Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cancer Sci ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327670

RESUMO

Although the combination of immunotherapy and radiotherapy (RT) for the treatment of malignant tumors has shown rapid development, the insight of how RT remodels the tumor microenvironment to prime antitumor immunity involves a complex interplay of cell types and signaling pathways, much of which remains to be elucidated. Four tumor samples were collected from the same abdominal wall metastasis site of the patient with gastric cancer at baseline and during fractionated RT for single-cell RNA and T-cell receptor sequencing. The Seurat analysis pipeline and immune receptor analysis were used to characterize the gastric cancer metastasis ecosystem and investigated its dynamic changes of cell proportion, cell functional profiles and cell-to-cell communication during RT. Immunohistochemical and immunofluorescent staining and bulk RNA sequencing were applied to validate the key results. We found tumor cells upregulated immune checkpoint genes in response to RT. The infiltration and clonal expansion of T lymphocytes declined within tumors undergoing irradiation. Moreover, RT led to the accumulation of proinflammatory macrophages and natural killer T cells with enhanced cytotoxic gene expression signature. In addition, subclusters of dendritic cells and endothelial cells showed decrease in the expression of antigen present features in post-RT samples. More ECM component secreted by myofibroblasts during RT. These findings indicate that RT induced the dynamics of the immune response that should be taken into consideration when designing and clinically implementing innovative multimodal cancer treatment regimens of different RT and immunotherapy approaches.

2.
J Virol ; 97(1): e0171722, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36475867

RESUMO

Hepatitis B virus (HBV) infection remains a public health problem worldwide. Persistent HBV infection relies on active transcription of the covalently closed circular DNA (cccDNA) in hepatocytes, which is less understood at the single-cell level. In this study, we isolated primary human hepatocytes from liver-humanized FRG mice infected with HBV and examined cccDNA transcripts in single cells based on 5' end sequencing. Our 5' transcriptome sequencing (RNA-seq) analysis unambiguously assigns different viral transcripts with overlapping 3' sequences and quantitatively measures viral transcripts for structural genes (3.5 kb, 2.4 kb, and 2.1 kb) and the nonstructural X gene (0.7 kb and related) in single cells. We found that an infected cell either can generate all viral transcripts, signifying active transcription, or presents only transcripts from the X gene and its associated enhancer I domain and no structural gene transcripts. Results from cell infection assays with recombinant HBV show that nonproductive transcription of cccDNA can be activated by incoming virus through superinfection. Moreover, upon HBV infection, cccDNA apparently can be transcribed in the absence of HBx and produces HBx, needed for productive transcription of other viral genes. These results shed new light on cccDNA transcription at the single-cell level and provide insights useful for improving the treatment strategy against chronic HBV infection. IMPORTANCE Hepatitis B virus (HBV) infection can be effectively suppressed but rarely cured by available drugs. Chronic HBV infection is based on persistence of covalently closed circular DNA (cccDNA) and continuous infection and reinfection with HBV in the liver. Understanding transcriptional regulation of cccDNA will help to achieve permanent transcriptional silencing, i.e., functional cure of HBV. In our study, we found that an infected cell either can generate all viral transcripts, signifying active transcription, or presents only transcripts from the X gene and its associated enhancer I domain and no structural gene transcripts. The nonproductive transcription of cccDNA can be activated by incoming virus through superinfection. Upon an infection, cccDNA apparently can be transcribed in the absence of HBx to produce HBx, necessary for subsequent transcription of other HBV genes. Our studies shed new light on the mechanism of HBV infection and may have implications for a functional cure regimen for HBV.


Assuntos
DNA Circular , Hepatite B Crônica , Superinfecção , Animais , Humanos , Camundongos , DNA Circular/genética , DNA Viral/genética , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Replicação Viral/genética , Hepatócitos , Proteínas Virais Reguladoras e Acessórias/genética
3.
Biol Reprod ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37504504

RESUMO

Follicular development is a critical process in reproductive biology that determines the number of oocytes and interacts with various cells within the follicle (such as oocytes, granulosa cells, cumulus cells and theca cells, etc.), and plays a vital role in fertility and reproductive health due to the dogma of a limited number of oogonia. Dysregulation of follicular development can lead to infertility problems and other reproductive disorders. To explore the physiological and pathological mechanisms of follicular development, immunology-based methods, microarrays, and next-generation sequencing have traditionally been used for characterization at the tissue level. However, with the proliferation of single-cell sequencing techniques, research has uncovered unique molecular mechanisms in individual cells that have been masked by previous holistic analyses. In this review, we briefly summarize the achievements and limitations of traditional methods in the study of follicular development. Simultaneously, we focus on how to understand the physiological process of follicular development at the single-cell level and reveal the relevant mechanisms leading to the pathology of follicular development and intervention targets. Moreover, we also summarize the limitations and application prospects of single cell sequencing in follicular development research.

4.
J Transl Med ; 21(1): 649, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735671

RESUMO

BACKGROUND: Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS) are three nervous system diseases that partially overlap clinically and genetically. However, bulk RNA-sequencing did not accurately detect the core pathogenic molecules in them. The availability of high-quality single cell RNA-sequencing data of post-mortem brain collections permits the generation of a large-scale gene expression in different cells in human brain, focusing on the molecular features and relationships between diseases and genes. We integrated single-nucleus RNA-sequencing (snRNA-seq) datasets of human brains with AD, PD, and MS to identify transcriptomic commonalities and distinctions among them. METHODS: The snRNA-seq datasets were downloaded from Gene Expression Omnibus (GEO) database. The Seurat package was used for snRNA-seq data processing. The uniform manifold approximation and projection (UMAP) were utilized for cluster identification. The FindMarker function in Seurat was used to identify the differently expressed genes. Functional enrichment analysis was carried out using the Gene Set Enrichment Analysis (GSEA) and Gene ontology (GO). The protein-protein interaction (PPI) analysis of differentially expressed genes (DEGs) was analyzed using STRING database ( http://string-db.org ). SCENIC analysis was performed using utilizing pySCENIC (v0.10.0) based on the hg19-tss-centered-10 kb-10species databases. The analysis of potential therapeutic drugs was analyzed on Connectivity Map ( https://clue.io ). RESULTS: The gene regulatory network analysis identified several hub genes regulated in AD, PD, and MS, in which HSPB1 and HSPA1A were key molecules. These upregulated HSP family genes interact with ribosome genes in AD and MS, and with immunomodulatory genes in PD. We further identified several transcriptional regulators (SPI1, CEBPA, TFE3, GRHPR, and TP53) of the hub genes, which has important implications for uncovering the molecular crosstalk among AD, PD, and MS. Arctigenin was identified as a potential therapeutic drug for AD, PD, and MS. CONCLUSIONS: Together, the integrated snRNA-seq data and findings have significant implications for unraveling the shared and unique molecular crosstalk among AD, PD, and MS. HSPB1 and HSPA1A as promising targets involved in the pathological mechanisms of neurodegenerative diseases. Additionally, the identification of arctigenin as a potential therapeutic drug for AD, PD, and MS further highlights its potential in treating these neurological disorders. These discoveries lay the groundwork for future research and interventions to enhance our understanding and treatment of AD, PD, and MS.


Assuntos
Doença de Alzheimer , Esclerose Múltipla , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Esclerose Múltipla/genética , Doença de Alzheimer/genética , RNA
5.
BMC Cancer ; 23(1): 444, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193981

RESUMO

BACKGROUND: Cholangiocarcinoma (CHOL) is the second most common primary hepatic malignant tumor, following hepatocellular carcinoma (HCC). CHOL is highly aggressive and heterogeneous resulting in poor prognosis. The diagnosis and prognosis of CHOL has not improved in the past decade. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is reported to be associated with tumors, however, its role in CHOL has not been revealed. This study is mainly for exploring the prognostic values and potential function of ACSL4 in CHOL. METHODS: We investigated the expression level and prognostic value of ACSL4 in CHOL based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. TIMER2.0, TISIDB and CIBERSORT databases were utilized to assess the associations between ACSL4 and immune infiltration cells in CHOL. Single-cell sequencing data from GSE138709 was analyzed to study the expression of ACSL4 in different types of cells. ACSL4 co-expressed genes were analyzed by Linkedomics. Additionally, Western Blot, qPCR, EdU assay, CCK8 assay, transwell assay and wound healing assay were performed to further confirm the roles of ACSL4 in the pathogenesis of CHOL. RESULTS: We found that the level of ACSL4 was higher in CHOL and it was correlated with the diagnosis and prognosis of CHOL patients. Then, we observed that the infiltration level of immune cells was related to the level of ACSL4 in CHOL. Moreover, ACSL4 and its co-expressed genes were mainly enriched in metabolism-related pathway and ACSL4 is also a key pro-ferroptosis gene in CHOL. Finally, knockdown of ACSL4 could reverse the tumor-promoting effect of ACSL4 in CHOL. CONCLUSIONS: The current findings demonstrated ACSL4 may as a novel biomarker for CHOL patients, which might regulate immune microenvironment and metabolism resulting in poor prognosis.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Prognóstico , Colangiocarcinoma/genética , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos , Microambiente Tumoral/genética
6.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762493

RESUMO

Despite the numerous treatments for triple-negative breast cancer (TNBC), chemotherapy is still one of the most effective methods. However, the impact of chemotherapy on immune cells is not yet clear. Therefore, this study aims to explore the different roles of immune cells and their relationship with treatment outcomes in the tumor and blood before and after paclitaxel therapy. We analyzed the single-cell sequencing data of immune cells in tumors and blood before and after paclitaxel treatment. We confirmed a high correlation between T cells, innate lymphoid cells (ILCs), and therapeutic efficacy. The differences in T cells were analyzed related to therapeutic outcomes before and after paclitaxel treatment. In the effective treatment group, post-treatment tumor-infiltrating CD8+ T cells were associated with elevated inflammation, cytokines, and Toll-like-receptor-related gene expression, which were expected to enhance anti-tumor capabilities in tumor immune cells. Moreover, we found that the expression of immune-checkpoint-related genes is also correlated with treatment outcomes. In addition, an ILC subgroup, b_ILC1-XCL1, in which the corresponding marker gene XCL1 was highly expressed, was mainly present in the effective treatment group and was also associated with higher patient survival rates. Overall, we found differences in gene expression in T cells across different groups and a correlation between the expression of immune checkpoint genes in T cells, the b_ILC1-XCL1 subgroup, and patient prognosis.


Assuntos
Paclitaxel , Neoplasias de Mama Triplo Negativas , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Imunidade Inata , Linfócitos/metabolismo
7.
J Cell Physiol ; 237(5): 2469-2477, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35220586

RESUMO

Discoid lateral meniscus (DLM) is more prone to injury than a normally shaped meniscus. No study has compared the gene expression and cell heterogeneity between discoid and normal menisci. We aimed to identify specific cell clusters and their marker genes in discoid meniscus, thereby providing a theoretical basis for the treatment and etiology of DLM. ScRNA-seq was used in DLM and osteoarthritis lateral meniscus (OAM) cells to identify cell subsets and their gene signatures. Pseudo-time analysis and immunohistochemical staining were used to investigate the temporal and spatial distribution of DLM-specific clusters. ScRNA-seq identified nine clusters originating from DLM and OAM, composed of seven empirically defined populations and two novel populations specific to DLM, namely, the prehypertrophic chondrocyte 2 (PreHTC-2) and regulatory chondrocyte (RegC-2) populations. Single-cell trajectory showed that RegC-2 and PreHTC-2 were mainly distributed in a specific cell fate, with the PreHTC-2 marker gene HAPLN1 highly expressed at the end of this fate. Immunohistochemical staining showed that HAPLN1 + cells were mainly distributed in the white zone of DLM. Matrix metalloproteinase (MMP) variants were expressed in DLM and OAM, with MMP2 highly expressed in OAM-dominant cell clusters, while MMP3 was highly expressed in DLM-dominant cell clusters. We concluded that two novel cell clusters including PreHTC-2 were identified using single-cell sequencing, which were mainly distributed in the white areas of DLM. Differentiated MMP expression in the trajectory may be a possible mechanism of DLM formation.


Assuntos
Meniscos Tibiais , Menisco , Humanos , Articulação do Joelho , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Análise de Sequência de RNA
8.
Int Rev Immunol ; : 1-13, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066603

RESUMO

Systemic lupus erythematosus (SLE), an autoimmune condition, presents pregnancy-related risks, impacting maternal and fetal health. The immune cell composition and gene expression profiles in pregnant SLE patients, as well as the molecular mechanisms of active SLE patients during pregnancy, remain unclear. In our study, we enrolled 12 patients: three active SLE individuals (SLE-AT group, SLEDAI > 12, non-pregnant women), three inactive SLE individuals (SLE-NP group, SLEDAI ranging 0 to 6, non-pregnant women), three pregnant women with active SLE (SLE-C group, SLEDAI > 12), and three pregnant women with inactive SLE (SLE-NC group, SLEDAI range 0 to 6 score). Transcriptome analysis of peripheral blood mononuclear cells (PBMCs) was conducted using the 10x Genomics technique. We observed upregulation of genes like CCDC15 and TRBV4-2 in T cells and CMPK2, IFIT1, and OAS2 in monocytes in the SLE-C group. Notably, gene sets related to Cell Cycle and IFN Response showed significant differences between the SLE-C and SLE-NC groups in naïve CD8 T cells. Our comparison of immune cell type ratios and transcriptional patterns between active and inactive SLE during pregnancy sheds light on the single-cell level changes in SLE status during pregnancy, offering insights for future SLE prediction and treatment strategies.


Systemic lupus erythematosus (SLE) is a complex autoimmune disease. Furthermore, SLE women have an increased likelihood of encountering adverse pregnancy outcomes such as diabetes and hypertension. The etiology of SLE involves a multifaceted interplay of genetic, immune, endocrine, and environmental factors, which contributes to a breakdown in the immune system's tolerance to self-antigens. Recent studies have highlighted a strong correlation between the severity of renal involvement in lupus nephritis and B cell dysfunction in patients, as elucidated through single-cell transcriptomics. Additionally, comparative studies have revealed notable differences in the immune cell profile between pregnant women with lupus and healthy pregnant women. A key observation the marked reduction in the proportion of CD4+ T cells in pregnant women suffering from lupus. Despite these findings, the detailed transcriptomic alterations within high-resolution immune cell profiling during activate phase of SLE in pregnancy remain inadequately understood. In our study, we focused on comparing the transcriptomic expression patterns of peripheral blood immune cells between pregnant women with active SLE and those with stable SLE. Our data confirmed significant differences in IFN signaling and pregnancy-related factors in T cells, NK cells, B cells, and macrophages, contrasting the immune cells of pregnant women with active SLE against those with stable SLE. Additionally, the proportion of CD56+ NK cells was significantly increased in pregnant women with SLE. The correlation between the transcriptomic profiles of immune cells and the activity of SLE during pregnancy may provide potential strategies for predicting and treating SLE during pregnancy.

9.
Biomark Res ; 12(1): 55, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831319

RESUMO

BACKGROUND: Placenta accreta spectrum disorders (PAS) are a severe complication characterized by abnormal trophoblast invasion into the myometrium. The underlying mechanisms of PAS involve a complex interplay of various cell types and molecular pathways. Despite its significance, both the characteristics and intricate mechanisms of this condition remain poorly understood. METHODS: Spatial transcriptomics (ST) and single-cell RNA sequencing (scRNA-seq), were performed on the tissue samples from four PAS patients, including invasive tissues (ST, n = 3; scRNA-seq, n = 4), non-invasive normal placenta samples (ST, n = 1; scRNA-seq, n = 2). Three healthy term pregnant women provided normal myometrium samples (ST, n = 1; scRNA-seq, n = 2). ST analysis characterized the spatial expression landscape, and scRNA-seq was used to identify specific cellular components in PAS. Immunofluorescence staining was conducted to validate the findings. RESULTS: ST slices distinctly showed the myometrium in PAS was invaded by three subpopulations of trophoblast cells, extravillous trophoblast cells, cytotrophoblasts, and syncytiotrophoblasts, especially extravillous trophoblast cells. The pathways enriched by genes in trophoblasts, smooth muscle cells (SMC), and immune cells of PAS were mainly associated with immune and inflammation. We identified elevated expression of the angiogenesis-stimulating gene PTK2, alongside the cell proliferation-enhancing gene EGFR, within the trophoblasts of PAS group. Trophoblasts mainly contributed the enhancement of HLA-G and EBI3 signaling, which is crucial in establishing immune escape. Meanwhile, SMC regions in PAS exhibited upregulation of immunomodulatory markers such as CD274, HAVCR2, and IDO1, with CD274 expression experimentally verified to be increased in the invasive SMC areas of the PAS group. CONCLUSIONS: This study provided information of cellular composition and spatial organization in PAS at single-cell and spatial level. The dysregulated expression of genes in PAS revealed a complex interplay between enhanced immune escape in trophoblasts and immune tolerance in SMCs during invasion in PAS. These findings will enhance our understanding of PAS pathogenesis for developing potential therapeutic strategies.

10.
Cancers (Basel) ; 16(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39001509

RESUMO

Lung cancer, the leading cause of cancer-related incidence and mortality worldwide, is characterised by high invasiveness and poor prognosis. Novel therapeutic targets are required, especially for patients with inoperable metastatic disease requiring systemic therapies to improve patients' welfare. Recently, studies indicated that TMEM176B is a positive regulator in breast and gastric cancers, and it could be a potential target for treatment. In this study, we used single-cell sequencing, proteomics, Co-IP, and in vivo and in vitro experimental models to investigate the role of TMEM176B in lung adenocarcinoma development. Our study indicated that TMEM176B expression was enhanced in lung adenocarcinoma tissues, and it was associated with shorter overall survival (OS). TMEM176B promoted cellular functions, including cell proliferation, invasion, migration and adhesion in vitro and tumour growth in vivo. Moreover, the tube formation ability of endothelial cells was enhanced by treating with the tumour cell-conditioned medium. We have also demonstrated that TMEM176B regulated EMT via the FGFR1/JNK/Vimentin/Snail signalling cascade. Overall, our study suggests TMEM176B could be a potential therapeutic target in lung adenocarcinoma.

11.
Eur J Med Res ; 29(1): 414, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135107

RESUMO

BACKGROUND: Breast cancer (BC), a common malignant tumor originating from the terminal ductal lobular unit of the breast, poses a substantial health risk to women. Previous studies have associated cytochrome b561 (CYB561) with a poor prognosis in BC; however, its underlying mechanism of this association remains unclear. METHODS: We investigated the expression of CYB561 mRNA in BC using databases such as The Cancer Genome Atlas, Gene Expression Omnibus, Tumor-Normal-Metastatic plot, and Kaplan-Meier plotter databases. The prognostic value of CYB561 protein in BC was assessed in relation to its expression levels in tumor tissue samples from 158 patients with BC. The effect of CYB561 on BC progression was confirmed using in vivo and in vitro experiments. The biological functions and related signaling pathways of CYB561 in BC were explored using gene microarray, Innovative Pathway, Gene Ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The correlation between CYB561 and the BC tumor immune microenvironment was evaluated using the CIBERSORT algorithm and single-cell analysis and further validated through immunohistochemistry of serial sections. RESULTS: Our study demonstrated that upregulation of CYB561 expression predicted poor prognosis in patients with BC and that CYB561 knockdown inhibited the proliferation, migration, and invasive ability of BC cells in vitro. CYB561 knockdown inhibited BC tumor formation in vivo.CYB561 was observed to modulate downstream tropomyosin 1 expression. Furthermore, CYB561 expression was associated with macrophage M2 polarization in the BC immune microenvironment. CONCLUSIONS: Elevated CYB561 expression suggests a poor prognosis for patients with BC and is associated with macrophage M2 polarization in the BC microenvironment. Therefore, CYB561 could potentially serve as a therapeutic target for BC treatment.


Assuntos
Neoplasias da Mama , Microambiente Tumoral , Animais , Feminino , Humanos , Camundongos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Prognóstico , Microambiente Tumoral/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
12.
Heliyon ; 10(12): e32847, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975217

RESUMO

Objective: Exploring the different molecular and clinicopathological features of nodal cancer based on single cell sequencing can reveal the intertumoral heterogeneity in cancer, and provide new ideas for early diagnosis, treatment and prognosis analysis of cancer. Methods: The hotspots, the features of worldwide scientific output, and the frontiers concerning single cell sequence related to cancer from 2011 to 2024 were determined using our bibliometric analysis. Web of Science Core Collection (WOSCC) database was searched for publications on single cell sequence associated with cancer that were published between 2011 and 2024. According to the journals, keywords, number of records, affiliations, citations, and countries, we conducted a bibliometric analysis. With the use of the data gathered from the WOSCC, geographic distribution was visualized, keyword, affiliation, and author cluster analyses were conducted, and co-cited references were reviewed and a descriptive analysis was also performed. Results: From the analysis, it was concluded that 6189 articles that were published between 2011 and 2024 in total were identified. Frontiers in immunology is the leading journal with the most publications in field of the research. The five clusters that were identified for hotspots included immunotherapy, single-cell RNA sequencing, hepatocellular carcinoma, proliferation, gene expression appeared the most frequently. Journals, nations, organizations, scholars with most contribution and most referenced publications globally were extracted. Studies have mostly concentrated on the spatial transcriptomics, pan-cancer analysis, hepatocellular carcinoma et al. Conclusion: Single-cell sequencing plays a significant role in tumor diagnosis, treatment and prognosis.

13.
Animals (Basel) ; 14(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338108

RESUMO

In vitro-fertilized (IVF) and parthenogenetically activated (PA) embryos, key to genetic engineering, face more developmental challenges than in vivo-developed embryos (IVV). We analyzed single-cell RNA-seq data from the oocyte to eight-cell stages in IVV, IVF, and PA porcine embryos, focusing on developmental differences during early zygotic genome activation (ZGA), a vital stage for embryonic development. (1) Our findings reveal that in vitro embryos (IVF and PA) exhibit more similar developmental trajectories compared to IVV embryos, with PA embryos showing the least gene diversity at each stage. (2) Significant differences in maternal mRNA, particularly affecting mRNA splicing, energy metabolism, and chromatin remodeling, were observed. Key genes like SMARCB1 (in vivo) and SIRT1 (in vitro) played major roles, with HDAC1 (in vivo) and EZH2 (in vitro) likely central in their complexes. (3) Across different types of embryos, there was minimal overlap in gene upregulation during ZGA, with IVV embryos demonstrating more pronounced upregulation. During minor ZGA, global epigenetic modification patterns diverged and expanded further. Specifically, in IVV, genes, especially those linked to H4 acetylation and H2 ubiquitination, were more actively regulated compared to PA embryos, which showed an increase in H3 methylation. Additionally, both types displayed a distinction in DNA methylation. During major ZGA, IVV distinctively upregulated genes related to mitochondrial regulation, ATP synthesis, and oxidative phosphorylation. (4) Furthermore, disparities in mRNA degradation-related genes between in vivo and in vitro embryos were more pronounced during major ZGA. In IVV, there was significant maternal mRNA degradation. Maternal genes regulating phosphatase activity and cell junctions, highly expressed in both in vivo and in vitro embryos, were degraded in IVV in a timely manner but not in in vitro embryos. (5) Our analysis also highlighted a higher expression of many mitochondrially encoded genes in in vitro embryos, yet their nucleosome occupancy and the ATP8 expression were notably higher in IVV.

14.
Front Immunol ; 15: 1346520, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380322

RESUMO

Background and aims: A complete understanding of disease pathophysiology in advanced liver disease is hampered by the challenges posed by clinical specimen collection. Notably, in these patients, a transjugular liver biopsy (TJB) is the only safe way to obtain liver tissue. However, it remains unclear whether successful sequencing of this extremely small and fragile tissue can be achieved for downstream characterization of the hepatic landscape. Methods: Here we leveraged in-house available single-cell RNA-sequencing (scRNA-seq) and single-nucleus (snRNA-seq) technologies and accompanying tissue processing protocols and performed an in-patient comparison on TJB's from decompensated cirrhosis patients (n = 3). Results: We confirmed a high concordance between nuclear and whole cell transcriptomes and captured 31,410 single nuclei and 6,152 single cells, respectively. The two platforms revealed similar diversity since all 8 major cell types could be identified, albeit with different cellular proportions thereof. Most importantly, hepatocytes were most abundant in snRNA-seq, while lymphocyte frequencies were elevated in scRNA-seq. We next focused our attention on hepatic myeloid cells due to their key role in injury and repair during chronic liver disease. Comparison of their transcriptional signatures indicated that these were largely overlapping between the two platforms. However, the scRNA-seq platform failed to recover sufficient Kupffer cell numbers, and other monocytes/macrophages featured elevated expression of stress-related parameters. Conclusion: Our results indicate that single-nucleus transcriptome sequencing provides an effective means to overcome complications associated with clinical specimen collection and could sufficiently profile all major hepatic cell types including all myeloid cell subsets.


Assuntos
Perfilação da Expressão Gênica , Hepatopatias , Humanos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Nuclear Pequeno , Cirrose Hepática/genética
15.
J Pharm Anal ; 13(8): 880-893, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37719193

RESUMO

Triptolide is a key active component of the widely used traditional Chinese herb medicine Tripterygium wilfordii Hook. F. Although triptolide exerts multiple biological activities and shows promising efficacy in treating inflammatory-related diseases, its well-known safety issues, especially reproductive toxicity has aroused concerns. However, a comprehensive dissection of triptolide-associated testicular toxicity at single cell resolution is still lacking. Here, we observed testicular toxicity after 14 days of triptolide exposure, and then constructed a single-cell transcriptome map of 59,127 cells in mouse testes upon triptolide-treatment. We identified triptolide-associated shared and cell-type specific differentially expressed genes, enriched pathways, and ligand-receptor pairs in different cell types of mouse testes. In addition to the loss of germ cells, our results revealed increased macrophages and the inflammatory response in triptolide-treated mouse testes, suggesting a critical role of inflammation in triptolide-induced testicular injury. We also found increased reactive oxygen species (ROS) signaling and downregulated pathways associated with spermatid development in somatic cells, especially Leydig and Sertoli cells, in triptolide-treated mice, indicating that dysregulation of these signaling pathways may contribute to triptolide-induced testicular toxicity. Overall, our high-resolution single-cell landscape offers comprehensive information regarding triptolide-associated gene expression profiles in major cell types of mouse testes at single cell resolution, providing an invaluable resource for understanding the underlying mechanism of triptolide-associated testicular injury and additional discoveries of therapeutic targets of triptolide-induced male reproductive toxicity.

16.
Front Immunol ; 14: 1220760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822927

RESUMO

Background: Cuproptosis, a novel mode of cell death associated with the tricarboxylic acid (TCA) cycle, is relevant to the development of cancer. However, the impact of single-cell-based Cuproptosis-associated lncRNAs on the Tumor immune microenvironment (TIME) of Pancreatic adenocarcinoma (PAAD) and its potential value for individualized immunotherapy has not been clarified. Methods: 14 immune-related CRGs were screened by exploring the interaction between differentially expressed Immune-Related Genes (IRGs) and Cuproptosis-Related Genes (CRGs) in PAAD. Next, the expression amount and expression distribution of CRGs in single-cell samples were analyzed by focusing on 7-CRGs with significant expressions. On the one hand, MAP2K2, SOD1, and VEGFA, which were significantly differentially expressed between PAAD sites and normal tissues adjacent to them, were subjected to immunohistochemical validation and immune landscape analysis. On the other hand, from these 7-CRGs, prognostic signatures of lncRNAs were established by co-expression and LASSO-COX regression analysis, and their prognostic value and immune relevance were assessed. In addition, this study not only validated the hub CRGs and the lncRNAs constituting the signature in a PAAD animal model treated with immunotherapy-based combination therapy using immunohistochemistry and qRT-PCR but also explored the potential value of the combination of targeted, chemotherapy and immunotherapy. Results: Based on the screening of 7-CRGs significantly expressed in a PAAD single-cell cohort and their co-expressed Cuproptosis-Related lncRNAs (CRIs), this study constructed a prognostic signature of 4-CRIs named CIR-score. A Nomogram integrating the CIR-score and clinical risk factors was constructed on this basis to predict the individualized survival of patients. Moreover, high and low-risk groups classified according to the median of signatures exhibited significant differences in clinical prognosis, immune landscape, bioenrichment, tumor burden, and drug sensitivity. And the immunohistochemical and qRT-PCR results of different mouse PAAD treatment strategies were consistent with the trend of inter-group variability in drug sensitivity of hub CRGs and CIR-score. The combination of immunotherapy, targeted therapy, and chemotherapy exhibited a better tumor suppression effect. Conclusion: CIR-score, as a Cuproptosis-related TIME-specific prognostic signature based on PAAD single cells, not only predicts the prognosis and immune landscape of PAAD patients but also provides a new strategy for individualized immunotherapy-based combination therapy.


Assuntos
Adenocarcinoma , Apoptose , Neoplasias Pancreáticas , RNA Longo não Codificante , Animais , Humanos , Camundongos , Pâncreas , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , RNA Longo não Codificante/genética , Microambiente Tumoral/genética , Cobre , Neoplasias Pancreáticas
17.
Adv Biol (Weinh) ; 7(10): e2300098, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37085744

RESUMO

Though the occurrence of neuroinflammation after spinal cord injury (SCI) is essential for antigen clearance and tissue repair, excessive inflammation results in cell death and axon dieback. The effect of anti-inflammatory medicine used in clinical treatment remains debatable owing to the inappropriate therapeutic schedule that does not align with the biological process of immune reaction. A better understanding of the immunity process is critical to promote effective anti-inflammatory therapeutics. However, cellular heterogeneity, which results in complex cellular functions, is a major challenge. This study performs single-cell RNA sequencing by profiling the tissue proximity to the injury site at different time points after SCI. Depending on the analysis of single-cell data and histochemistry observation, an appropriate time window for anti-inflammatory medicine treatment is proposed. This work also verifies the mechanism of typical anti-inflammatory medicine methylprednisolone sodium succinate (MPSS), which is found attributable to the activation inhibition of cells with pro-inflammatory phenotype through the downregulation of pathways such as TNF, IL2, and MIF. These pathways can also be provided as targets for anti-inflammatory treatment. Collectively, this work provides a therapeutic schedule of 1-3 dpi (days post injury) to argue against classical early pulse therapy and provides some pathways for target therapy in the future.

18.
Front Cell Dev Biol ; 11: 1142929, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936687

RESUMO

Preterm birth was previously identified as a high-risk factor for the long-term development of chronic kidney disease. However, the detailed pattern of podocyte (PD) changes caused by preterm birth and the potential mechanism underlying this process have not been well clarified. In present study, a rat model of preterm birth was established by delivery of pups 2 days early and podometric methods were applied to identify the changes in PDs number caused by preterm birth. In addition, single-cell RNA sequencing (scRNA-seq) and subsequent bioinformatic analysis were performed in the preterm rat kidney to explore the possible mechanism caused by preterm birth. As results, when the kidney completely finished nephrogenesis at the age of 3 weeks, a reduction in the total number of differentiated PDs in kidney sections was detected. In addition, 20 distinct clusters and 12 different cell types were identified after scRNA-seq in preterm rats (postnatal day 2) and full-term rats (postnatal day 0). The numbers of PDs and most types of inherent kidney cells were decreased in the preterm birth model. In addition, 177 genes were upregulated while 82 genes were downregulated in the PDs of full-term rats compared with those of preterm rats. Further functional GO analysis revealed that ribosome-related genes were enriched in PDs from full-term rats, and kidney development-related genes were enriched in PDs from preterm rats. Moreover, known PD-specific and PD precursor genes were highly expressed in PDs from preterm rats, and pseudotemporal analysis showed that PDs were present earlier in preterm rats than in full-term rats. In conclusion, the present study showed that preterm birth could cause a reduction in the number of differentiated PDs and accelerate the differentiation of PDs.

19.
Front Cell Dev Biol ; 11: 1286011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274272

RESUMO

Intervertebral disc (IVD) degeneration is a common pathological condition associated with low back pain. Recent evidence suggests that mesenchymal signaling cells (MSCs) promote IVD regeneration, but underlying mechanisms remain poorly defined. One postulated mechanism is via modulation of macrophage phenotypes. In this manuscript, we tested the hypothesis that MSCs produce trophic factors that alter macrophage subsets. To this end, we collected conditioned medium from human, bone marrow-derived STRO3+ MSCs. We then cultured human bone marrow-derived macrophages in MSC conditioned medium (CM) and performed single cell RNA-sequencing. Comparative analyses between macrophages cultured in hypoxic and normoxic MSC CM showed large overlap between macrophage subsets; however, we identified a unique hypoxic MSC CM-induced macrophage cluster. To determine if factors from MSC CM simulated effects of the anti-inflammatory cytokine IL-4, we integrated the data from macrophages cultured in hypoxic MSC CM with and without IL-4 addition. Integration of these data sets showed considerable overlap, demonstrating that hypoxic MSC CM simulates the effects of IL-4. Interestingly, macrophages cultured in normoxic MSC CM in the absence of IL-4 did not significantly contribute to the unique cluster within our comparison analyses and showed differential TGF-ß signaling; thus, normoxic conditions did not approximate IL-4. In addition, TGF-ß neutralization partially limited the effects of MSC CM. In conclusion, our study identified a unique macrophage subset induced by MSCs within hypoxic conditions and supports that MSCs alter macrophage phenotypes through TGF-ß-dependent mechanisms.

20.
Front Immunol ; 13: 1024931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341345

RESUMO

The tumor microenvironment is complicated and continuously evolving. This study was devoted to the identification of potential prognostic biomarkers based on the tumor microenvironment associated with immunotherapy for melanoma. This study integrates a couple of melanoma single cell and transcriptome sequencing datasets and performs a series of silico analyses as nicely as validation of molecular biology techniques. A core set of immune escape related genes was identified through Lawson et al. and the ImmPort portal. The differential proteins were identified through the cBioPortal database. Regression analysis was used to profile independent prognostic factors. Correlation with the level of immune cell infiltration was evaluated by multiple algorithms. The capacity of LCK to predict response was assessed in two independent immunotherapy cohorts. High LCK expression is associated with better prognosis, high levels of TILs and better clinical staging. Pathway analysis showed that high expression of LCK was significantly associated with activation of multiple tumor pathways as well as immune-related pathways. LCK expression tends to be higher in immunotherapy-responsive patients and those with lower IC50s treated with chemotherapeutic agents. RT-qPCR detected that LCK expression was significantly upregulated in melanoma cell lines. Single-cell transcriptome analysis showed that LCK was specifically highly expressed on T cells. CellChat analysis confirmed that LCK in C2 subpopulations and T cell subpopulations exerted immune promotion between cells by binding to CD8 receptors. In conclusion, LCK is a reliable biomarker for melanoma and will contribute to its immunotherapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma , Humanos , Prognóstico , Biomarcadores Tumorais/metabolismo , Melanoma/patologia , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa