Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202409472, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889093

RESUMO

With the aim of producing a photomechanical material for incorporation in soft microrobots, a one-dimensional diene coordination polymer (CP) [Cd(F-bpeb)(3-CBA)2]n (CP1, F-bpeb = 4,4'-((1E,1'E)-(2,5-difluoro-1,4-phenylene)bis(ethene-2,1-diyl))dipyri-dine, 3-HCBA = 3-chlorobenzoic acid) was synthesized and characterized. Irradiation of CP1 with ultraviolet (UV) or visible light causes [2+2] photocycloaddition reactions resulting in the introduction of crystal strain which triggers various types of crystal movements. Composite films of CP1-PVA (SC) fabricated by dispersing CP1 crystals into polyvinyl alcohol (PVA) solution allow amplification of the crystal movement so that the film strips exhibit fast and flexible curling upon photoirradiation. The composite films may be cut into long rectangular strips and folded to simulate soft microrobots which exhibit a variety of fast, flexible and continuous photomechanical movements resembling a human performing various gymnastic exercises.

2.
ACS Appl Mater Interfaces ; 14(6): 8137-8145, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35107972

RESUMO

Piezoelectric single-crystal composites (PSCCs) have been studied and applied because of their improved resolution and power source level performance in underwater acoustic transducer applications relative to traditional piezoelectric ceramic composites (PCCs). Currently, the methods to fabricate curved PSCCs are mostly derived from PCCs, including molding with flexible backing, molding with heating, and molding with the casting rubber method. Unfortunately, the methods mentioned above are not suitable for preparing curved PSCCs for underwater acoustic transducer applications because of their brittleness, the large anisotropy of piezoelectric single crystals, and the high thickness (>2 mm) of PSCCs for achieving the low operating frequency (<700 kHz). In the present work, we proposed a preparation method, 3D-printing-assisted dice and insert technology, and successfully prepared curved PSCCs with high performance. Although the PSCCs have a low volume fraction of single crystals in this work (∼33%), a high thickness electromechanical factor kt of 86% and a large piezoelectric coefficient d33 of 1550 pC/N were achieved in the curved 1-3 PSCCs, which are superior to other reported PSCCs and PCCs with nearly the same volume fraction of single crystals and piezoelectric ceramics. This work presents a paradigm for fabricating curved PSCCs for underwater acoustic transducers, and this method shows the potential for large-area, special-shaped PSCCs, which are key materials for next-generation underwater acoustic transducers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa