Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Neurosci ; 44(25)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38769008

RESUMO

Rapid eye movement (REM) sleep, also referred to as paradoxical sleep for the striking resemblance of its electroencephalogram (EEG) to the one observed in wakefulness, is characterized by the occurrence of transient events such as limb twitches or facial and rapid eye movements. Here, we investigated the local activity of the primary somatosensory or barrel cortex (S1) in naturally sleeping head-fixed male mice during REM. Through local field potential recordings, we uncovered local appearances of spindle waves in the barrel cortex during REM concomitant with strong delta power, challenging the view of a wakefulness-like activity in REM. We further performed extra- and intracellular recordings of thalamic cells in head-fixed mice. Our data show high-frequency thalamic bursts of spikes and subthreshold spindle oscillations in approximately half of the neurons of the ventral posterior medial nucleus which further confirmed the thalamic origin of local cortical spindles in S1 in REM. Cortical spindle oscillations were suppressed, while thalamus spike firing increased, associated with rapid mouse whisker movements and S1 cortical activity transitioned to an activated state. During REM, the sensory thalamus and barrel cortex therefore alternate between high (wake-like) and low (non-REM sleep-like) activation states, potentially providing a neuronal substrate for mnemonic processes occurring during this paradoxical sleep stage.


Assuntos
Eletroencefalografia , Sono REM , Córtex Somatossensorial , Tálamo , Animais , Camundongos , Sono REM/fisiologia , Córtex Somatossensorial/fisiologia , Masculino , Tálamo/fisiologia , Camundongos Endogâmicos C57BL , Vibrissas/fisiologia , Vibrissas/inervação , Vigília/fisiologia , Vias Neurais/fisiologia
2.
Eur J Neurosci ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161082

RESUMO

To better understand neural processing during adaptive learning of stimulus-response-reward contingencies, we recorded synchrony of neuronal activity in anterior cingulate cortex (ACC) and hippocampal rhythms in male rats acquiring and switching between spatial and visual discrimination tasks in a Y-maze. ACC population activity as well as single unit activity shifted shortly after task rule changes or just before the rats adopted different task strategies. Hippocampal theta oscillations (associated with memory encoding) modulated an elevated proportion of rule-change responsive neurons (70%), but other neurons that were correlated with strategy-change, strategy value and reward-rate were not. However, hippocampal sharp wave-ripples modulated significantly higher proportions of rule-change, strategy-change and reward-rate responsive cells during post-session sleep but not pre-session sleep. This suggests an underestimated mechanism for hippocampal mismatch and contextual signals to facilitate ACC to detect contingency changes for cognitive flexibility, a function that is attenuated after it is damaged.

3.
Neuroimage ; 271: 120028, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36925086

RESUMO

The attentional blink (AB) refers to an impaired identification of target stimuli (T2), which are presented shortly after a prior target (T1) within a rapid serial visual presentation (RSVP) stream. It has been suggested that the AB is related to a failed transfer of T2 into working memory and that hippocampus (HC) and entorhinal cortex (EC) are regions crucial for this transfer. Since the event-related P3 component has been linked to inhibitory processes, we hypothesized that the hippocampal P3 elicited by T1 may impact on T2 processing within HC and EC. To test this hypothesis, we reanalyzed microwire data from 21 patients, who performed an RSVP task, during intracranial recordings for epilepsy surgery assessment (Reber et al., 2017). We identified T1-related hippocampal P3 components in the local field potentials (LFPs) and determined the temporal onset of T2 processing in HC/EC based on single-unit response onset activity. In accordance with our hypothesis, T1-related single-trial P3 amplitudes at the onset of T2 processing were clearly larger for unseen compared to seen T2-stimuli. Moreover, increased T1-related single-trial P3 peak latencies were found for T2[unseen] versus T2[seen] trials in case of lags 1 to 3, which was in line with our predictions. In conclusion, our findings support inhibition models of the AB and indicate that the hippocampal P3 elicited by T1 plays a central role in the AB.


Assuntos
Intermitência na Atenção Visual , Humanos , Intermitência na Atenção Visual/fisiologia , Atenção/fisiologia , Memória de Curto Prazo/fisiologia , Quimiocina CCL4 , Hipocampo
4.
Eur J Neurosci ; 57(2): 285-309, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36451583

RESUMO

The receptive field of many visual neurons is composed of a central responsive area, the classical receptive field, and a non-classical receptive field, also called the "suppressive surround." A visual stimulus placed in the suppressive surround does not induce any response but modulates visual responses to stimuli within the classical receptive field, usually by suppressing them. Therefore, visual responses become smaller when stimuli exceed the classical receptive field size. The stimulus size inducing the maximal response is called the preferred stimulus size. In cortex, there is good correspondence between the sizes of the classical receptive field and the preferred stimulus. In contrast, in the rodent superior colliculus, the preferred size is often several fold smaller than the classical receptive field size. Here, we show that in the rat superior colliculus, the preferred stimulus size changes as a square root of the contrast inverse and the classical receptive field size is independent of contrast. In addition, responses to annulus were largely independent of the inner hole size. To explain these data, three models were tested: the divisive modulation of the gain by the suppressive surround (the "normalization" model), the difference of the Gaussians, and a divisive model that incorporates saturation to light flux. Despite the same number of free parameters, the model incorporating saturation to light performed the best. Thus, our data indicate that in rats, the saturation to light can be a dominant phenomenon even at relatively low illumination levels defining visual responses in the collicular neurons.


Assuntos
Neurônios , Colículos Superiores , Animais , Ratos , Neurônios/fisiologia , Colículos Superiores/fisiologia , Estimulação Luminosa , Córtex Cerebral , Vias Visuais/fisiologia
5.
Cereb Cortex ; 33(2): 290-315, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35259760

RESUMO

We investigated the contribution of cytoarchitectonic cortical area 4δc, in the caudal bank of the cruciate sulcus of the cat, to the control of visually guided locomotion. To do so, we recorded the activity of 114 neurons in 4δc while cats walked on a treadmill and stepped over an obstacle that advanced toward them. A total of 84/114 (74%) cells were task-related and 68/84 (81%) of these cells showed significant modulation of their discharge frequency when the contralateral limbs were the first to step over the obstacle. These latter cells included a substantial proportion (27/68 40%) that discharged between the passage of the contralateral forelimb and the contralateral hindlimb over the obstacle, suggesting a contribution of this area to interlimb coordination. We further compared the discharge in area 4δc with the activity patterns of cells in the rostral division of the same cytoarchitectonic area (4δr), which has been suggested to be a separate functional region. Despite some differences in the patterns of activity in the 2 subdivisions, we suggest that activity in each is compatible with a contribution to interlimb coordination and that they should be considered as a single functional area that contributes to both forelimb-forelimb and forelimb-hindlimb coordination.


Assuntos
Córtex Motor , Animais , Córtex Motor/fisiologia , Locomoção/fisiologia , Neurônios/fisiologia , Membro Anterior/fisiologia , Membro Posterior/fisiologia
6.
Proc Natl Acad Sci U S A ; 116(15): 7513-7522, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910974

RESUMO

The direction of functional information flow in the sensory thalamocortical circuit may play a role in stimulus perception, but, surprisingly, this process is poorly understood. We addressed this problem by evaluating a directional information measure between simultaneously recorded neurons from somatosensory thalamus (ventral posterolateral nucleus, VPL) and somatosensory cortex (S1) sharing the same cutaneous receptive field while monkeys judged the presence or absence of a tactile stimulus. During stimulus presence, feed-forward information (VPL → S1) increased as a function of the stimulus amplitude, while pure feed-back information (S1 → VPL) was unaffected. In parallel, zero-lag interaction emerged with increasing stimulus amplitude, reflecting externally driven thalamocortical synchronization during stimulus processing. Furthermore, VPL → S1 information decreased during error trials. Also, VPL → S1 and zero-lag interaction decreased when monkeys were not required to report the stimulus presence. These findings provide evidence that both the direction of information flow and the instant synchronization in the sensory thalamocortical circuit play a role in stimulus perception.


Assuntos
Rede Nervosa/fisiologia , Tempo de Reação/fisiologia , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Núcleos Ventrais do Tálamo/fisiologia , Animais , Haplorrinos , Rede Nervosa/citologia , Córtex Somatossensorial/citologia , Núcleos Ventrais do Tálamo/citologia
7.
Neuroimage ; 226: 117499, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186717

RESUMO

One of the central tasks of the human auditory system is to extract sound features from incoming acoustic signals that are most critical for speech perception. Specifically, phonological features and phonemes are the building blocks for more complex linguistic entities, such as syllables, words and sentences. Previous ECoG and EEG studies showed that various regions in the superior temporal gyrus (STG) exhibit selective responses to specific phonological features. However, electrical activity recorded by ECoG or EEG grids reflects average responses of large neuronal populations and is therefore limited in providing insights into activity patterns of single neurons. Here, we recorded spiking activity from 45 units in the STG from six neurosurgical patients who performed a listening task with phoneme stimuli. Fourteen units showed significant responsiveness to the stimuli. Using a Naïve-Bayes model, we find that single-cell responses to phonemes are governed by manner-of-articulation features and are organized according to sonority with two main clusters for sonorants and obstruents. We further find that 'neural similarity' (i.e. the similarity of evoked spiking activity between pairs of phonemes) is comparable to the 'perceptual similarity' (i.e. to what extent two phonemes are judged as sounding similar) based on perceptual confusion, assessed behaviorally in healthy subjects. Thus, phonemes that were perceptually similar also had similar neural responses. Taken together, our findings indicate that manner-of-articulation is the dominant organization dimension of phoneme representations at the single-cell level, suggesting a remarkable consistency across levels of analyses, from the single neuron level to that of large neuronal populations and behavior.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Percepção da Fala/fisiologia , Lobo Temporal/fisiologia , Adulto , Teorema de Bayes , Mapeamento Encefálico/métodos , Eletrocorticografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fonética , Adulto Jovem
8.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R338-R351, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34259047

RESUMO

Defined as a structural or functional cardiac abnormality accompanied by symptoms, signs, or biomarkers of altered ventricular pressures or volumes, heart failure also is a state of autonomic disequilibrium. A large body of evidence affirms that autonomic disturbances are intrinsic to heart failure; basal or stimulated sympathetic nerve firing or neural norepinephrine (NE) release more often than not exceed homeostatic need, such that an initially adaptive adrenergic or vagal reflex response becomes maladaptive. The magnitude of such maladaptation predicts prognosis. This Ludwig lecture develops two theses: the elucidation and judiciously targeted amelioration of maladaptive autonomic disturbances offers opportunities to complement contemporary guideline-based heart failure therapy, and serendipitous single-participant insights, acquired in the course of experimental protocols with entirely different intent, can generate novel insight, inform mechanisms, and launch entirely new research directions. I précis six elements of our current synthesis of the causes and consequences of maladaptive sympathetic disequilibrium in heart failure, shaped by patient-inspired epiphanies: arterial baroreceptor reflex modulation, excitation stimulated by increased cardiac filling pressure, paradoxical muscle sympathetic activation as a peripheral neurogenic constraint on exercise capacity, renal sympathetic restraint of natriuresis, coexisting sleep apnea, and augmented chemoreceptor reflex sensitivity and then conclude by envisaging translational therapeutic opportunities.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Coração/inervação , Sistema Nervoso Simpático/fisiopatologia , Exercício Físico/fisiologia , Coração/fisiopatologia , Humanos , Reflexo/fisiologia
9.
J Neurophysiol ; 124(2): 634-644, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32727312

RESUMO

Survival relies on the ability to flexibly choose between different actions according to varying environmental circumstances. Many lines of evidence indicate that action selection involves signaling in corticostriatal circuits, including the orbitofrontal cortex (OFC) and dorsomedial striatum (DMS). While choice-specific responses have been found in individual neurons from both areas, it is unclear whether populations of OFC or DMS neurons are better at encoding an animal's choice. To address this, we trained head-fixed mice to perform an auditory guided two-alternative choice task, which required moving a joystick forward or backward. We then used silicon microprobes to simultaneously measure the spiking activity of OFC and DMS ensembles, allowing us to directly compare population dynamics between these areas within the same animals. Consistent with previous literature, both areas contained neurons that were selective for specific stimulus-action associations. However, analysis of concurrently recorded ensemble activity revealed that the animal's trial-by-trial behavior could be decoded more accurately from DMS dynamics. These results reveal substantial regional differences in encoding action selection, suggesting that DMS neural dynamics are more specialized than OFC at representing an animal's choice of action.NEW & NOTEWORTHY While previous literature shows that both orbitofrontal cortex (OFC) and dorsomedial striatum (DMS) represent information relevant to selecting specific actions, few studies have directly compared neural signals between these areas. Here we compared OFC and DMS dynamics in mice performing a two-alternative choice task. We found that the animal's choice could be decoded more accurately from DMS population activity. This work provides among the first evidence that OFC and DMS differentially represent information about an animal's selected action.


Assuntos
Comportamento Animal/fisiologia , Comportamento de Escolha/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Atividade Motora/fisiologia , Neostriado/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Neuroimage ; 184: 889-900, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30296562

RESUMO

A 'pattern alternation paradigm' has been previously used in human ERP recordings to investigate the brain encoding of complex auditory regularities, but prior studies on regularity encoding in animal models to examine mechanisms of adaptation of auditory neuronal responses have used primarily oddball stimulus sequences to study stimulus-specific adaptation alone. In order to examine the sensitivity of neuronal adaptation to expected and unexpected events embedded in a complex sound sequence, we used a similar patterned sequence of sounds. We recorded single unit activity and compared neuronal responses in the rat inferior colliculus (IC) to sound stimuli conforming to pattern alternation regularity with those to stimuli in which occasional sound repetitions violated that alternation. Results show that some neurons in the rat inferior colliculus are sensitive to the history of patterned stimulation and to violations of patterned regularity, demonstrating that there is a population of subcortical neurons, located as early as the level of the midbrain, that can detect more complex stimulus regularities than previously supposed and that are as sensitive to complex statistics as some neurons in primary auditory cortex. Our findings indicate that these pattern-sensitive neurons can extract temporal and spectral regularities between successive acoustic stimuli. This is important because the extraction of regularities from the sound sequences will result in the development of expectancies for future sounds and hence, the present results are compatible with predictive coding models. Our results demonstrate that some collicular neurons, located as early as in the midbrain level, are involved in the generation and shaping of prediction errors in ways not previously considered and thus, the present findings challenge the prevailing view that perceptual organization of sound only emerges at the auditory cortex level.


Assuntos
Adaptação Fisiológica , Percepção Auditiva/fisiologia , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Reconhecimento Fisiológico de Modelo/fisiologia , Estimulação Acústica , Potenciais de Ação , Animais , Feminino , Ratos Long-Evans
11.
J Neurosci ; 37(37): 8919-8928, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28821662

RESUMO

The basic organization principles of the primary visual cortex (V1) are commonly assumed to also hold in the association cortex such that neurons within a cortical column share functional connectivity patterns and represent the same region of the visual field. We mapped the visual receptive fields (RFs) of neurons recorded at the same electrode in the ventral intraparietal area (VIP) and the lateral prefrontal cortex (PFC) of rhesus monkeys. We report that the spatial characteristics of visual RFs between adjacent neurons differed considerably, with increasing heterogeneity from VIP to PFC. In addition to RF incongruences, we found differential functional connectivity between putative inhibitory interneurons and pyramidal cells in PFC and VIP. These findings suggest that local RF topography vanishes with hierarchical distance from visual cortical input and argue for increasingly modified functional microcircuits in noncanonical association cortices that contrast V1.SIGNIFICANCE STATEMENT Our visual field is thought to be represented faithfully by the early visual brain areas; all the information from a certain region of the visual field is conveyed to neurons situated close together within a functionally defined cortical column. We examined this principle in the association areas, PFC, and ventral intraparietal area of rhesus monkeys and found that adjacent neurons represent markedly different areas of the visual field. This is the first demonstration of such noncanonical organization of these brain areas.


Assuntos
Aprendizagem por Associação/fisiologia , Lobo Frontal/fisiologia , Neurônios/fisiologia , Lobo Parietal/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Conectoma , Macaca mulatta , Masculino , Rede Nervosa/fisiologia , Transmissão Sináptica/fisiologia
12.
Circ J ; 82(11): 2852-2860, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30197403

RESUMO

BACKGROUND: Obstructive sleep apnea syndrome (OSAS) is associated with augmented sympathetic nerve activity and cardiovascular diseases. However, the interaction between coronary artery plaque characteristics and sympathetic nerve activity remains unclear. The purpose of this study was to clarify the relationships between coronary artery plaque characteristics, sleep parameters and single- and multi-unit muscle sympathetic nerve activity (MSNA) in OSAS patients. Methods and Results: A total of 32 OSAS patients who underwent full-polysomnography participated in this study. The coronary plaque volume was calculated with 320-slice coronary computed tomography (CT). Single- and multi-unit MSNA were obtained during the daytime within 1 week from full-polysomnography. Patients were divided into 2 groups according to their apnea-hypopnea index (AHI) score (mild-moderate group, AHI <30; and severe group, AHI ≥30). There were no group differences in risk factors for atherosclerosis; however, severe AHI patients showed significantly high single-unit MSNA, and low- and intermediate-attenuation plaque volumes. In regression analysis, the plaque volume of any CT value was not associated with single- or multi-unit MSNA; only AHI significantly correlated with low-attenuation plaque volume (R=0.52, P<0.05). CONCLUSIONS: Our findings provided the evidence that AHI is an independent predictor for low-attenuated, vulnerable plaque volume, but not daytime MSNA, in patients with OSAS.


Assuntos
Angiografia Coronária , Doença da Artéria Coronariana , Placa Aterosclerótica , Polissonografia , Apneia Obstrutiva do Sono , Sistema Nervoso Simpático , Tomografia Computadorizada por Raios X , Idoso , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/fisiopatologia , Apneia Obstrutiva do Sono/diagnóstico por imagem , Apneia Obstrutiva do Sono/fisiopatologia , Sistema Nervoso Simpático/diagnóstico por imagem , Sistema Nervoso Simpático/fisiopatologia
13.
J Neurosci ; 36(47): 12044-12052, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881787

RESUMO

Neurons in the avian nidopallium caudolaterale (NCL), an endbrain structure that originated independently from the mammalian neocortex, process visual numerosities. To clarify the code for number in this anatomically distinct endbrain area in birds, neuronal responses to a broad range of numerosities were analyzed. We recorded single-neuron activity from the NCL of crows performing a delayed match-to-sample task with visual numerosities as discriminanda. The responses of >20% of randomly selected neurons were modulated significantly by numerosities ranging from one to 30 items. Numerosity-selective neurons showed bell-shaped tuning curves with one of the presented numerosities as preferred numerosity regardless of the physical appearance of the items. The resulting labeled-line code exhibited logarithmic compression obeying the Weber-Fechner law for magnitudes. Comparable proportions of selective neurons were found, not only during stimulus presentation, but also in the delay phase, indicating a dominant role of the NCL in numerical working memory. Both during sensory encoding and memorization of numerosities in working memory, NCL activity predicted the crows' number discrimination performance. These neuronal data reveal striking similarities across vertebrate taxa in their code for number despite convergently evolved and anatomically distinct endbrain structures. SIGNIFICANCE STATEMENT: Birds are known for their capabilities to process numerical quantity. However, birds lack a six-layered neocortex that enables primates with numerical competence. We aimed to decipher the neuronal code for numerical quantity in the independently and distinctly evolved endbrain of birds. We recorded the activity of neurons in an endbrain association area termed nidopallium caudolaterale (NCL) from crows that assessed and briefly memorized numerosities from one to 30 dots. We report a neuronal code for sensory representation and working memory of numerosities in the crow NCL exhibiting several characteristics that are surprisingly similar to the ones found in primates. Our data suggest a common code for number in two different vertebrate taxa that has evolved based on convergent evolution.


Assuntos
Cognição/fisiologia , Corvos/fisiologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiologia , Telencéfalo/fisiologia , Percepção Visual/fisiologia , Animais , Feminino , Masculino , Conceitos Matemáticos
14.
Eur J Neurosci ; 45(2): 267-277, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27718536

RESUMO

Songbirds possess acute vision. How higher brain centres represent basic and parameterised visual stimuli to process sensory signals according to their behavioural importance has not been studied in a systematic way. We therefore examined how carrion crows (Corvus corone) and their nidopallial visual neurons process global visual motion information in dynamic random-dot displays during a delayed match-to-sample (DMS) task. The behavioural data show that moderately fast motion speeds (16° of visual angle/s) result in superior direction discrimination performance. To characterise how neurons encode and maintain task-relevant visual motion information, we recorded the single-unit activity in the telencephalic association area 'nidopallium caudolaterale' (NCL) of behaving crows. The NCL is considered to be the avian analogue of the mammalian prefrontal cortex. Almost a third (28%) of randomly selected NCL neurons responded selectively to the motion direction of the sample stimulus, mostly to downward motions. Only few NCL neurons (7.5%) responded consistently to specific motion directions during the delay period. In error trials, when the crows chose the wrong motion direction, the encoding of motion direction was significantly reduced. This indicates that sensory representations of NCL neurons are relevant to the birds' behaviour. These data suggest that the corvid NCL, even though operating at the apex of the telencephalic processing hierarchy, constitutes a telencephalic site for global motion integration.


Assuntos
Comportamento Animal/fisiologia , Cognição/fisiologia , Percepção de Movimento/fisiologia , Movimento (Física) , Neurônios/fisiologia , Telencéfalo/fisiologia , Animais , Encéfalo/fisiologia , Corvos , Estimulação Luminosa/métodos , Aves Canoras
15.
Neurobiol Learn Mem ; 137: 65-76, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27864088

RESUMO

Single neuron activity in the corvid nidopallium caudolaterale (NCL), the supposed avian functional analog of the prefrontal cortex, represents associations of auditory with visual stimuli. This is of high adaptive value for songbirds that need to rely on audio-visual associations to communicate, find a mate or escape predators. However, it remains unclear whether NCL neurons can represent cross-modal associations in a modality invariant, abstract fashion. To dissociate between modality-dependent and modality-invariant NCL activity, we trained two crows to match auditory sample cues with visual test stimuli, and vice versa, across a temporal memory delay. During sample presentation, NCL activity selectively encoded associations in a modality invariant fashion. During the delay, we observed subject specific, population-level coding biases in NCL activity. Despite of these biases, task relevant information could be decoded equally well from either subject's neuronal delay activity. Decoding success was facilitated by many mixed selectivity neurons, which mediated high dimensional representations of task variables on the NCL population level. These results parallel findings from the mammalian PFC, suggesting common mechanisms responsible for the adaptability of multimodal association areas across taxa.


Assuntos
Percepção Auditiva/fisiologia , Neurônios/fisiologia , Telencéfalo/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Animais , Comportamento Animal/fisiologia , Corvos , Aprendizagem/fisiologia , Masculino , Estimulação Luminosa , Córtex Pré-Frontal/fisiologia
16.
J Neurosci ; 35(28): 10172-87, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26180194

RESUMO

Modulation of neural activity by monoamine neurotransmitters is thought to play an essential role in shaping computational neurodynamics in the neocortex, especially in prefrontal regions. Computational theories propose that monoamines may exert bidirectional (concentration-dependent) effects on cognition by altering prefrontal cortical attractor dynamics according to an inverted U-shaped function. To date, this hypothesis has not been addressed directly, in part because of the absence of appropriate statistical methods required to assess attractor-like behavior in vivo. The present study used a combination of advanced multivariate statistical, time series analysis, and machine learning methods to assess dynamic changes in network activity from multiple single-unit recordings from the medial prefrontal cortex (mPFC) of rats while the animals performed a foraging task guided by working memory after pretreatment with different doses of d-amphetamine (AMPH), which increases monoamine efflux in the mPFC. A dose-dependent, bidirectional effect of AMPH on neural dynamics in the mPFC was observed. Specifically, a 1.0 mg/kg dose of AMPH accentuated separation between task-epoch-specific population states and convergence toward these states. In contrast, a 3.3 mg/kg dose diminished separation and convergence toward task-epoch-specific population states, which was paralleled by deficits in cognitive performance. These results support the computationally derived hypothesis that moderate increases in monoamine efflux would enhance attractor stability, whereas high frontal monoamine levels would severely diminish it. Furthermore, they are consistent with the proposed inverted U-shaped and concentration-dependent modulation of cortical efficiency by monoamines.


Assuntos
Anfetamina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Dinâmica não Linear , Córtex Pré-Frontal/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Inteligência Artificial , Simulação por Computador , Relação Dose-Resposta a Droga , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Análise Multivariada , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/citologia , Ratos , Ratos Long-Evans , Fatores de Tempo
17.
J Neurophysiol ; 115(3): 1521-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26763779

RESUMO

As the major input to the basal ganglia, the striatum is innervated by a wide range of other areas. Overlapping input from these regions is speculated to influence temporal correlations among striatal ensembles. However, the network dynamics among behaviorally related neural populations in the striatum has not been extensively studied. We used large-scale neural recordings to monitor activity from striatal ensembles in mice undergoing Pavlovian reward conditioning. A subpopulation of putative medium spiny projection neurons (MSNs) was found to discriminate between cues that predicted the delivery of a reward and cues that predicted no specific outcome. These cells were preferentially located in lateral subregions of the striatum. Discriminating MSNs were more spontaneously active and more correlated than their nondiscriminating counterparts. Furthermore, discriminating fast spiking interneurons (FSIs) represented a highly prevalent group in the recordings, which formed a strongly correlated network with discriminating MSNs. Spike time cross-correlation analysis showed the existence of synchronized activity among FSIs and feedforward inhibitory modulation of MSN spiking by FSIs. These findings suggest that populations of functionally specialized (cue-discriminating) striatal neurons have distinct network dynamics that sets them apart from nondiscriminating cells, potentially to facilitate accurate behavioral responding during associative reward learning.


Assuntos
Condicionamento Clássico , Corpo Estriado/fisiologia , Discriminação Psicológica , Neurônios/fisiologia , Recompensa , Animais , Corpo Estriado/citologia , Sinais (Psicologia) , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
J Neurosci ; 34(28): 9377-88, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25009270

RESUMO

In macaque monkeys, the anterior inferotemporal cortex, a region crucial for object memory processing, is composed of two adjacent, hierarchically distinct areas, TE and 36, for which different functional roles and neuronal responses in object memory tasks have been characterized. However, it remains unknown how the neuronal interactions differ between these areas during memory retrieval. Here, we conducted simultaneous recordings from multiple single-units in each of these areas while monkeys performed an object association memory task and examined the inter-area differences in neuronal interactions during the delay period. Although memory neurons showing sustained activity for the presented cue stimulus, cue-holding (CH) neurons, interacted with each other in both areas, only those neurons in area 36 interacted with another type of memory neurons coding for the to-be-recalled paired associate (pair-recall neurons) during memory retrieval. Furthermore, pairs of CH neurons in area TE showed functional coupling in response to each individual object during memory retention, whereas the same class of neuron pairs in area 36 exhibited a comparable strength of coupling in response to both associated objects. These results suggest predominant neuronal interactions in area 36 during the mnemonic processing, which may underlie the pivotal role of this brain area in both storage and retrieval of object association memory.


Assuntos
Aprendizagem por Associação/fisiologia , Sinais (Psicologia) , Rememoração Mental/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Células Receptoras Sensoriais/fisiologia , Transmissão Sináptica/fisiologia , Lobo Temporal/fisiologia , Animais , Macaca mulatta , Masculino , Rede Nervosa/fisiologia , Células Receptoras Sensoriais/classificação
19.
J Neurophysiol ; 113(9): 3410-20, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25787960

RESUMO

Identifying the properties of correlations in the firing of neocortical neurons is central to our understanding of cortical information processing. It has been generally assumed, by virtue of the columnar organization of the neocortex, that the firing of neurons residing in a certain vertical domain is highly correlated. On the other hand, firing correlations between neurons steeply decline with horizontal distance. Technical difficulties in sampling neurons with sufficient spatial information have precluded the critical evaluation of these notions. We used 128-channel "silicon probes" to examine the spike-count noise correlations during spontaneous activity between multiple neurons with identified laminar position and over large horizontal distances in the anesthetized rat barrel cortex. Eigen decomposition of correlation coefficient matrices revealed that the laminar position of a neuron is a significant determinant of these correlations, such that the fluctuations of layer 5B/6 neurons are in opposite direction to those of layers 5A and 4. Moreover, we found that within each experiment, the distribution of horizontal, intralaminar spike-count correlation coefficients, up to a distance of ∼1.5 mm, is practically identical to the distribution of vertical correlations. Taken together, these data reveal that the neuron's laminar position crucially affects its role in cortical processing. Moreover, our analyses reveal that this laminar effect extends over several functional columns. We propose that within the cortex the influence of the horizontal elements exists in a dynamic balance with the influence of the vertical domain and this balance is modulated with brain states to shape the network's behavior.


Assuntos
Potenciais de Ação/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Vias Aferentes/fisiologia , Animais , Eletricidade , Masculino , Estimulação Física , Ratos , Ratos Wistar , Estatística como Assunto , Vibrissas/inervação , Imagens com Corantes Sensíveis à Voltagem
20.
J Neurophysiol ; 112(8): 1963-83, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24990566

RESUMO

Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. Anatomically, suggestions have been made about the existence of hierarchical pathways with similarities to the ventral and dorsal pathways in primates. Here we aimed to characterize some important functional properties in part of the supposed "ventral" pathway in rats. We investigated the functional properties along a progression of five visual areas in awake rats, from primary visual cortex (V1) over lateromedial (LM), latero-intermediate (LI), and laterolateral (LL) areas up to the newly found lateral occipito-temporal cortex (TO). Response latency increased >20 ms from areas V1/LM/LI to areas LL and TO. Orientation and direction selectivity for the used grating patterns increased gradually from V1 to TO. Overall responsiveness and selectivity to shape stimuli decreased from V1 to TO and was increasingly dependent upon shape motion. Neural similarity for shapes could be accounted for by a simple computational model in V1, but not in the other areas. Across areas, we find a gradual change in which stimulus pairs are most discriminable. Finally, tolerance to position changes increased toward TO. These findings provide unique information about possible commonalities and differences between rodents and primates in hierarchical cortical processing.


Assuntos
Neurônios/fisiologia , Lobo Occipital/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Estimulação Luminosa , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa