Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2403878, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058210

RESUMO

Effective identification of multiple cariogenic bacteria in saliva samples is important for oral disease prevention and treatment. Here, a simple colorimetric sensor array is developed for the identification of cariogenic bacteria using single-atom nanozymes (SANs) assisted by machine learning. Interestingly, cariogenic bacteria can increase oxidase-like activity of iron (Fe)─nitrogen (N)─carbon (C) SANs by accelerating electron transfer, and inversely reduce the activity of Fe─N─C further reconstruction with urea. Through machine-learning-assisted sensor array, colorimetric responses are developed as "fingerprints" of cariogenic bacteria. Multiple cariogenic bacteria can be well distinguished by linear discriminant analysis and bacteria at different genera can also be distinguished by hierarchical cluster analysis. Furthermore, colorimetric sensor array has demonstrated excellent performance for the identification of mixed cariogenic bacteria in artificial saliva samples. In view of convenience, precise, and high-throughput discrimination, the developed colorimetric sensor array based on SANs assisted by machine learning, has great potential for the identification of oral cariogenic bacteria so as to serve for oral disease prevention and treatment.

2.
Small ; 20(8): e2306656, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817351

RESUMO

Herein, carbon dot (CD)-supported Fe single-atom nanozymes with high content of pyrrolic N and ultrasmall size (ph-CDs-Fe SAzyme) are fabricated by a phenanthroline-mediated ligand-assisted strategy. Compared with phenanthroline-free nanozymes (CDs-Fe SAzyme), ph-CDs-Fe SAzyme exhibit higher peroxidase (POD)-like activity due to their structure similar to that of ferriporphyrin in natural POD. Aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure spectroscopy (XAFS) analyses show that metal Fe is dispersed in ph-CDs-Fe SAzyme as single atoms. Steady-state kinetic studies show that the maximum velocity (Vmax ) and turnover number (kcat ) of H2 O2  homolytic cleavage catalyzed by ph-CDs-Fe SAzyme are 3.0 and 6.2 more than those of the reaction catalyzed by CDs-Fe SAzyme. Density functional theory (DFT) calculations show that the energy barrier of the reaction catalyzed by ph-CDs-Fe SAzyme is lower than that catalyzed by CDs-Fe SAzyme. Antitumor efficacy experiments show that ph-CDs-Fe SAzyme can efficiently inhibit the growth of tumor cells both in vitro and in vivo by synergistic chemodynamic and photothermal effects. Here a new paradigm is provided for the development of efficient antitumor therapeutic approaches based on SAzyme with POD-like activity.


Assuntos
Carbono , Hemina , Cinética , Pirróis , Espectroscopia por Absorção de Raios X
3.
J Nanobiotechnology ; 22(1): 286, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796465

RESUMO

Various clinical symptoms of digestive system, such as infectious, inflammatory, and malignant disorders, have a profound impact on the quality of life and overall health of patients. Therefore, the chase for more potent medicines is both highly significant and urgent. Nanozymes, a novel class of nanomaterials, amalgamate the biological properties of nanomaterials with the catalytic activity of enzymes, and have been engineered for various biomedical applications, including complex gastrointestinal diseases (GI). Particularly, because of their distinctive metal coordination structure and ability to maximize atom use efficiency, single-atom nanozymes (SAzymes) with atomically scattered metal centers are becoming a more viable substitute for natural enzymes. Traditional nanozyme design strategies are no longer able to meet the current requirements for efficient and diverse SAzymes design due to the diversification and complexity of preparation processes. As a result, this review emphasizes the design concept and the synthesis strategy of SAzymes, and corresponding bioenzyme-like activities, such as superoxide dismutase (SOD), peroxidase (POD), oxidase (OXD), catalase (CAT), and glutathione peroxidase (GPx). Then the various application of SAzymes in GI illnesses are summarized, which should encourage further research into nanozymes to achieve better application characteristics.


Assuntos
Gastroenteropatias , Nanoestruturas , Humanos , Nanoestruturas/química , Animais , Enzimas/química , Enzimas/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Catalase/química , Catalase/metabolismo , Catálise , Glutationa Peroxidase/metabolismo
4.
Nano Lett ; 23(18): 8585-8592, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37669044

RESUMO

Single-atom nanozymes (SAzymes) open new possibilities for the development of artificial enzymes that have catalytic activity comparable to that of natural peroxidase (POD). So far, most efforts have focused on the structural modulation of the Fe-N4 moiety to mimic the metalloprotein heme center. However, non-heme-iron POD with much higher activity, for example, HppE, has not been mimicked successfully due to its structural complexity. Herein, carbon dots (CDs)-supported SAzymes with twisted, nonplanar Fe-O3N2 active sites, highly similar to the non-heme iron center of HppE, was synthesized by exploiting disordered and subnanoscale domains in CDs. The Fe-CDs exhibit an excellent POD activity of 750 units/mg, surpassing the values of conventional SAzymes with planar Fe-N4. We further fabricated an activatable Fe-CDs-based therapeutic agent with near-infrared enhanced POD activity, a photothermal effect, and tumor-targeting ability. Our results represent a big step in the design of high-performance SAzymes and provide guidance for future applications for synergistic tumor therapy.

5.
Small ; 19(40): e2302929, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37282757

RESUMO

Various applications lead to the requirement of nanozymes with either specific activity or multiple enzyme-like activities. To this end, intelligent nanozymes with freely switching specificity abilities hold great promise to adapt to complicated and changeable practical conditions. Herein, a nitrogen-doped carbon-supported copper single-atom nanozyme (named Cu SA/NC) with switchable specificity is reported. Atomically dispersed active sites endow Cu SA/NC with specific peroxidase-like activity at room temperature. Furthermore, the intrinsic photothermal conversion ability of Cu SA/NC enables the specificity switch by additional laser irradiation, where photothermal-induced temperature elevation triggers the expression of oxidase-like and catalase-like activity of Cu SA/NC. For further applications in practice, a pretreatment-and-sensing integration kit (PSIK) is constructed, where Cu SA/NC can successively achieve sample pretreatment and sensitive detection by switching from multi-activity mode to specific-activity mode. This study sets the foundation for nanozymes with switchable specificity and broadens the application scope in point-of-care testing.


Assuntos
Carbono , Cobre , Cobre/química , Carbono/química , Nitrogênio/química
6.
Small ; 19(47): e2303901, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37490519

RESUMO

Surface antibacterial coatings with outstanding antibacterial efficiency have attracted increasing attention in medical protective clothing and cotton surgical clothing. Although nanozymes, as a new generation of antibiotics, are used to combat bacteria, their catalytic performance remains far from satisfactory as alternatives to natural enzymes. Single-atom nanodots provide a solution to the low catalytic activity bottleneck of nanozymes. Here, atomically thin C3 N4 nanodots supported single Cu atom nanozymes (Cu-CNNDs) are developed by a self-tailoring approach, which exhibits catalytic efficiency of 8.09 × 105 M-1 s-1 , similar to that of natural enzyme. Experimental and theoretical calculations show that excellent peroxidase-like activity stems from the size effect of carrier optimizing the coordination structure, leading to full exposure of Cu-N3 active site, which improves the ability of H2 O2 to generate hydroxyl radicals (•OH). Notably, Cu-CNNDs exhibit over 99% superior antibacterial efficacy and are successfully grafted onto cotton fabrics. Thus, Cu-CNNDs blaze an avenue for exquisite biomimetic nanozyme design and have great potential applications in antibacterial textiles.


Assuntos
Radical Hidroxila , Têxteis , Antibacterianos/farmacologia , Antibacterianos/química , Catálise
7.
Small ; 19(37): e2207510, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37231552

RESUMO

Intracellular bacterial pathogens hiding in host cells tolerate the innate immune system and high-dose antibiotics, resulting in recurrent infections that are difficult to treat. Herein, a homing missile-like nanotherapeutic (FeSAs@Sa.M) composed of a single-atom iron nanozyme (FeSAs) core coated with infected macrophage membrane (Sa.M) is developed for in situ elimination of intracellular methicillin-resistant S. aureus (MRSA). Mechanically, the FeSAs@Sa.M initially binds to the extracellular MRSA via the bacterial recognition ability of the Sa.M component. Subsequently, the FeSAs@Sa.M can be transported to the intracellular MRSA-located regions in the host cell like a homing missile under the guidance of the extracellular MRSA to which it is attached, generating highly toxic reactive oxygen species (ROS) for intracellular MRSA killing via the enzymatic activities of the FeSAs core. The FeSAs@Sa.M is far superior to FeSAs in killing intracellular MRSA, proposing a feasible strategy for treating intracellular infections by in situ generating ROS in bacterial residing regions.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Espécies Reativas de Oxigênio , Domínio Catalítico , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
8.
Small ; 19(30): e2300750, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37058076

RESUMO

Nanomaterials with enzyme-mimicking properties, coined as nanozymes, are a promising alternative to natural enzymes owing to their remarkable advantages, such as high stability, easy preparation, and favorable catalytic performance. Recently, with the rapid development of nanotechnology and characterization techniques, single atom nanozymes (SAzymes) with atomically dispersed active sites, well-defined electronic and geometric structures, tunable coordination environment, and maximum metal atom utilization are developed and exploited. With superior catalytic performance and selectivity, SAzymes have made impressive progress in biomedical applications and are expected to bridge the gap between artificial nanozymes and natural enzymes. Herein, the recent advances in SAzyme preparation methods, catalytic mechanisms, and biomedical applications are systematically summarized. Their biomedical applications in cancer therapy, oxidative stress cytoprotection, antibacterial therapy, and biosensing are discussed in depth. Furthermore, to appreciate these advances, the main challenges, and prospects for the future development of SAzymes are also outlined and highlighted in this review.


Assuntos
Nanoestruturas , Nanoestruturas/química , Catálise , Nanotecnologia
9.
Anal Bioanal Chem ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108842

RESUMO

Although traditional Fe-based nanozymes have shown great potential, generally only a small proportion of the Fe atoms on the catalyst's surface are used. Herein, we synthesized single-atom Fe on N-doped graphene nanosheets (Fe-CNG) with high atom utilization efficiency and a unique coordination structure. Active oxygen species including superoxide radicals (O2•-) and singlet oxygen (1O2) were efficiently generated from the interaction of the Fe-CNG with dissolved oxygen in acidic conditions. The Fe-CNG nanozymes were found to display enhanced oxidase-like and laccase-like activity, with Vmax of 2.07 × 10-7 M∙S-1 and 4.54 × 10-8 M∙S-1 and Km of 0.324 mM and 0.082 mM, respectively, which is mainly due to Fe active centers coordinating with O and N atoms simultaneously. The oxidase-like performance of the Fe-CNG can be effectively inhibited by ascorbic acid (AA) or hydroquinone (HQ), which can directly obstruct the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Therefore, a direct and sensitive colorimetric method for the detection of AA and HQ activity was established, which exhibited good linear detection and limit of detection (LOD) of 0.048 µM and 0.025 µM, respectively. Moreover, a colorimetric method based on the Fe-CNG catalyst was fabricated for detecting the concentration of AA in vitamin C. Therefore, this work offers a new method for preparing a single-atom catalyst (SAC) nanozyme and a promising strategy for detecting AA and HQ.

10.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958697

RESUMO

Nanozymes, which combine enzyme-like catalytic activity and the biological properties of nanomaterials, have been widely used in biomedical fields. Single-atom nanozymes (SANs) with atomically dispersed metal centers exhibit excellent biological catalytic activity due to the maximization of atomic utilization efficiency, unique metal coordination structures, and metal-support interaction, and their structure-activity relationship can also be clearly investigated. Therefore, they have become an emerging alternative to natural enzymes. This review summarizes the examples of nanocatalytic therapy based on SANs in tumor diagnosis and treatment in recent years, providing an overview of material classification, activity modulation, and therapeutic means. Next, we will delve into the therapeutic mechanism of SNAs in the tumor microenvironment and the advantages of synergistic multiple therapeutic modalities (e.g., chemodynamic therapy, sonodynamic therapy, photothermal therapy, chemotherapy, photodynamic therapy, sonothermal therapy, and gas therapy). Finally, this review proposes the main challenges and prospects for the future development of SANs in cancer diagnosis and therapy.


Assuntos
Nanoestruturas , Neoplasias , Fotoquimioterapia , Humanos , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Metais , Relação Estrutura-Atividade , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Catálise , Microambiente Tumoral
11.
Angew Chem Int Ed Engl ; 62(7): e202214042, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36565238

RESUMO

The lack of systematic structural resolution makes it difficult to build specific transition-metal-atom-doped carbonized polymer dots (TMA-doped CPDs). Herein, the structure-activity relationship between Cu atoms and CPDs was evaluated by studying the peroxidase-like properties of Glu-Cu-CPDs prepared by using copper glutamate (Glu) with a Cu-N2 O2 initial structure. The results showed that the Cu atoms bound to Glu-Cu-CPDs in the form of Cu-N2 C2 , indicating that Cu-O bonds changed into Cu-C bonds under hydrothermal conditions. This phenomenon was also observed in other copper-doped CPDs. Moreover, the carboxyl and amino groups content decreased after copper-atom doping. Theoretical calculations revealed a dual-site catalytic mechanism for catalyzing H2 O2 . The detection of intracellular H2 O2 suggested their application prospects. Our study provides an in-depth understanding of the formation and catalytic mechanism of TMA-doped-CPDs, allowing for the generation specific TMA-doped-CPDs.

12.
Small ; 18(37): e2203001, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35986440

RESUMO

Multifunctional nanozymes can benefit biochemical analysis via expanding sensing modes and enhancing analytical performance, but designing multifunctional nanozymes to realize the desired sensing of targets is challenging. In this work, single-atomic iron doped carbon dots (SA Fe-CDs) are designed and synthesized via a facile in situ pyrolysis process. The small-sized CDs not only maintain their tunable fluorescence, but also serve as a support for loading dispersed active sites. Monoatomic Fe offers SA Fe-CDs exceptional oxidase-mimetic activity to catalyze 3,3',5,5'-tetramethylbenzidine (TMB) oxidation with fast response (Vmax  = 10.4 nM s-1 ) and strong affinity (Km  = 168 µM). Meanwhile, their photoluminescence is quenched by the oxidation product of TMB due to inner filter effect. Phosphate ions (Pi) can suppress the oxidase-mimicking activity and restore the photoluminescence of SA Fe-CDs by interacting with Fe active sites. Based on this principle, a dual-mode colorimetric and fluorescence assay of Pi with high sensitivity, selectivity, and rapid response is established. This work paves a path to develop multifunctional enzyme-like catalysts, and offers a simple but efficient dual-mode method for phosphate monitoring, which will inspire the exploration of multi-mode sensing strategies based on nanozyme catalysis.


Assuntos
Carbono , Pontos Quânticos , Benzidinas , Carbono/química , Ferro/química , Limite de Detecção , Oxirredutases , Fosfatos , Pontos Quânticos/química
13.
Small ; 18(5): e2104844, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34825478

RESUMO

Single-atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single-atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical-mediated pathway like most of the reported nanozymes. Their positively charged single-atom centers resulting from support electronegative oxygen/nitrogen hinder the reductive conversion of H2 O2 to OH radicals and hence display low activity per site. In contrast, it is found that this step can be facilitated over their metallic counterparts on cluster nanozymes with much higher site activity and atom efficiency (cf. SAzymes with 100% atom utilization). Besides the mimicking of HRP in glucose detection, cluster nanozymes are also demonstrated as a better oxidase mimetic for glutathione detection.


Assuntos
Oxirredutases , Peroxidase , Carbono/química , Domínio Catalítico , Peroxidases
14.
Anal Bioanal Chem ; 414(5): 1857-1865, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35028690

RESUMO

Biothiol detection is of great importance for clinical disease diagnosis. Previous nanozyme-based colorimetric sensors for biothiol detection showed unsatisfactory catalytic activity, which led to a high detection limit. Therefore, developing new nanozymes with the high catalytic activity for biothiol detection is extremely necessary. Recently, single-atom nanozymes (SAzymes) have attracted much attention in biosensing due to their 100% atom utilization and excellent catalytic activity. Most previous works focus on the peroxidase-like activity of Fe-based SAzymes by using unstable and destructive H2O2 as the oxidant. It is essential to develop new SAzymes with high oxidase-like activity for biosensing to break through the limitation. Herein, Co-N-C SAzymes with high oxidase-like activity are explored. Furthermore, Co-N-C SAzymes are used as a biosensor for colorimetric detection of biothiols (GSH/Cys) based on the inhibition of thiols toward the oxidase-like activity of Co-N-C SAzymes, which showed high sensitivity with a low detection limit of 0.07 µM for GSH and 0.06 µM for Cys. Besides, the method showed good reproducibility and high selectivity against other amino acids. This work offers new insights using Co-N-C SAzymes in the biosensing field.


Assuntos
Carbono/química , Cobalto/química , Nitrogênio/química , Compostos de Sulfidrila/análise , Técnicas Biossensoriais , Catálise , Limite de Detecção , Microscopia Eletrônica/métodos , Reprodutibilidade dos Testes , Espectrometria por Raios X
15.
Angew Chem Int Ed Engl ; 61(50): e202209245, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36264713

RESUMO

Upregulation of heat shock proteins (HSPs) drastically compromises the treatment effect of mild photothermal therapy (PTT). Herein, we designed a polyporous Cu single atom nanozyme (Cu SAzyme) loaded with licogliflozin (LIK066) for HSP-silencing induced mild PTT. On one hand, LIK066 inhibits glucose uptake by shutting sodium-dependent glucose transporter (SGLT) "valve", effectively blocking the energy source for adenosine triphosphate (ATP) generation. Without sufficient energy, cancer cells cannot synthesize HSPs. On the other hand, Cu SAzyme presents extraordinary multienzyme activities to induce reactive oxygen species (ROS) storm formation, which can damage the existing HSPs in cancer cells. Through a two-pronged strategy of SGLT inhibitor and ROS storm, LIK066-loaded Cu SAzyme shows high efficiency for comprehensive removal of HSPs to realize mild PTT.


Assuntos
Neoplasias , Terapia Fototérmica , Humanos , Espécies Reativas de Oxigênio/metabolismo , Anidridos , Sorbitol , Proteínas de Choque Térmico/metabolismo , Neoplasias/terapia , Linhagem Celular Tumoral
16.
Adv Mater ; 36(15): e2309669, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216154

RESUMO

Outbreaks of viral infectious diseases, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV), pose a great threat to human health. Viral spread is accelerated worldwide by the development of cold chain logistics; Therefore, an effective antiviral approach is required. In this study, it is aimed to develop a distinct antiviral strategy using nanozymes with low-temperature adaptability, suitable for cold chain logistics. Phosphorus (P) atoms are added to the remote counter position of Fe-N-C center to prepare FeN4P2-single-atom nanozymes (SAzymes), exhibiting lipid oxidase (OXD)-like activity at cold chain temperatures (-20, and 4 °C). This feature enables FeN4P2-SAzymes to disrupt multiple enveloped viruses (human, swine, and avian coronaviruses, and H1-H11 subtypes of IAV) by catalyzing lipid peroxidation of the viral lipid envelope. Under the simulated conditions of cold chain logistics, FeN4P2-SAzymes are successfully applied as antiviral coatings on outer packaging and personal protective equipment; Therefore, FeN4P2-SAzymes with low-temperature adaptability and broad-spectrum antiviral properties may serve as key materials for developing specific antiviral approaches to interrupt viral transmission through the cold chain.


Assuntos
Ferro , Refrigeração , Animais , Humanos , Suínos , Temperatura , SARS-CoV-2 , Antivirais , Lipídeos
17.
Adv Mater ; 36(21): e2313406, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38319004

RESUMO

Single-atom nanozymes (SAzymes) showcase not only uniformly dispersed active sites but also meticulously engineered coordination structures. These intricate architectures bestow upon them an exceptional catalytic prowess, thereby captivating numerous minds and heralding a new era of possibilities in the biomedical landscape. Tuning the microstructure of SAzymes on the atomic scale is a key factor in designing targeted SAzymes with desirable functions. This review first discusses and summarizes three strategies for designing SAzymes and their impact on reactivity in biocatalysis. The effects of choices of carrier, different synthesis methods, coordination modulation of first/second shell, and the type and number of metal active centers on the enzyme-like catalytic activity are unraveled. Next, a first attempt is made to summarize the biological applications of SAzymes in tumor therapy, biosensing, antimicrobial, anti-inflammatory, and other biological applications from different mechanisms. Finally, how SAzymes are designed and regulated for further realization of diverse biological applications is reviewed and prospected. It is envisaged that the comprehensive review presented within this exegesis will furnish novel perspectives and profound revelations regarding the biomedical applications of SAzymes.


Assuntos
Nanoestruturas , Humanos , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Catálise , Anti-Inflamatórios/química
18.
J Colloid Interface Sci ; 675: 580-591, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38986331

RESUMO

Single-atom nanozymes (SANZs) have emerged as new media for enhancing chemodynamic therapy (CDT) to achieve desirable enzyme-like effects and excellent nanoscale specificity. However, non-optimal adsorption of Fenton-like reaction intermediates prevents SANZs from exerting kinetic activity and hinders the CDT effect. Herein, we demonstrate that heteroatom-doped Co single-atom nanozymes (SACNZs) with intrinsic charge transfer exhibit peroxidase-like properties and significantly improve the ability of CDT to treat Staphylococcus aureus-infected wounds. Density functional theory calculations showed that the S-induced charge transfer effect regulated the electronic distribution of the central metal more efficiently than P, thereby lowering the energy levels for the generation of OH and increasing the catalytic effect. Polyvinylpyrrolidone-modified SACNZs showed effects consistent with this theory in both in vitro antibacterial and in vivo ward management assays. This study systematically investigated the relationship between heteroatom-doping and the catalytic activity of metal centres, opening a new perspective for the application of CDT.


Assuntos
Antibacterianos , Cobalto , Staphylococcus aureus , Cobalto/química , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Teoria da Densidade Funcional , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Animais , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Catálise , Camundongos , Nanoestruturas/química , Tamanho da Partícula
19.
Front Chem ; 12: 1442689, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39189019

RESUMO

Single-atom nanozymes (SAzymes) represent a cutting-edge advancement in nanomaterials, merging the high catalytic efficiency of natural enzymes with the benefits of atomic economy. Traditionally, natural enzymes exhibit high specificity and efficiency, but their stability are limited by environmental conditions and production costs. Here we show that SAzymes, with their large specific surface area and high atomic utilization, achieve superior catalytic activity. However, their high dispersibility poses stability challenges. Our review focuses on recent structural and preparative advancements aimed at enhancing the catalytic specificity and stability of SAzymes. Compared to previous nanozymes, SAzymes demonstrate significantly improved performance in biomedical applications, particularly in tumor medicine. This progress positions SAzymes as a promising tool for future cancer treatment strategies, integrating the robustness of inorganic materials with the specificity of biological systems. The development and application of SAzymes could revolutionize the field of biocatalysis, offering a stable, cost-effective alternative to natural enzymes.

20.
Adv Mater ; 36(13): e2306602, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38091378

RESUMO

Single-atom nanozymes (SAzymes) constitute a promising category of enzyme-mimicking materials with outstanding catalytic performance. The performance of SAzymes improves through modification of the coordination environments around the metal center. However, the catalytic turnover rates of SAzymes, which are key measures of the effectiveness of active site modifications, remain lower than those of natural enzymes, especially in peroxidase-reactions. Here, the first and second shell coordination tuning strategy that yields SAzymes with structures and activities analogous to those of natural enzymes is reported. The optimized SAzyme exhibits a turnover rate of 52.7 s-1 and a catalytic efficiency of 6.97 × 105 M-1 s-1. A computational study reveals that axial S-ligands induce an alternative reaction mechanism, and SO2- functional groups provide hydrogen bonds to reduce the activation energy. In addition, SAzyme shows superior anti-tumor ability in vitro and in vivo. These results demonstrate the validity of coordination engineering strategies and the carcinostatic potential of SAzymes.


Assuntos
Carbono , Ferro , Ferro/química , Carbono/química , Catálise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa