene nanosheets. Therefore, the HIEN-MSC electrode shows superior rate performance (high reversible capacity of 280â mA h-1 even tested at 10â A g-1 ), cycling stability (stable reversible capacity of 547â mA h g-1 after 200 cycles at 1â A g-1 ) and applicability (a high reversible capacity of 101â mA h g-1 after 50 cycles when assembled with NCM622 into a full cell). These results may provide new insights for other electrodes with excellent rate performance and long-cycle stability.
RESUMO
Silicon has a great potential as an alternative to graphite which is currently used commercially as an anode material in lithium-ion batteries (LIBs) because of its exceptional capacity and reasonable working potential. Herein, a low-cost and scalable approach is proposed for the production of high-performance silicon-carbon (Si-C) hybrid composite anodes for high-energy LIBs. The Si-C composite material is synthesized using a scalable microemulsion method by selecting silicon nanoparticles, using low-cost corn starch as a biomass precursor and finally conducting heat treatment under C3H6 gas. This produces a unique nano/microstructured Si-C hybrid composite comprised of silicon nanoparticles embedded in micron-sized amorphous carbon balls derived from corn starch that is capsuled by thin graphitic carbon layer. Such a dual carbon matrix tightly surrounds the silicon nanoparticles that provides high electronic conductivity and significantly decreases the absolute stress/strain of the material during multiple lithiation-delithiation processes. The Si-C hybrid composite anode demonstrates a high capacity of 1800 mAh g-1, outstanding cycling stability with capacity retention of 80% over 500 cycles, and fast charge-discharge capability of 12 min. Moreover, the Si-C composite anode exhibits good acceptability in practical LIBs assembled with commercial Li[Ni0.6Co0.2Mn0.2]O2 and Li[Ni0.80Co0.15Al0.05]O2 cathodes.
RESUMO
A novel design of hollow structured SnO2@Si nanospheres was presented, which not only demonstrates high volumetric capacity as anode of LIBs, but also prevents aggregation of Sn and confines solid electrolyte interphase thickening. An impressive volumetric specific capacity of 1030 mAh cm-3 was maintained after 500 cycles. The electrochemical impedance spectroscopy and differential scanning calorimetry indicated that solid electrolyte interphase can be confined in pores of as-prepared hollow structured SnO2@Si.