Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 98, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800944

RESUMO

BACKGROUND: Chromosomal variations have been revealed in both E. sibiricus and E. nutans, but chromosomal structural variations, such as intra-genome translocations and inversions, are still not recognized due to the cytological limitations of previous studies. Furthermore, the syntenic relationship between both species and wheat chromosomes remains unknown. RESULTS: Fifty-nine single-gene fluorescence in situ hybridization (FISH) probes, including 22 single-gene probes previously mapped on wheat chromosomes and other newly developed probes from the cDNA of Elymus species, were used to characterize the chromosome homoeologous relationship and collinearity of both E. sibiricus and E. nutans with those of wheat. Eight species-specific chromosomal rearrangements (CRs) were exclusively identified in E. sibiricus, including five pericentric inversions in 1H, 2H, 3H, 6H and 2St; one possible pericentric inversion in 5St; one paracentric inversion in 4St; and one reciprocal 4H/6H translocation. Five species-specific CRs were identified in E. nutans, including one possible pericentric inversion in 2Y, three possible pericentric multiple-inversions in 1H, 2H and 4Y, and one reciprocal 4Y/5Y translocation. Polymorphic CRs were detected in three of the six materials in E. sibiricus, which were mainly represented by inter-genomic translocations. More polymorphic CRs were identified in E. nutans, including duplication and insertion, deletion, pericentric inversion, paracentric inversion, and intra- or inter-genomic translocation in different chromosomes. CONCLUSIONS: The study first identified the cross-species homoeology and the syntenic relationship between E. sibiricus, E. nutans and wheat chromosomes. There are distinct different species-specific CRs between E. sibiricus and E. nutans, which may be due to their different polyploidy processes. The frequencies of intra-species polymorphic CRs in E. nutans were higher than that in E. sibiricus. To conclude, the results provide new insights into genome structure and evolution and will facilitate the utilization of germplasm diversity in both E. sibiricus and E. nutans.


Assuntos
Elymus , Elymus/genética , Hibridização in Situ Fluorescente/métodos , Aberrações Cromossômicas , Mapeamento Cromossômico , Translocação Genética
2.
Plant J ; 84(4): 733-46, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26408103

RESUMO

Next-generation sequencing (NGS) provides a powerful tool for the discovery of important genes and alleles in crop plants and their wild relatives. Despite great advances in NGS technologies, whole-genome shotgun sequencing is cost-prohibitive for species with complex genomes. An attractive option is to reduce genome complexity to a single chromosome prior to sequencing. This work describes a strategy for studying the genomes of distant wild relatives of wheat by isolating single chromosomes from addition or substitution lines, followed by chromosome sorting using flow cytometry and sequencing of chromosomal DNA by NGS technology. We flow-sorted chromosome 5M(g) from a wheat/Aegilops geniculata disomic substitution line [DS5M(g) (5D)] and sequenced it using an Illumina HiSeq 2000 system at approximately 50 × coverage. Paired-end sequences were assembled and used for structural and functional annotation. A total of 4236 genes were annotated on 5M(g) , in close agreement with the predicted number of genes on wheat chromosome 5D (4286). Single-gene FISH indicated no major chromosomal rearrangements between chromosomes 5M(g) and 5D. Comparing chromosome 5M(g) with model grass genomes identified synteny blocks in Brachypodium distachyon, rice (Oryza sativa), sorghum (Sorghum bicolor) and barley (Hordeum vulgare). Chromosome 5M(g) -specific SNPs and cytogenetic probe-based resources were developed and validated. Deletion bin-mapped and ordered 5M(g) SNP markers will be useful to track 5M-specific introgressions and translocations. This study provides a detailed sequence-based analysis of the composition of a chromosome from a distant wild relative of bread wheat, and opens up opportunities to develop genomic resources for wild germplasm to facilitate crop improvement.


Assuntos
Cromossomos de Plantas/genética , Genes de Plantas/genética , Genoma de Planta/genética , Poaceae/genética , Brachypodium/genética , Mapeamento Cromossômico , Evolução Molecular , Ordem dos Genes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hordeum/genética , Hibridização in Situ Fluorescente , Oryza/genética , Poaceae/classificação , Polimorfismo de Nucleotídeo Único , Sorghum/genética , Triticum/genética
3.
Comp Cytogenet ; 15(4): 375-392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804380

RESUMO

Kengyiliahirsuta (Keng, 1959) J. L. Yang, C. Yen et B. R. Baum, 1992, a perennial hexaploidy species, is a wild relative species to wheat with great potential for wheat improvement and domestication. The genome structure and cross-species homoeology of K.hirsuta chromosomes with wheat were assayed using 14 single-gene probes covering all seven homoeologous groups, and four repetitive sequence probes 45S rDNA, 5S rDNA, pAs1, and (AAG)10 by FISH. Each chromosome of K.hirsuta was well characterized by homoeological determination and repeats distribution patterns. The synteny of chromosomes was strongly conserved in the St genome, whereas synteny of the Y and P genomes was more distorted. The collinearity of 1Y, 2Y, 3Y and 7Y might be interrupted in the Y genome. A new 5S rDNA site on 2Y might be translocated from 1Y. The short arm of 3Y might involve translocated segments from 7Y. The 7 Y was identified as involving a pericentric inversion. A reciprocal translocation between 2P and 4P, and tentative structural aberrations in the subtelomeric region of 1PL and 4PL, were observed in the P genome. Chromosome polymorphisms, which were mostly characterized by repeats amplification and deletion, varied between chromosomes, genomes, and different populations. However, two translocations involving a P genome segmental in 3YL and a non-Robertsonial reciprocal translocation between 4Y and 3P were identified in two independent populations. Moreover, the proportion of heterozygous karyotypes reached almost 35% in all materials, and almost 80% in the specific population. These results provide new insights into the genome organization of K.hirsuta and will facilitate genome dissection and germplasm utilization of this species.

4.
Front Plant Sci ; 12: 689031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211490

RESUMO

Breeding of agricultural crops adapted to climate change and resistant to diseases and pests is hindered by a limited gene pool because of domestication and thousands of years of human selection. One way to increase genetic variation is chromosome-mediated gene transfer from wild relatives by cross hybridization. In the case of wheat (Triticum aestivum), the species of genus Aegilops are a particularly attractive source of new genes and alleles. However, during the evolution of the Aegilops and Triticum genera, diversification of the D-genome lineage resulted in the formation of diploid C, M, and U genomes of Aegilops. The extent of structural genome alterations, which accompanied their evolution and speciation, and the shortage of molecular tools to detect Aegilops chromatin hamper gene transfer into wheat. To investigate the chromosome structure and help develop molecular markers with a known physical position that could improve the efficiency of the selection of desired introgressions, we developed single-gene fluorescence in situ hybridization (FISH) maps for M- and U-genome progenitors, Aegilops comosa and Aegilops umbellulata, respectively. Forty-three ortholog genes were located on 47 loci in Ae. comosa and on 52 loci in Ae. umbellulata using wheat cDNA probes. The results obtained showed that M-genome chromosomes preserved collinearity with those of wheat, excluding 2 and 6M containing an intrachromosomal rearrangement and paracentric inversion of 6ML, respectively. While Ae. umbellulata chromosomes 1, 3, and 5U maintained collinearity with wheat, structural reorganizations in 2, 4, 6, and 7U suggested a similarity with the C genome of Aegilops markgrafii. To develop molecular markers with exact physical positions on chromosomes of Aegilops, the single-gene FISH data were validated in silico using DNA sequence assemblies from flow-sorted M- and U-genome chromosomes. The sequence similarity search of cDNA sequences confirmed 44 out of the 47 single-gene loci in Ae. comosa and 40 of the 52 map positions in Ae. umbellulata. Polymorphic regions, thus, identified enabled the development of molecular markers, which were PCR validated using wheat-Aegilops disomic chromosome addition lines. The single-gene FISH-based approach allowed the development of PCR markers specific for cytogenetically mapped positions on Aegilops chromosomes, substituting as yet unavailable segregating map. The new knowledge and resources will support the efforts for the introgression of Aegilops genes into wheat and their cloning.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa