Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Mol Carcinog ; 63(9): 1768-1782, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38869281

RESUMO

To study mechanisms driving/inhibiting skin carcinogenesis, stage-specific expression of 14-3-3σ (Stratifin) was analyzed in skin carcinogenesis driven by activated rasHa/fos expression (HK1.ras/fos) and ablation of PTEN-mediated AKT regulation (K14.creP/Δ5PTENflx/flx). Consistent with 14-3-3σ roles in epidermal differentiation, HK1.ras hyperplasia and papillomas displayed elevated 14-3-3σ expression in supra-basal keratinocytes, paralleled by supra-basal p-MDM2166 activation and sporadic p-AKT473 expression. In bi-genic HK1.fos/Δ5PTENflx/flx hyperplasia, basal-layer 14-3-3σ expression appeared, and alongside p53/p21, was associated with keratinocyte differentiation and keratoacanthoma etiology. Tri-genic HK1.ras/fos-Δ5PTENflx/flx hyperplasia/papillomas initially displayed increased basal-layer 14-3-3σ, suggesting attempts to maintain supra-basal p-MDM2166 and protect basal-layer p53. However, HK1.ras/fos-Δ5PTENflx/flx papillomas exhibited increasing basal-layer p-MDM2166 activation that reduced p53, which coincided with malignant conversion. Despite p53 loss, 14-3-3σ expression persisted in well-differentiated squamous cell carcinomas (wdSCCs) and alongside elevated p21, limited malignant progression via inhibiting p-AKT1473 expression; until 14-3-3σ/p21 loss facilitated progression to aggressive SCC exhibiting uniform p-AKT1473. Analysis of TPA-promoted HK1.ras-Δ5PTENflx/flx mouse skin, demonstrated early loss of 14-3-3σ/p53/p21 in hyperplasia and papillomas, with increased p-MDM2166/p-AKT1473 that resulted in rapid malignant conversion and progression to poorly differentiated SCC. In 2D/3D cultures, membranous 14-3-3σ expression observed in normal HaCaT and SP1ras61 papilloma keratinocytes was unexpectedly detected in malignant T52ras61/v-fos SCC cells cultured in monolayers, but not invasive 3D-cells. Collectively, these data suggest 14-3-3σ/Stratifin exerts suppressive roles in papillomatogenesis via MDM2/p53-dependent mechanisms; while persistent p53-independent expression in early wdSCC may involve p21-mediated AKT1 inhibition to limit malignant progression.


Assuntos
Proteínas 14-3-3 , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-mdm2 , Neoplasias Cutâneas , Proteína Supressora de Tumor p53 , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Camundongos , Exorribonucleases/metabolismo , Exorribonucleases/genética , Carcinogênese/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Progressão da Doença , Humanos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Queratinócitos/metabolismo , Queratinócitos/patologia , Regulação Neoplásica da Expressão Gênica
2.
Exp Dermatol ; 33(8): e15156, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39133032

RESUMO

This study investigates the carcinogenic potential of chronic dermal exposure (16 weeks) to sulfuric acid (SA) in immunocompetent mice. Clinical assessments, histopathological analyses, immunohistochemical analyses and biochemical assays were conducted to evaluate skin irritation, oxidative stress biomarkers and the potential carcinogenic effect of SA. Results indicated that prolonged exposure to SA leads to various alterations in skin structure, notably inflammation, preneoplastic and neoplastic proliferation in hair follicles, as well as hyperkeratosis and acanthosis, resulting in an increased epidermal thickness of 98.50 ± 21.6 µm. Immunohistochemistry analysis further corroborates these observations, showcasing elevated nuclear expression of p53 and Ki-67, with a significant mitotic index of (57.5% ± 2.5%). Moreover, biochemical analyses demonstrate that SA induces lipid peroxidation in the skin, evidenced by a high level of Malondialdehyde and a consequential reduction in catalase activity. These findings suggest that prolonged exposure to SA can induce skin neoplasms, highlighting the need for stringent safety measures in environments where SA is frequently used. This study underscores the potential occupational health risks associated with SA exposure.


Assuntos
Neoplasias Cutâneas , Ácidos Sulfúricos , Animais , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Camundongos , Ácidos Sulfúricos/efeitos adversos , Ácidos Sulfúricos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Feminino , Malondialdeído/metabolismo , Imunocompetência , Catalase/metabolismo , Pele/patologia , Pele/metabolismo , Pele/efeitos dos fármacos , Antígeno Ki-67/metabolismo , Proteína Supressora de Tumor p53/metabolismo
3.
EMBO Rep ; 23(6): e53791, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35578812

RESUMO

Interleukin-38 (IL-38) is strongly associated with chronic inflammatory diseases; however, its role in tumorigenesis is poorly understood. We demonstrated that expression of IL-38, which exhibits high expression in the skin, is downregulated in human cutaneous squamous cell carcinoma and 7,12-dimethylbenzanthracene/12-O-tetradecanoyl phorbol-13-acetate-induced mouse skin tumorigenesis. IL-38 keratinocyte-specific knockout mice displayed suppressed skin tumor formation and malignant progression. Keratinocyte-specific deletion of IL-38 was associated with reduced expression of inflammatory cytokines, leading to reduced myeloid cell infiltration into the local tumor microenvironment. IL-38 is dispensable for epidermal mutagenesis, but IL-38 keratinocyte-specific deletion reduces proliferative gene expression along with epidermal cell proliferation and hyperplasia. Mechanistically, we first demonstrated that IL-38 activates the c-Jun N-terminal kinase (JNK)/activator protein 1 signal transduction pathway to promote the expression of cancer-related inflammatory cytokines and proliferation and migration of tumor cells in an IL-1 receptor-related protein 2 (IL-1Rrp2)-dependent manner. Our findings highlight the role of IL-38 in the regulation of epidermal cell hyperplasia and pro-tumorigenic microenvironment through IL-1Rrp2/JNK and suggest IL-38/IL-1Rrp2 as a preventive and potential therapeutic target in skin cancer.


Assuntos
Carcinoma de Células Escamosas , Interleucina-1/metabolismo , Receptores de Interleucina-1/metabolismo , Neoplasias Cutâneas , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Citocinas , Hiperplasia/patologia , Interleucinas/genética , Camundongos , Pele/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Microambiente Tumoral
4.
J Biochem Mol Toxicol ; 37(10): e23423, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37352108

RESUMO

C-type natriuretic peptide (CNP) exhibits anti-inflammatory activity besides its natriuretic and diuretic functions. The present study aimed to determine the anticancer and synergistic therapeutic activity of CNP against a 7,12-Dimethylbenz[a]anthracene (DMBA)/Croton oil-induced skin tumor mouse model. CNP (2.5 µg/kg body weight) was injected either alone and/or in combination with Cisplatin (CDDP) (2 mg/kg body weight) for 4 weeks. The dorsal skin tumor incidences/growth and mortality rate were recorded during the experimental period of 16 weeks. The serum C-reactive protein (CRP), and lactate dehydrogenase (LDH) levels, infiltrating mast cells, and AgNORs proliferating cells count were analyzed in control and experimental mice. Further, the expression profile of marker genes of proliferation, inflammation, and progression molecules were analyzed using Reverse transcriptase-polymerase chain reaction (RT-PCR)/quantitative PCR (qPCR), western blot, and immunohistochemistry. The DMBA/Croton oil-induced mice exhibited 100% tumor incidence. Whereas, CNP alone, CDDP alone, and CNP+CDDP combination-treated mice exhibited 58%, 46%, and 24% tumor incidence, respectively. Also, a marked reduction in the levels of serum CRP and LDH, the number of infiltrating mast cells count and AgNORs proliferating cells count were noticed in the mice skin sections. Further, a significant reduction in both mRNA and protein expression levels of proliferation, inflammation, and progression markers were noticed in CNP (p < 0.01), CDDP (p < 0.01), and CNP+CDDP combination (p < 0.001) treated mice, respectively. The results of the present study suggest that CNP has anticancer activity. Further, the CNP+CDDP treatment has more promising anticancer activity as compared with CNP or CDDP alone treatment, probably due to the synergistic antiproliferative and anti-inflammatory activities of CNP and CDDP.


Assuntos
Croton , Neoplasias Cutâneas , Animais , Camundongos , Óleo de Cróton/efeitos adversos , Peptídeo Natriurético Tipo C/efeitos adversos , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antracenos , Peso Corporal
5.
Exp Dermatol ; 31(10): 1607-1617, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35751582

RESUMO

Non-melanoma skin cancer (NMSC) is mainly caused by ultraviolet (UV)-induced somatic mutations and is characterized by UV signature modifications. Xeroderma pigmentosum group A (Xpa) knockout mice exhibit extreme UV-induced photo-skin carcinogenesis, along with a photosensitive phenotype. We performed whole-exome sequencing (WES) of squamous cell carcinoma (SCC) samples after repetitive ultraviolet B (UVB) exposure to investigate the differences in the landscape of somatic mutations between Xpa knockout and wild-type mice. Although the tumors that developed in mice harboured UV signature mutations in a similar set of cancer-related genes, the pattern of transcriptional strand asymmetry was largely different; UV signature mutations in Xpa knockout and wild-type mice preferentially occurred in transcribed and non-transcribed strands, respectively, reflecting a deficiency in transcription-coupled nucleotide excision repair in Xpa knockout mice. Serial time point analyses of WES for a tumor induced by only a single UVB exposure showed pathogenic mutations in Kras, Fat1, and Kmt2c, which may be driver genes for the initiation and promotion of SCC in Xpa knockout mice. Furthermore, the inhibitory effects on tumor production in Xpa knockout mice by the anti-inflammatory CXCL1 monoclonal antibody affected the pattern of somatic mutations, wherein the transcriptional strand asymmetry was attenuated and the activated signal transduction was shifted from the RAS/RAF/MAPK to the PIK3CA pathway.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Xeroderma Pigmentoso , Animais , Anticorpos Monoclonais , Carcinoma de Células Escamosas/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Reparo do DNA , Camundongos , Camundongos Knockout , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Raios Ultravioleta , Xeroderma Pigmentoso/genética , Proteína de Xeroderma Pigmentoso Grupo A/genética
6.
Cell Biol Int ; 45(8): 1720-1732, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33847415

RESUMO

Keratin 8/18, the predominant keratin pair of simple epithelia, is known to be aberrantly expressed in several squamous cell carcinomas (SCCs), where its expression is often correlated with increased invasion, neoplastic progression, and poor prognosis. The majority of keratin 8/18 structural and regulatory functions are governed by posttranslational modifications, particularly phosphorylation. Apart from filament reorganization, cellular processes including cell cycle, cell growth, cellular stress, and apoptosis are known to be orchestrated by K8 phosphorylation at specific residues in the head and tail domains. Even though deregulation of K8 phosphorylation at two significant sites (Serine73 /Serine431 ) has been implicated in neoplastic progression of SCCs by various in vitro studies, including ours, it is reported to be highly context-dependent. Therefore, to delineate the precise role of Kereatin 8 phosphorylation in cancer initiation and progression, we have developed the tissue-specific transgenic mouse model expressing Keratin 8 wild type and phosphodead mutants under Keratin 14 promoter. Subjecting these mice to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-mediated skin carcinogenesis revealed that Keratin 8 phosphorylation may lead to an early onset of tumors compared to Keratin 8 wild-type expressing mice. Conclusively, the transgenic mouse model developed in the present study ascertained a positive impact of Keratin 8 phosphorylation on the neoplastic transformation of skin-squamous cells.


Assuntos
Carcinogênese/metabolismo , Queratina-8/metabolismo , Mutação/fisiologia , Neoplasias Cutâneas/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Eletroporação/métodos , Células HEK293 , Humanos , Queratina-8/genética , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação/fisiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
7.
Dermatol Ther ; 34(6): e15132, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34528361

RESUMO

In the first part of this review, we have summarized the methods used to examine skin exposure to air pollution and the fundamental concept of skin-exposome interactions. Part 2 of this review focuses on dermatoses, whose aggravation or initiation by air pollution has been confirmed in evidence based medicine manner. Based on the model of photodermatology and photodermatoses, we propose a new concept of "polludermatoses." A key feature of this concept is identifying patients at risk, which will reveal the noxious effects of air pollutants on skin health. Identifying clinical signs of pollution-damaged skin could be beneficial in categorizing conditions caused or exacerbated by exposure to air pollution. Finally, we discuss the current treatment options and the pathogenetic processes targeted by these therapeutics or the development of novel treatment modalities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Pele/patologia
8.
Arch Toxicol ; 95(7): 2351-2365, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34032870

RESUMO

Chronic arsenic exposure causes skin cancer, although the underlying molecular mechanisms are not well defined. Altered microRNA and mRNA expression likely play a pivotal role in carcinogenesis. Changes in genome-wide differential expression of miRNA and mRNA at 3 strategic time points upon chronic sodium arsenite (As3+) exposure were investigated in a well-validated HaCaT cell line model of arsenic-induced cutaneous squamous cell carcinoma (cSCC). Quadruplicate independent HaCaT cell cultures were exposed to 0 or 100 nM As3+ for up to 28-weeks (wk). Cell growth was monitored throughout the course of exposure and epithelial-mesenchymal transition (EMT) was examined employing immunoblot. Differentially expressed miRNA and mRNA profiles were generated at 7, 19, and 28-wk by RNA-seq, followed by identification of differentially expressed mRNA targets of differentially expressed miRNAs through expression pairing at each time point. Pathway analyses were performed for total differentially expressed mRNAs and for the miRNA targeted mRNAs at each time point. RNA-seq predictions were validated by immunoblot of selected target proteins. While the As3+-exposed cells grew slower initially, growth was equal to that of unexposed cells by 19-wk (transformation initiation), and exposed cells subsequently grew faster than passage-matched unexposed cells. As3+-exposed cells had undergone EMT at 28-wk. Pathway analyses demonstrate dysregulation of carcinogenesis-related pathways and networks in a complex coordinated manner at each time point. Immunoblot data largely corroborate RNA-seq predictions in the endoplasmic reticulum stress (ER stress) pathway. This study provides a detailed molecular picture of changes occurring during the arsenic-induced transformation of human keratinocytes.


Assuntos
Arsênio , Carcinoma de Células Escamosas , MicroRNAs , Neoplasias Cutâneas , Arsênio/toxicidade , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Técnicas de Cultura de Células , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
9.
Cancer Sci ; 111(8): 2850-2860, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32535988

RESUMO

CENP-50/U is a component of the CENP-O complex (CENP-O/P/Q/R/U) and localizes to the centromere throughout the cell cycle. Aberrant expression of CENP-50/U has been reported in many types of cancers. However, as Cenp-50/U-deficient mice die during early embryogenesis, its functions remain poorly understood in vivo. To investigate the role of Cenp-50/U in skin carcinogenesis, we generated Cenp-50/U conditional knockout (K14CreER -Cenp-50/Ufl/fl ) mice and subjected them to the 7,12-dimethylbenz(a)anthracene (DMBA)/terephthalic acid (TPA) chemical carcinogenesis protocol. As a result, early-stage papillomas decreased in Cenp-50/U-deficient mice. In contrast, Cenp-50/U-deficient mice demonstrated almost the same carcinoma incidence as control mice. Furthermore, mRNA expression analysis using DMBA/TPA-induced papillomas and carcinomas revealed that Cenp-50/U expression levels in papillomas were significantly higher than in carcinomas. These results suggest that Cenp-50/U functions mainly in early papilloma development and it has little effect on malignant conversion.


Assuntos
Carcinogênese/patologia , Proteínas de Ciclo Celular/deficiência , Neoplasias Experimentais/patologia , Papiloma/patologia , Neoplasias Cutâneas/patologia , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Carcinogênese/induzido quimicamente , Carcinógenos/toxicidade , Proteínas de Ciclo Celular/genética , Humanos , Camundongos , Camundongos Knockout , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/genética , Papiloma/induzido quimicamente , Papiloma/genética , Ácidos Ftálicos/toxicidade , Pele/efeitos dos fármacos , Pele/patologia , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética
10.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934690

RESUMO

Activation and/or upregulated expression of p38δ are demonstrated in human skin malignancies including cutaneous squamous cell carcinoma, suggesting a role for p38δ in skin carcinogenesis. We previously reported that mice with germline deletion of the p38δ gene are significantly protected from chemical skin carcinogenesis. Here, we investigated the effects of cell-selective targeted ablation of p38δ in keratinocytes and in immune (myeloid) cells on skin tumor development in a two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical mouse skin carcinogenesis model. Conditional keratinocyte-specific p38δ ablation (p38δ-cKO∆K) did not influence the latency, incidence, or multiplicity of chemically-induced skin tumors, but led to increased tumor volume in females during the TPA promotion stage, and reduced malignant progression in males and females relative to their wild-type counterparts. In contrast, conditional myeloid cell-specific p38δ deletion (p38δ-cKO∆M) inhibited DMBA/TPA-induced skin tumorigenesis in male but not female mice. Thus, tumor onset was delayed, and tumor incidence, multiplicity, and volume were reduced in p38δ-cKO∆M males compared with control wild-type males. Moreover, the percentage of male mice with malignant tumors was decreased in the p38δ-cKO∆M group relative to their wild-type counterparts. Collectively, these results reveal that cell-specific p38δ targeting modifies susceptibility to chemical skin carcinogenesis in a context-, stage-, and sex-specific manner.


Assuntos
Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Caracteres Sexuais , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/patologia , 9,10-Dimetil-1,2-benzantraceno , Animais , Carcinogênese/patologia , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Citocinas/metabolismo , Progressão da Doença , Feminino , Deleção de Genes , Mediadores da Inflamação/metabolismo , Queratinócitos/enzimologia , Masculino , Camundongos Knockout , Células Mieloides/metabolismo , Estadiamento de Neoplasias , Fenótipo , Pele/patologia , Acetato de Tetradecanoilforbol
11.
Molecules ; 24(11)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151168

RESUMO

Raman spectroscopy facilitates accurate and minimally invasive investigation on biomedical samples to reveal their molecular-level biological information. In this work, the cancer field effects of squamous cell carcinoma (SCC) tissues were illustrated by Raman microspectroscopy. Referenced with hematoxylin and eosin (H&E) stained microscopic images, the biochemical variations during SCC progress were meticulously described by the Raman spectral features in different pathological areas of two lesion types, including the biochemical changes in collagen, lipids, DNA, and other components of SCC diffusion and metastasis. The experimental results demonstrated that the intensities of the Raman peaks representing collagen (853, 936, and 1248 cm-1) were decreased, whereas the intensities of peaks corresponding to DNA (720, 1327 cm-1) and lipids (1305 cm-1) were increased significantly in cancerous lesions, which testified that SCC originates from the epidermis and invades the dermis gradually. The achieved results not only described the molecular mechanism of skin carcinogenesis, but also provided vital reference data for in vivo skin cancer diagnosis using Raman spectroscopy.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias Cutâneas/patologia , Análise Espectral Raman , Adulto , Biópsia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Análise Espectral Raman/métodos
12.
Molecules ; 24(12)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242703

RESUMO

The v-raf murine sarcoma viral homolog B1 (BRAF) inhibitor drug vemurafenib (PLX4032) is used to treat melanoma; however, epidemiological evidence reveals that it could cause cutaneous keratoacanthomas and squamous cell carcinoma in cancer patients with the most prevalent HRASQ61L mutation. In a two-stage skin carcinogenesis mouse model, the skin papillomas induced by 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) (DT) resemble the lesions in BRAF inhibitor-treated patients. In this study, we investigated the bioactivity of Mentha aquatica var. Kenting Water Mint essential oil (KWM-EO) against PDV cells, mouse keratinocytes bearing HRASQ61L mutation, and its effect on inhibiting papilloma formation in a two-stage skin carcinogenesis mouse model with or without PLX4032 co-treatment. Our results revealed that KWM-EO effectively attenuated cell viability, colony formation, and the invasive and migratory abilities of PDV cells. Induction of G2/M cell-cycle arrest and apoptosis in PDV cells was also observed. KWM-EO treatment significantly decreased the formation of cutaneous papilloma further induced by PLX4032 in DT mice (DTP). Immunohistochemistry analyses showed overexpression of keratin14 and COX-2 in DT and DTP skin were profoundly suppressed by KWM-EO treatment. This study demonstrates that KWM-EO has chemopreventive effects against PLX4032-induced cutaneous side-effects in a DMBA/TPA-induced two-stage carcinogenesis model and will be worth further exploration for possible application in melanoma patients.


Assuntos
Anticarcinógenos/química , Anticarcinógenos/farmacologia , Mentha/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Inibidores de Proteínas Quinases/efeitos adversos , Vemurafenib/efeitos adversos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Antagonismo de Drogas , Camundongos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/patologia
13.
Toxicol Appl Pharmacol ; 360: 69-77, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30268578

RESUMO

The KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (NF-E2-related factor 2) system controls the biochemical defense activity against agents toxic to mammals and responds to exogenous and endogenous stressors such as electrophilic and oxidative substances, which can have destructive and genotoxic effects on affected mammalian tissues. Although this system can be activated by various environmental stressors, it remains unclear whether ultraviolet radiation (UVR), which is one of the major environmental agents that has inflammatory and carcinogenic impacts on human skin and eyes, induces NRF2-dependent defense activity. Here, we review the recent progress in the study of the contributions of NRF2 and related factors to protection against UVR. The KEAP1-NRF2 system is not always efficient in responding to UVR, especially to short wavelengths such as UVC/UVB, indicating that UVR is a poor activator of the KEAP1-NRF2 system. However, sustained activation of NRF2 appears to suppress the harmful effects of chronic UVR exposure, such as photoaging of and carcinogenesis in the skin, indicating that NRF2 activation is beneficial for the protection of the skin from the harmful effects of UVR. However, it should be noted that prolonged and strong activation of NRF2 may also have adverse effects on skin, especially in the case of UVR-induced carcinogenesis. We present working models describing mechanisms underlying the involvement of the KEAP1-NRF2 system in skin photoaging and carcinogenesis.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Pele/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Animais , Carcinogênese/metabolismo , Carcinogênese/efeitos da radiação , Humanos , Mamíferos
14.
FASEB J ; 31(2): 526-543, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27825106

RESUMO

The response of the skin to harmful environmental agents is shaped decisively by the status of the immune system. Keratinocytes constitutively express and secrete the chemokine-like mediator, macrophage migration inhibitory factor (MIF), more strongly than dermal fibroblasts, thereby creating a MIF gradient in skin. By using global and epidermis-restricted Mif-knockout (Mif-/- and K14-Cre+/tg; Miffl/fl) mice, we found that MIF both recruits and maintains antigen-presenting cells in the dermis/epidermis. The reduced presence of antigen-presenting cells in the absence of MIF was associated with accelerated and increased formation of nonmelanoma skin tumors during chemical carcinogenesis. Our results demonstrate that MIF is essential for maintaining innate immunity in skin. Loss of keratinocyte-derived MIF leads to a loss of control of epithelial skin tumor formation in chemical skin carcinogenesis, which highlights an unexpected tumor-suppressive activity of MIF in murine skin.-Brocks, T., Fedorchenko, O., Schliermann, N., Stein, A., Moll, U. M., Seegobin, S., Dewor, M., Hallek, M., Marquardt, Y., Fietkau, K., Heise, R., Huth, S., Pfister, H., Bernhagen, J., Bucala, R., Baron, J. M., Fingerle-Rowson, G. Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin.


Assuntos
Fatores Inibidores da Migração de Macrófagos/metabolismo , Neoplasias Cutâneas/induzido quimicamente , Pele/citologia , Pele/imunologia , Animais , Antracenos/toxicidade , Antígenos CD/genética , Antígenos CD/metabolismo , Carcinogênese , Regulação da Expressão Gênica/fisiologia , Inflamação/metabolismo , Queratinócitos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Piperidinas/toxicidade , Piridinas/toxicidade , Receptores CXCR/genética , Receptores CXCR/metabolismo
15.
Photodermatol Photoimmunol Photomed ; 34(1): 35-41, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28767162

RESUMO

Skin cancer is a major health problem worldwide. It is the most common cancer in the United States and poses a significant healthcare burden. Excessive UVR exposure is the most common cause of skin cancer. Despite various precautionary measures to avoid direct UVR exposure, the incidence of skin cancer and mortality related to it remains high. Furthermore, the current treatment options are expensive and have side effects including toxicity to normal cells. Thus, a safe and effective approach is needed to prevent and treat skin cancer. Chemopreventive strategy using naturally occurring compounds, such as resveratrol, is a promising approach to reduce the incidence of UVR-induced skin cancer and delay its progression. This review highlights the current body of evidence related to chemopreventive role of resveratrol and its molecular mechanisms in UVR-induced skin carcinogenesis.


Assuntos
Anticarcinógenos/farmacologia , Carcinogênese/efeitos dos fármacos , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/prevenção & controle , Estilbenos/farmacologia , Raios Ultravioleta/efeitos adversos , Animais , Anticarcinógenos/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Humanos , Resveratrol , Estilbenos/metabolismo
16.
Cancer Sci ; 108(11): 2142-2148, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28795467

RESUMO

CENP-R is a component of the CENP-O complex, including CENP-O, CENP-P, CENP-Q, CENP-R, and CENP-U and is constitutively localized to kinetochores throughout the cell cycle in vertebrates. CENP-R-deficient chicken DT40 cells are viable and show a very minor effect on mitosis. To investigate the functional roles of CENP-R in vivo, we generated CENP-R-deficient mice (Cenp-r-/- ). Mice heterozygous or homozygous for Cenp-r null mutation are viable and healthy, with no apparent defect in growth and morphology, indicating Cenp-r is not essential for normal development. Accordingly, to investigate the role of the Cenp-r gene in skin carcinogenesis, we subjected Cenp-r-/- mice to the 7,12-dimethylbenz(a)anthracene (DMBA)/TPA chemical carcinogenesis protocol and monitored tumor development. As a result, Cenp-r-/- mice initially developed significantly more papillomas than control wild-type mice. However, papillomas in Cenp-r-/- mice showed a decrease of proliferative cells and an increase of apoptotic cells. As a result, they did not grow bigger and some papillomas showed substantial regression. Furthermore, papillomas in Cenp-r-/- mice showed lower frequency of malignant conversion to squamous cell carcinomas. These results indicate Cenp-r functions bilaterally in cancer development: during early developmental stages, Cenp-r functions as a tumor suppressor, but during the expansion and progression of papillomas it functions as a tumor-promoting factor.


Assuntos
Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Centrômero/genética , Proteínas Nucleares/genética , Neoplasias Cutâneas/genética , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/patologia , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Humanos , Camundongos , Camundongos Knockout , Mutação , Proteínas Oncogênicas/genética , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/patologia , Proteínas Supressoras de Tumor/genética
17.
Postepy Dermatol Alergol ; 34(1): 6-14, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28261026

RESUMO

The link between air pollution, UV irradiation and skin carcinogenesis has been demonstrated within a large number of epidemiological studies. Many have shown the detrimental effect that UV irradiation can have on human health as well as the long-term damage which can result from air pollution, the European ESCAPE project being a notable example. In total, at present around 2800 different chemical substances are systematically released into the air. This paper looks at the hazardous impact of air pollution and UV and discusses: 1) what we know; 2) where we stand; and 3) what is likely to happen in the future. Thereafter, we will argue that there is still insufficient evidence of how great direct air pollution and UV irradiation are as factors in the development of skin carcinogenesis. However, future prospects of progress are bright due to a number of encouraging diagnostic and preventive projects in progress at the moment.

18.
Mol Carcinog ; 55(5): 941-52, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26013710

RESUMO

In the present study, we evaluated the effect of deleting Twist1 on keratinocyte proliferation and on skin tumor development using the two-stage chemical carcinogenesis model. BK5.Cre × Twist1(flox/flox) mice, which have a keratinocyte-specific Twist1 knockout (Twist1 KO), developed significantly reduced numbers of papilloma (70% reduction) and squamous cell carcinoma (75% reduction) as well as delayed tumor latency compared to wild-type (WT) mice. Interestingly, knockdown of Twist1 in primary keratinocytes impeded cell cycle progression at the G1/S transition that coincided with reduced levels of the cell cycle proteins c-Myc, Cyclin E1, and E2F1 and increased levels of p53 and p21. Furthermore, ChIP analyses revealed that Twist1 bound to the promoter regions of Cyclin E1, E2F1, and c-Myc at the canonical E-box binding motif suggesting a direct transcriptional regulation. Further analyses of Twist1 KO mice revealed a significant reduction in the number of label-retaining cells as well as the number of α6-integrin(+) /CD34(+) cells in the hair follicles of untreated mice compared to WT mice. These mice also exhibited significantly reduced epidermal proliferation in response to TPA treatment that again correlated with reduced levels of cell cycle regulators and increased levels of p53 and p21. Finally, Twist1 deficiency in keratinocytes led to an upregulation of p53 via its stabilization and nuclear localization, which is responsible for the increased expression of p21 in these cells. Collectively, these findings indicate that Twist1 has a novel role in epithelial carcinogenesis by regulating proliferation of keratinocytes, including keratinocyte stem cells during tumor promotion.


Assuntos
Queratinócitos/citologia , Proteínas Nucleares/metabolismo , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/patologia , Proteína 1 Relacionada a Twist/metabolismo , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Queratinócitos/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Neoplasias Cutâneas/genética , Acetato de Tetradecanoilforbol/toxicidade , Proteína 1 Relacionada a Twist/genética
19.
Mol Carcinog ; 55(11): 1739-1746, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26472150

RESUMO

Withaferin A (WA), a natural product derived from Withania somnifera, has been used in traditional oriental medicines to treat neurological disorders. Recent studies have demonstrated that this compound may have a potential for cancer treatment and a clinical trial has been launched to test WA in treating melanoma. Herein, WA's chemopreventive potential was tested in a chemically-induced skin carcinogenesis mouse model. Pathological examinations revealed that WA significantly suppressed skin tumor formation. Morphological observations of the skin tissues suggest that WA suppressed cell proliferation rather than inducing apoptosis during skin carcinogenesis. Antibody Micro array analysis demonstrated that WA blocked carcinogen-induced up-regulation of acetyl-CoA carboxylase 1 (ACC1), which was further confirmed in a skin cell transformation model. Overexpression of ACC1 promoted whereas knockdown of ACC1 suppressed anchorage-independent growth and oncogene activation of transformable skin cells. Further studies demonstrated that WA inhibited tumor promotor-induced ACC1 gene transcription by suppressing the activation of activator protein 1. In melanoma cells, WA was also able to suppress the expression levels of ACC1. Finally, results using human skin cancer tissues confirmed the up-regulation of ACC1 in tumors than adjacent normal tissues. In summary, our results suggest that withaferin A may have a potential in chemoprevention and ACC1 may serve as a critical target of WA. © 2015 Wiley Periodicals, Inc.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos , Vitanolídeos/administração & dosagem , Acetil-CoA Carboxilase/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Fator de Transcrição AP-1/genética , Vitanolídeos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Carcinog ; 55(8): 1229-42, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26527515

RESUMO

MicroRNAs are small, non-coding RNAs which regulate post-transcriptionally hundreds of target mRNAs. Given that their expression is deregulated in several cancer types, they represent potential diagnostic, prognostic, and predictive biomarkers, as well as next-generation therapeutic targets. Nevertheless, the involvement of miRNAs in non-melanoma skin cancer, a cancer type with increasing prevalence, is not extensively studied, and their comprehensive characterization as regard to the initiation, promotion, and progression stages is missing. To this end, we exploited a well-established multistage mouse skin carcinogenesis model in order to identify miRNAs consistently implicated in different stages of skin carcinogenesis. The cell lines comprising this model were subjected to miRNA expression profiling using microarrays, followed by bioinformatics analysis and validation with Q-PCR, as well as treatment with miRNA modulators. We showed that among all deregulated miRNAs in our system, only a functionally coherent group consisting of the miR-200 family members and miR-205-5p displays a pattern of progressive co-downregulation from the early toward the most aggressive stages of carcinogenesis. Their overlapping, co-regulated putative targets are potentially inter-associated and, of these, the EMT-related Rap1a is overexpressed toward aggressive stages. Ectopic expression of miR-205-5p in spindle cancer cells reduces Rap1a, mitigates cell invasiveness, decreases proliferation, and delays tumor onset. We conclude that deregulation of this miRNA group is primarily associated with aggressive phenotypes of skin cancer cells. Restoration of the miR-205-5p member of this group in spindle cells reduces the expression of critical, co-regulated targets that favor cancer progression, thus reversing the EMT characteristics. © 2015 Wiley Periodicals, Inc.


Assuntos
Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Neoplasias Cutâneas/patologia , Proteínas rap1 de Ligação ao GTP/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Transplante de Neoplasias , Neoplasias Cutâneas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa