Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400414, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038120

RESUMO

Carbon fiber (CF)-reinforced epoxy resin (EP) composites are lightweight materials with excellent comprehensive performance. However, the flammability of EP and the poor interfacial bonding between CF and EP are two key disadvantages that limit their further applications. Here, a kind of water-soluble lignin-based CF sizing agent (ELBEDK) is prepared through hydrophilic modification of enzymatic lignin, which can significantly enhance the interfacial interaction between CF and EP. Additionally, a highly efficient intumescent flame retardant (LMA) is prepared. The EP, enzymatic lignin, LMA and CF sized ELBEDK are compounded to obtain the fire-safety CF reinforced composites (SCF/FEP/L). The flame retardancy of SCF/FEP/L with 7% LMA (SCF/FEP7) reached V-0 rating. Moreover, SCF/FEP/L with 7% LMA and 15% lignin (SCF/FEP7/L15) present an limiting oxygen index (LOI)of 30.2% and V-0 of UL-94. Specifically, the total smoke production and the heat release rate are 47.8% and 46.81% lower than that of SCF/EP, respectively, indicating the improved smoke suppression and flame retardancy. The IFSS and flexural strength of SCF/FEP7/L15 are improved to be 59.4 MPa and 511.1 MPa, respectively. This study presents a simple approach to fabricate low-cost high performance lignin-based flame retardant CF/EP biocomposites with wide application potential.

2.
J Nanosci Nanotechnol ; 17(2): 1360-366, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29683632

RESUMO

In this paper, a method was proposed for obtaining a stable and homogeneous Pickering emulsion for carbon fiber (CF) sizing agent. Graphene oxide (GO) sheets and surfactants as the mixed emulsifiers system, epoxy resin as the primary film former, the CF sizing agent emulsion was developed by phase inversion emulsification method based on the stability principle of Pickering emulsion. Meanwhile, the factors that affected the performances of the emulsion, including the size of GO sheets and pH value, were investigated intensively by centrifuge, electrophoresis apparatus and laser particle size analyzer. According to scanning electron microscope observation, the CF surface was coated with GO and film former. The static contact angle tests indicated the wetting performance between the sized CF and epoxy resin was improved. Moreover, the tensile strength of single CF sized with the Pickering emulsion showed an increase compared with that of T700 CF. This research shows the huge potential for the fabrication of GO-based Pickering emulsion for CF sizing agent.

3.
Materials (Basel) ; 17(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612072

RESUMO

Semi-aromatic poly (hexamethylene terephthalamide) (PA6T) oligomer (prePA6T) ultrafine powder, with a diameter of <5 µm, was prepared as an emulsion sizing agent to improve the impregnation performance of CF/PA6T composites. The prePA6T hyperfine powder was acquired via the dissolution and precipitation "phase conversion" method, and the prePA6T emulsion sizing agent was acquired to continuously coat the CF bundle. The sized CF unidirectional tape was knitted into a fabric using the plain weave method, while the CF/PA6T laminated composites were obtained by laminating the plain weave fabrics with PA6T films. The interfacial shear strength (IFSS), tensile strength (TS), and interlaminar shear strength (ILSS) of prePA6T-modified CF/PA6T composites improved by 54.9%, 125.3%, and 120.9%, respectively. Compared with the commercial polyamide sizing agent product PA845H, the prePA6T sizing agent showed better interfacial properties at elevated temperatures, especially no TS loss at 75 °C. The SEM observations also indicated that the prePA6T emulsion has an excellent impregnation effect on CF, and the fracture mechanism shifted from adhesive failure mode to cohesive failure mode. In summary, a facile, heat-resistant, undamaged-to-fiber environmental coating process is proposed to continuously manufacture high-performance thermoplastic composites, which is quite promising in mass production.

4.
Int J Biol Macromol ; 271(Pt 2): 132716, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38815941

RESUMO

Nanoparticle-containing sizing agents are essential for the overall performance of high-quality carbon fiber (CF) composites. However, the uneven dispersion of nanoparticles often leads to agglomeration on the surface of CF after sizing, consequently diminishing the material properties. In this study, the properties of cellulose nanofibers (CNFs) that can respond to magnetic and electric fields were utilized to achieve three-dimensional to one-dimensional orientations in CFs containing sizing agents. Cobalt ferrite (CoFe2O4) was utilized to enhance the response of CNFs to a magnetic field, and subsequently, it was combined with an electric field to attain a higher degree of orientation. The occurrence of nanoparticle agglomeration is diminished on CF surface, while establishing a structured network. The flexural strength and thermal conductivity of CF composites treated with CoFe2O4 self-assembled CNF sizing agent exhibit an increase of 54.23 % and 57.5 %, respectively, compared to those of desized CF composites, when subjected to magnetic and electric fields. Consequently, the approach can depolymerize the nano-fillers within the sizing agent and orient it into the carbon fiber under the influence of magnetic and electric fields, effectively improving the mechanical properties and thermal conductivity of the composite material.


Assuntos
Fibra de Carbono , Celulose , Campos Magnéticos , Nanofibras , Nanofibras/química , Celulose/química , Fibra de Carbono/química , Compostos Férricos/química , Cobalto/química , Eletricidade , Condutividade Térmica , Nanocompostos/química
5.
Polymers (Basel) ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447521

RESUMO

Alkenyl Succinic Anhydride (ASA) is a sizing agent used in papermaking to increase the water repellency of paper. Almost 60 years after the introduction of the chemical in papermaking, scientists still have differing views on how ASA interacts with cellulose. Several experiments were conducted to bring more clarity to the ASA sizing mechanism, especially on the contentious question of ASA-cellulose covalent bonding or the esterification reaction between ASA and cellulose during papermaking. Herein, research papers and patents, including experiments and results, from the 1960s to 2020 were reviewed. Our investigation revealed that the ester bond formation between ASA and cellulose is insignificant and is not a prerequisite for sizing effectiveness; the main ASA-related material found in sized paper is hydrolyzed ASA or both hydrolyzed ASA and ASA salt. In addition, ASA emulsion stability and ASA emulsion retention are important for sizing efficiency improvement.

6.
Polymers (Basel) ; 15(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37050260

RESUMO

In this study, polyether ether ketone (PEEK) composites reinforced with newly developed water-dispersible polyimide (PI)-sized carbon fibers (CFs) were developed to enhance the effects of the interfacial interaction between PI-sized CFs and a PEEK polymer on their thermo-mechanical properties. The PI sizing layers on these CFs may be induced to interact vigorously with the p-phenylene groups of PEEK polymer chains because of increased electron affinity. Therefore, these PI-sized CFs are effective for improving the interfacial adhesion of PEEK composites. PEEK composites were reinforced with C-CFs, de-CFs, and PI-sized CFs. The PI-sized CFs were prepared by spin-coating a water-dispersible PAS suspension onto the de-CFs, followed by heat treatment for imidization. The composites were cured using a compression molding machine at a constant temperature and pressure. Atomic force and scanning electron microscopy observations of the structures and morphologies of the carbon fiber surfaces verified the improvement of their thermo-mechanical properties. Molecular dynamics simulations were used to investigate the effects of PI sizing agents on the stronger interfacial interaction energy between the PI-sized CFs and the PEEK polymer. These results suggest that optimal amounts of PI sizing agents increased the interfacial properties between the CFs and the PEEK polymer.

7.
Polymers (Basel) ; 14(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36080608

RESUMO

Basalt fiber and its resin composites have gradually supplanted traditional steel and glass fiber composites due to their superior strength, heat resistance, and corrosion resistance. However, basalt fiber still has significant flaws that restrict the functionality and use of its composites, such as less active functional groups and poor resin adherence. This study examines the effects of sizing agent on the characteristics of basalt fiber/epoxy resin composites. Epoxy resin emulsion and acrylate emulsion are employed as the primary auxiliary film-forming agents in this study. Polyurethane emulsion with various content levels is also used. The findings indicate that a 1% wt. of polyurethane emulsion concentration produces the greatest results, increasing the composite's flexural strength, flexural modulus, tensile strength, and interlaminar shear strength by 122%, 34.0%, 102%, and 10.2%, respectively. At the same time, the storage modulus and Tg of the material will decrease. In addition, the breakdown strength can be raised by 112%, and insulation parameters such as leakage current and dielectric loss factor can be decreased by 26.4% and 15.6%, respectively. The effect of sizing agent B is the best.

8.
Polymers (Basel) ; 11(9)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546889

RESUMO

Herein, we report self-emulsifying anionic unsaturated polyester emulsions with different chain segments as novel sizing agents. The epoxy modified unsaturated polyester emulsions were synthesized via a self-emulsifying technique with no organic solvents. Emulsions were characterized by dynamic light scattering (DLS), Zeta potential, centrifuge, and cryo-scanning electron microscopy (Cryo-SEM). The results showed that the emulsions obtained were mono-dispersed nanospheres that had adequate colloidal stability. The maximum Zeta potential of the sizing agent is -52.88 mV. In addition, these emulsions were investigated as the sizing agents in order to improve interfacial adhesion between carbon fibers (CFs) and unsaturated polyester resin (UPR). Compared with the CFs sized with the commercial epoxy sizing agent, the interlaminar shear strength (ILSS) of CF/UPR composites from the CFs sized by these emulsion sizing agents with three different chain structures were enhanced by 25%, 29%, and 42%, respectively. The emulsion sizing agent composed of a flexible segment synthesized from adipic acid, neopentyl glycol, and maleic anhydride is most effective and can achieve the highest enhancement of the ILSS of CF/UPR composites.

9.
Materials (Basel) ; 12(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986932

RESUMO

The present study aims to investigate the influence of multi-walled carbon nanotubes (MWCNTs) on the damage tolerance after impact (CAI) of the development of Out of Autoclave (OoA) carbon fibre reinforced polymer (CFRP) laminates. The introduction of MWCNTs into the structure of CFRPs has been succeeded by adding carbon nanotube-enriched sizing agent for the pre-treatment of the fibre preform and using an in-house developed methodology that can be easily scaled up. The modified CFRPs laminates with 1.5 wt.% MWCNTs were subjected to low velocity impact at three impact energy levels (8, 15 and 30 J) and directly compared with the unmodified laminates. In terms of the CFRPs impact performance, compressive strength of nanomodified composites was improved for all energy levels compared to the reference material. The test results obtained from C-scan analysis of nano-modified specimens showed that the delamination area after the impact is mainly reduced, without the degradation of compressive strength and stiffness, indicating a potential improvement of damage tolerance compared to the reference material. SEM analysis of fracture surfaces revealed the additional energy dissipation mechanisms; pulled-out carbon nanotubes which is the main reason for the improved damage tolerance of the multifunctional composites.

10.
Int J Biol Macromol ; 124: 1205-1212, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30521905

RESUMO

In this research, collagen hydrolysates with different average molecular weights (Mn¯) from leather collagen were chosen as raw materials. Five environmental-friendly sizing agents (SA) were prepared by cross-linking collagen hydrolysates with glycol diglycidyl ether (GDE) and further grafting them with butyl acrylate (BA) and styrene (St). Then the compound sizing agents (SGDESA-x, x = 1, 2, 3 and 4) were obtained by simple physical mixing of GDESA and starch. The surface sizing performance of GDESA and compound sizing agents were studied. The research result shows that both physical, mechanical properties and water resistance of the corrugated paper coated by GDESA were significantly improved when Mn¯ of collagen hydrolysate was about 10,000, and its emulsion exhibited robust stability in long standing time. Furthermore, when the SGDESA-2 was used as a sizing agent, the coated corrugated paper exhibited strong water resistance, good physical and mechanical properties even after refolded for 20 times.


Assuntos
Colágeno/química , Reagentes de Ligações Cruzadas/química , Resinas Epóxi/química , Papel , Hidrolisados de Proteína/química , Acrilatos/química , Animais , Colágeno/isolamento & purificação , Humanos , Indústria Manufatureira/métodos , Teste de Materiais , Hidrolisados de Proteína/isolamento & purificação , Pele/química , Amido/química , Estireno/química , Resíduos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa