Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Biotechnol Bioeng ; 121(6): 1950-1960, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38470332

RESUMO

In developing three-dimensional (3D) human skin equivalents (HSEs), preventing dermis and epidermis layer distortion due to the contraction of hydrogels by fibroblasts is a challenging issue. Previously, a fabrication method of HSEs was tested using a modified solid scaffold or a hydrogel matrix in combination with the natural polymer coated onto the tissue culture surface, but the obtained HSEs exhibited skin layer contraction and loss of the skin integrity and barrier functions. In this study, we investigated the method of HSE fabrication that enhances the stability of the skin model by using surface plasma treatment. The results showed that plasma treatment of the tissue culture surface prevented dermal layer shrinkage of HSEs, in contrast to the HSE fabrication using fibronectin coating. The HSEs from plasma-treated surface showed significantly higher transepithelial electrical resistance compared to the fibronectin-coated model. They also expressed markers of epidermal differentiation (keratin 10, keratin 14 and loricrin), epidermal tight junctions (claudin 1 and zonula occludens-1), and extracellular matrix proteins (collagen IV), and exhibited morphological characteristics of the primary human skins. Taken together, the use of plasma surface treatment significantly improves the stability of 3D HSEs with well-defined dermis and epidermis layers and enhanced skin integrity and the barrier functions.


Assuntos
Pele Artificial , Humanos , Gases em Plasma/química , Gases em Plasma/farmacologia , Engenharia Tecidual/métodos , Pele/química
2.
Lasers Surg Med ; 56(1): 100-106, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37855626

RESUMO

PURPOSE: In postoperative wound healing after surgical operations or ablative laser treatments, recent studies suggest the timely use of non-ablative fractional laser treatments with the aim to improve wound healing and prevent pathological scar formation. However, the underlying molecular mechanisms are poorly understood. The aim of this study was to investigate the effects of laser-assisted scar healing (LASH) at the molecular level and to combine it with already established wound healing-promoting local treatments. METHODS: We irradiated full-thickness 3D skin models with a fractional ablative Er:YAG laser to set standardized lesions to the epidermal and upper dermal layer. Subsequently, LASH was induced by irradiating the models with either a fractional non-ablative 1540 nm Er:Glass or 1550 nm diode laser. In addition, we tested the combination of non-ablative fractional laser treatment and topical aftercare with a dexpanthenol-containing ointment (DCO). RESULTS: Histological analysis revealed that models irradiated with the 1540 nm Er:Glass or 1550 nm diode laser exhibited accelerated but not complete wound closure after 16 h. In contrast, additional topical posttreatment with DCO resulted in complete wound closure. At gene expression level, both non-ablative laser systems showed similar effects on epidermal differentiation and mild anti-inflammatory properties. The additional posttreatment with DCO enhanced the wound-healing effects of LASH, especially the upregulation of epidermal differentiation markers and anti-inflammatory cytokines at the gene expression level. CONCLUSION: This in vitro study deciphers the biological effects of LASH with a fractional non-ablative 1540 nm Er:Glass or a 1550 nm diode laser in 3D skin models. These data help to better understand the biological properties of the LASH technique and is important to optimize its application.


Assuntos
Terapia a Laser , Lasers de Estado Sólido , Humanos , Cicatriz/metabolismo , Lasers Semicondutores/uso terapêutico , Pele/metabolismo , Cicatrização , Lasers de Estado Sólido/uso terapêutico , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Terapia a Laser/métodos
3.
J Appl Toxicol ; 44(9): 1302-1316, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38711121

RESUMO

Toxicological assessment of chemicals is crucial for safeguarding human health and the environment. However, traditional animal experiments are associated with ethical, technical, and predictive limitations in assessing the toxicity of chemicals to the skin. With the recent development of bioengineering and tissue engineering, three-dimensional (3D) skin models have been commonly used as an alternative for toxicological studies. The skin consists of the subcutaneous, dermis, and epidermis. All these layers have crucial functions such as physical and biological protection and thermoregulation. The epidermis is the shallowest layer protecting against external substances and media. Because the skin is the first contact point for many substances, this organ is very significant for assessing local toxicity following skin exposure. According to the classification of the United Nations Global Harmonized System, skin irritation is a major potentially hazardous characteristic of chemicals, and this characteristic must be accurately assessed and classified for enhancing chemical safety management and preventing and reducing chemical accidents. This review discusses the research progress of 3D skin models and introduces their application in assessing chemical skin irritation.


Assuntos
Testes de Irritação da Pele , Pele , Humanos , Pele/efeitos dos fármacos , Testes de Irritação da Pele/métodos , Irritantes/toxicidade , Animais , Alternativas aos Testes com Animais/métodos , Engenharia Tecidual/métodos , Modelos Biológicos
4.
J Wound Care ; 33(Sup4): S4-S13, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573949

RESUMO

OBJECTIVE: This study assessed wound healing in response to a superoxidised solution using an in vitro wound healing model. METHOD: Prewounded reconstructed full-thickness human skin models were treated with 10µl of either superoxidised solution (Hydrocyn aqua, Bactiguard South East Asia Sdn. Bhd., Malaysia) or Dulbecco's phosphate buffered saline (DPBS) and incubated at 37°C for up to seven days, with additional treatments added every 48 hours. On days 0, 1, 2, 5 and 7, triplicate samples were taken for specific immunostaining against cytokeratin 14 and vimentin. At each timepoint, horizontal and vertical wound diameters were measured to demonstrate wound closure. Maintenance media was taken at the same timepoints for the measurement of secreted proinflammatory cytokines interleukin (IL)-1ß, IL-6 and tumour necrosis factor (TNF)-ɑ. RESULTS: At day 1, the superoxidised solution induced significantly lower diameter measurements compared with baseline data at day 0. Both treatment groups demonstrated significantly lower diameter measurements by day 2 when compared with the baseline; however, the average wound size of samples treated with the superoxidised solution was significantly lower when compared to the DPBS-treated group (p<0.05). No significant difference in expression of any proinflammatory was identified at any timepoint. CONCLUSION: Application of the superoxidised solution resulted in significantly improved wound closure over the first 48 hours in comparison to DPBS-treatment. Furthermore, application of the superoxidised solution did not induce significant proinflammatory effects, despite the significantly reduced wound diameter.


Assuntos
Pele , Cicatrização , Humanos , Pele/lesões , Citocinas , Malásia
5.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338991

RESUMO

Side streams and byproducts of food are established sources of natural ingredients in cosmetics. In the present study, we obtained upcycled low-molecular-weight anionic peptides (LMAPs) using byproducts of the post-yuzu-juicing process by employing an enzyme derived from Bacillus sp. For the first time, we isolated anionic peptides less than 500 Da in molecular weight from Citrus junos TANAKA seeds via hydrolysis using this enzyme. The protective effect of LMAPs against UVR-induced photoaging was evaluated using a reconstructed skin tissue (RST) model and keratinocytes. The LMAPs protected the keratinocytes by scavenging intracellular reactive oxygen species and by reducing the levels of paracrine cytokines (IL-6 and TNF-α) in UVR (UVA 2 J/cm2 and UVB 15 mJ/cm2)-irradiated keratinocytes. Additionally, the increase in melanin synthesis and TRP-2 expression in RST caused by UVR was significantly inhibited by LMAP treatment. This treatment strongly induced the expression of filaggrin and laminin-5 in UVR-irradiated RST. It also increased type I collagen expression in the dermal region and in fibroblasts in vitro. These results suggest that a hydrolytic system using the enzyme derived from Bacillus sp. can be used for the commercial production of LMAPs from food byproducts and that these LMAPs can be effective ingredients for improving photoaging-induced skin diseases.


Assuntos
Citrus , Envelhecimento da Pele , Dermatopatias , Pele/metabolismo , Citocinas/metabolismo , Dermatopatias/metabolismo , Raios Ultravioleta/efeitos adversos , Fibroblastos/metabolismo
6.
Cutan Ocul Toxicol ; 43(2): 124-128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38284163

RESUMO

PURPOSE: To study the effects of the anti-IL-23A antibody risankizumab on the IL-36γ/IL-23A/IL-17A signalling cascade we used a newly developed 3D skin model consisting of primary human keratinocytes, fibroblasts and γδ-T-cells. METHODS: In this in vitro study we developed new full-thickness 3D skin models containing normal human epidermal keratinocytes (NHEK), normal human dermal fibroblasts (NHDF) and IL-23A responsive and IL-17A producing γδ-T-cells. The effects of IL-36γ stimulation with and without risankizumab treatment on IL-23A and IL-17A expression were examined at the RNA and protein levels. RESULTS: In preliminary monolayer experiments stimulation of γδ-T-cells with IL-23A promoted the IL-17A expression that was inhibited after risankizumab treatment. Using 3D skin models containing γδ-T-cells, we found that stimulation with IL-36γ significantly increased not only IL-23A but also IL-17A expression. These effects were inhibited by concomitant treatment with risankizumab. CONCLUSIONS: Our results showed that blockade of IL-23A has inhibitory effects on the IL-36γ/IL-23A feedforward loop. Our newly developed 3D skin model containing IL-23A responsive and IL-17A producing γδ-T-cells enables molecular analysis of targeted therapies aimed at the IL-36γ/IL-23A/IL-17A signalling cascade in psoriasis.


Assuntos
Anticorpos Monoclonais , Interleucina-17 , Subunidade p19 da Interleucina-23 , Queratinócitos , Pele , Humanos , Interleucina-17/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Anticorpos Monoclonais/farmacologia , Subunidade p19 da Interleucina-23/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/imunologia , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Interleucina-1/metabolismo , Linfócitos Intraepiteliais/efeitos dos fármacos , Linfócitos Intraepiteliais/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Psoríase/tratamento farmacológico , Psoríase/imunologia
7.
Int Wound J ; 21(3): e14811, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477866

RESUMO

To investigate the effectiveness of antimicrobial agents against wound infections, experiments using either 2D cultures with planktonic microorganisms or animal infection models are frequently carried out. However, the transferability of the results to human skin is limited by the lack of complexity of the 2D models or by the poor translation of the results from animal models. Hence, there is a need for wound infection models capable of assessing antimicrobial agents. In this study, an easily standardized wound infection model was established. This model consists of a mechanically wounded human skin model on a collagen matrix infected with various clinically relevant bacteria. Infection of the model led to recognition of the pathogens and induction of an inflammatory response. The untreated infection spread over time, causing significant tissue damage. By applying an antimicrobial-releasing wound dressing, the bacterial load could be reduced and the success of the treatment could be further measured by a decrease in the inflammatory reaction. In conclusion, this wound infection model can be used to evaluate new antimicrobial therapeutics as well as to study host-pathogen interactions.


Assuntos
Anti-Infecciosos , Infecção dos Ferimentos , Animais , Humanos , Carga Bacteriana , Bandagens , Interações Hospedeiro-Patógeno
8.
Exp Dermatol ; 32(10): 1752-1762, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37515391

RESUMO

Wound healing of deep burn injuries is often accompanied by severe scarring, such as hypertrophic scar (HTS) formation. In severe burn wounds, where the subcutis is also damaged, the scars adhere to structures underneath, resulting in stiffness of the scar and impaired motion. Over the recent years, a promising solution has emerged: autologous fat grafting, also known as lipofilling. Previous clinical reports have shown that the anti-fibrotic effect has been attributed to the presence of adipose-derived stromal cells (ADSC). In the proposed study, we aim to investigate the effect of fat grafting in 3D organotypic skin cultures mimicking an HTS-like environment. To this end, organotypic skin cultures were embedded with normal skin fibroblasts (NF) or HTS-derived fibroblasts with or without incorporation of human adipose subcutaneous tissue (ADT) and one part was thermally wounded to examine their effect on epithelialization. The developed skin cultures were analysed on morphology and protein level. Analysis revealed that ADT-containing organotypic skin cultures comprise an improved epidermal homeostasis, and a fully formed basement membrane, similar to native human skin (NHS). Furthermore, the addition of ADT significantly reduced myofibroblast presence, which indicates its anti-fibrotic effect. Finally, re-epithelialization measurements showed that ADT reduced re-epithelialization in skin cultures embedded with NFs, whereas HTS-fibroblast-embedded skin cultures showed complete wound closure. In conclusion, we succeeded in developing a 3D organotypic HTS-skin model incorporated with subcutaneous tissue that allows further investigation on the molecular mechanism of fat grafting.

9.
Exp Dermatol ; 32(11): 1870-1883, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37605856

RESUMO

Human skin equivalents (HSEs) are three-dimensional skin organ culture models raised in vitro. This review gives an overview of common techniques for setting up HSEs. The HSE consists of an artificial dermis and epidermis. 3T3-J2 murine fibroblasts, purchased human fibroblasts or freshly isolated and cultured fibroblasts, together with other components, for example, collagen type I, are used to build the scaffold. Freshly isolated and cultured keratinocytes are seeded on top. It is possible to add other cell types, for example, melanocytes, to the HSE-depending on the research question. After several days and further steps, the 3D skin can be harvested. Additionally, we show possible markers and techniques for evaluation of artificial skin. Furthermore, we provide a comparison of HSEs to human skin organ culture, a model which employs human donor skin. We outline advantages and limitations of both models and discuss future perspectives in using HSEs.


Assuntos
Pele Artificial , Pele , Humanos , Camundongos , Animais , Pele/metabolismo , Epiderme/metabolismo , Queratinócitos/metabolismo , Células Epidérmicas/metabolismo , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Células Cultivadas
10.
Exp Dermatol ; 32(7): 1063-1071, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287089

RESUMO

A direct contact co-culture of skin explants to SZ95 sebocytes (3D-SeboSkin) has been shown to preserve the integrity of epidermal keratinocytes and dermis. In this study, the properties of epidermal melanocytes were evaluated in the same 3D SeboSkin ex vivo model. Skin explants (n = 6) were maintained in the 3D-SeboSkin model, in direct contact to fibroblasts and alone in serum-free medium (SFM). Histopathological, immunohistochemical, apoptosis and oil red staining evaluations were performed at Days 0 and 6 of incubation. Results revealed preservation and prominent proliferation of basal keratinocytes of the skin explants in addition to preservation of dermal collagen and vasculature at Day 6 in the 3D-SeboSkin culture model and to a lesser extent in co-culture with fibroblasts but not in SFM alone. Melan-A+/Ki67- epidermal melanocytes remained attached to the dermis even at sites of epidermal detachment in the three skin explant models tested. However, the number of epidermal melanocytes was significantly conserved in 3D-SeboSkin cultures in comparison with skin explants in SFM (p < 0.05), whereas no difference was found in comparison with the co-culture with fibroblasts. Few DAPI/TUNEL+ apoptotic melanocytes could mostly be observed in SFM-incubated skin explants. Furthermore, only SZ95 sebocytes in contact to skin explants in 3D-SeboSkin exhibited increased lipogenesis with accumulation of abundant lipid droplets. These results denote that the 3D-SeboSkin model yielded significant preservation of epidermal melanocytes and hence it is optimal for ex vivo studies of abnormalities of skin pigmentation, melanocyte neoplasms and effects of different hormones, cytokines, carcinogens and various therapeutics in a pattern that recapitulates the in vivo environment.


Assuntos
Epiderme , Pele , Técnicas de Cocultura , Melanócitos , Queratinócitos
11.
Br J Nutr ; : 1-17, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169355

RESUMO

The purpose of this study was to investigate the effect of dietary n-3 very-long-chain PUFA (n-3 VLC-PUFA) on the maturation and development of skin tissue in juvenile Atlantic salmon (Salmo salar) in vivo, as well as their effects on skin keratocyte and human skin fibroblast cell migration in vitro. Atlantic salmon were fed different dietary levels of n-3 VLC-PUFA from an initial weight of 6 g to a final weight of 11 g. Changes in skin morphology were analysed at two time points during the experiment, and the effects on skin tissue fatty acid composition were determined. Additionally, in vitro experiments using human dermal fibroblasts and primary Atlantic salmon keratocytes were conducted to investigate the effect of VLC-PUFA on the migration capacity of the cells. The results demonstrated that increased dietary levels of n-3 VLC-PUFA led to an increased epidermis thickness and more rapid scale maturation in Atlantic salmon skin in vivo, leading to a more mature skin morphology, and possibly more robust skin, at an earlier life stage. Additionally, human skin fibroblasts and salmon skin keratocytes supplemented with n-3 VLC-PUFA in vitro showed more rapid migration, indicating potentially beneficial effects of VLC-PUFA in wound healing. In conclusion, VLC-PUFA may have beneficial effects on skin tissue development, function and integrity.

12.
Exp Cell Res ; 417(1): 113207, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35580698

RESUMO

Melanoma spheroid-loaded 3D skin models allow for the study of crucial tumor characteristics and factors at a superior level because the neoplastic cells are integrated into essential human skin components, permitting tumor-skin model communication. Herein, we designed a melanoma-containing artificial dermis by inserting multicellular tumor spheroids from the metastatic phase of WM 1617 melanoma cells into an artificial dermis. We cultured multicellular melanoma spheroids by hanging drop method (250 cells per drop) with a size of 420 µm in diameter after incubation for 14 days. These spheroids were integrated into the dermal equivalents that had been previously preparedwith a type-I collagen matrix and healthy fibroblasts. The melanoma spheroid cells invaded and proliferated in the artificial dermis. Spheroids treated with a 1.0 µmol/L aluminum chloride phthalocyanine nanoemulsion in the absence of light showed high cell viability. In contrast, under irradiation with visible red light (660 nm) at 25 J/cm2, melanoma cells were killed and the healthy tissue was preserved, indicating that photodynamic therapy is effective in such a model. Therefore, the 3D skin melanoma model has potential to promote research in full-thickness skin model targeting optimized preclinical assays.


Assuntos
Melanoma , Neoplasias Cutâneas , Derme , Humanos , Esferoides Celulares , Melanoma Maligno Cutâneo
13.
Biol Pharm Bull ; 46(9): 1310-1315, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37518093

RESUMO

Recently, microneedling as a cosmetic product has attracted attention as one way to improve skin barrier function and moisturizing function to reduce wrinkle formation. However, some cases of erythema and edema have been reported as side effects. In order to develop safer microneedle cosmetics, we investigated whether microneedles can improve skin barrier function and moisturizing function even when applied in a non-invasive manner that does not penetrate the stratum corneum. We established the condition of non-penetrating microneedle application on reconstructed human full-thickness skin models and examined the effect on the skin models when microneedles were applied under this condition. Microneedle application increased the gene expression of serine palmitoyltransferase long chain base subunit (SPTLC) 3, filaggrin, and transglutaminase 1. The amount of ceramide produced by SPTLC was also increased by microneedle application. Gene expression of filaggrin-degrading enzymes and the amount of free amino acids, a product of filaggrin degradation, were also increased by microneedling. These results suggest that non-invasive microneedle application can improve skin barrier function and moisturizing function by increasing the amount of ceramide and natural moisturizing factors.


Assuntos
Ceramidas , Proteínas Filagrinas , Humanos , Pele , Epiderme/metabolismo , Aminoácidos/metabolismo , Agulhas
14.
Biol Pharm Bull ; 46(10): 1451-1460, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779047

RESUMO

Long-term and extensive exposure to UV irradiation can cause sunburn, photoaging, or skin cancer. Various studies have shown that Dendrobium officinale extract has a certain protective effect on skin-related diseases. Lactobacillus plantarum is a probiotic that has been reported to be used for co-fermentation with various plants to enhance the activity of extracts. This article discusses the effectiveness of fermentation of Dendrobium officinale extract with Lactobacillus plantarum GT-17F on protection against UV-mediated photoaging. The study found that fermented extract of Dendrobium officinale (FDO) has a stronger antioxidant effect, especially in free radical scavenging. Pretreatment with FDO enables human skin fibroblast (HSF) cells and reconstruction skin models (EpiSkin and T-Skin) to resist UV-mediated degradation of type I collagen and type III collagen, repair epidermal barrier function, and reduce the damage of barrier-related proteins, such as filaggrin (FLG) and loricrin (LOR). Those findings provide a basis for further studies to evaluate the effectiveness of fermented Dendrobium officinale in preventing UV-mediated damage and photoaging in humans.


Assuntos
Dendrobium , Lactobacillus plantarum , Envelhecimento da Pele , Dermatopatias , Humanos , Pele
15.
Skin Res Technol ; 29(6): e13354, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37357658

RESUMO

BACKGROUND: Wrinkles represent a characteristic symptom of skin aging. In recent years, various studies have focused on their prevention and/or cure. However, clinical tests are still the only method available to directly detect and evaluate the anti-wrinkle efficacy of various substances. Moreover, no in vitro strategy for such anti-aging skin analysis has been reported. Therefore, in this study, we aimed to develop a novel technology to overcome these limitations. MATERIALS AND METHODS: Full-thickness (FT) skin wrinkle mimics with various widths and depths were fabricated using a collagen stamping method. These were analyzed and compared using 2D and 3D Swept Source-Optical Coherence Tomography (SS-OCT) imaging technologies. RESULTS: SS-OCT demonstrated superficial and cross-sectional images of the wrinkle mimics, and the size of the wrinkles was validated using image analysis. Retinoic acid treatment significantly decreased both the depth and width of wrinkles formed in the FT skin wrinkle mimics. CONCLUSIONS: Using 3D tissue engineering and SS-OCT imaging technologies, we developed a novel in vitro technique that can directly detect skin wrinkles. This significantly efficient method could lead to an alternative strategy for animal experiments and preclinical anti-aging research on the skin.


Assuntos
Envelhecimento da Pele , Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos , Pele/diagnóstico por imagem , Imageamento Tridimensional/métodos
16.
Skin Pharmacol Physiol ; 36(3): 140-148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36863326

RESUMO

INTRODUCTION: Dry skin is a hallmark of impaired skin barrier function. Moisturizers are a mainstay of treatment to help the skin retain moisture, and there is a high consumer demand for effective products. However, the development and optimization of new formulations are hampered due to lack of reliable efficacy measures using in vitro models. METHODS: In this study, a microscopy-based barrier functional assay was developed using an in vitro skin model of chemically induced barrier damage to evaluate the occlusive activity of moisturizers. RESULTS: The assay was validated by demonstrating the different effects on barrier function between humectant (glycerol) and occlusive (petrolatum). Significant changes in barrier function were observed upon tissue disruption, which was ameliorated by commercial moisturizing products. CONCLUSION: This newly developed experimental method may be helpful to develop new and improved occlusive moisturizers for the treatment of dry skin conditions.


Assuntos
Emolientes , Dermatopatias , Humanos , Emolientes/química , Pele , Vaselina/farmacologia , Absorção Cutânea
17.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511243

RESUMO

Solar radiation can cause damage to the skin, leading to various adverse effects such as sunburn, reactive oxygen species production, inflammation, DNA damage, and photoaging. To study the potential of photoprotective agents, full-thickness skin models are increasingly being used as in vitro tools. One promising approach to photoprotection involves targeting the redox-sensitive transcription factor Nrf2, which is responsible for regulating various cellular defense mechanisms, including the antioxidant response, inflammatory signaling, and DNA repair. Obacunone, a natural triterpenoid, has been identified as a potent Nrf2 agonist. The present study aims to evaluate the relevance of full-thickness (FT) skin models in photoprotection studies and to explore the potential photoprotective effects of obacunone on those models and in human keratinocytes. Phenion® full-thickness skin models and keratinocytes were incubated with increasing concentrations of obacunone and irradiated with solar-simulated radiation (SSR). Various photodamage markers were evaluated, including histological integrity, oxidative stress, apoptosis, inflammation, photoaging-related dermal markers, and photocarcinogenesis markers. Increasing doses of SSR were found to modulate various biomarkers related to sun damage in the FT skin models. However, obacunone attenuated cytotoxicity, inflammation, oxidative stress, sunburn reaction, photoaging, and photocarcinogenesis in both keratinocytes and full thickness skin models exposed to SSR. These results suggest that obacunone may have potential as a photoprotective agent for preventing the harmful effects of solar radiation on the skin.


Assuntos
Protetores contra Radiação , Queimadura Solar , Humanos , Fator 2 Relacionado a NF-E2/genética , Raios Ultravioleta/efeitos adversos , Queratinócitos , Pele/patologia , Protetores contra Radiação/farmacologia , Inflamação/prevenção & controle , Inflamação/patologia
18.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768424

RESUMO

As one of the major intractable allergic disorders, atopic inflammation is commonly accompanied by itching, dry skin, and inflammation. Atopic inflammation deteriorates the quality of life and has no fundamental cure, so it is crucial to urgently explore and develop natural resources for long-term treatment without any side effects. This study aimed to verify Torilis japonica extract (TJE)'s relieving effect and mechanism against atopic inflammation using skin cells and skin equivalent models, as well as to investigate torilin's effect (obtained from TJE) and other unknown components as marker compounds. Torilin concentration was verified in TJE using high-performance liquid chromatography and analyzed the unknown components using nuclear magnetic resonance spectroscopy. Furthermore, TJE's cytotoxicity, regenerative effect, and cell cycle regulation effects were confirmed using skin cells with atopic inflammation (human dermal fibroblasts and HaCaT keratinocytes) by using TNF-α and IFN-γ treatments. Consequently, TJE was demonstrated to regulate TARC and CTACK expressions as chemokines and those of interleukin-4, -5, and -13 as cytokines related to atopic inflammation. TJE was further confirmed to affect the matrix metalloproteinase-1, -2, and -9 expressions, which are essential in skin damage. Lastly, this study confirmed TJE's relieving effect against atopic inflammation through a 3D skin model and RhCE model using human dermal fibroblasts and HaCaT keratinocytes. These findings on atopic inflammation verified torilin's relieving effects and TJE's other components.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/metabolismo , Qualidade de Vida , Anti-Inflamatórios/farmacologia , Inflamação/metabolismo , Pele/metabolismo , Citocinas/metabolismo , Queratinócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Extratos Vegetais/uso terapêutico
19.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36982506

RESUMO

The skin is one of the major immune organs producing large amounts of proinflammatory and inflammatory cytokines in response to internal or exogenous stimuli, inducing systemic inflammation in various internal organs. In recent years, organ damage associated with inflammatory skin diseases such as psoriasis and atopic dermatitis has received increasing attention, and vascular disorder such as arteriosclerosis is one of the serious complications of chronic inflammatory skin diseases. However, the detailed mechanism of arteriosclerosis in dermatitis and the role of cytokines have not been clarified so far. In the current study, using a spontaneous dermatitis model, we investigated the pathophysiology of arteriosclerosis and the treatment option for inflammatory skin conditions. We employed spontaneous dermatitis model mice overexpressing human caspase-1 in the epidermal keratinocyte (Kcasp1Tg). The thoracic and abdominal aorta was investigated histologically. GeneChip and RT-PCR analysis were performed to measure the changes in mRNA levels in the aorta. To elucidate the direct effect on the artery by major inflammatory cytokines, endothelial cells, vascular smooth muscle cells, and fibroblast cells were co-cultured with several cytokines, and mRNA expression levels were measured. In order to observe the efficacy of IL-17A/F in arteriosclerosis, cross-mating with IL-17A, IL-17F, and IL-17A/F deficient mice was performed. Finally, we also measured snap tension in the abdominal aorta in WT, Kcasp1Tg, and IL17A/F-deficient mice. Kcasp1Tg showed a decrease in the diameter of the abdominal aorta compared to wild-type mice. mRNA levels for six genes including Apol11b, Camp, Chil3, S100a8, S100a9, and Spta1 were increased in the abdominal aorta of Kcasp1Tg. Some of the above mRNA levels were also increased in the co-culture with major inflammatory cytokines, IL-17A/F, IL-1ß, and TNF-α. Dermatitis improved and mRNA levels were partially ameliorated in Kcasp1Tg with IL-17A/F deletion. Arterial fragility was also evidenced in the inflammatory model, but arterial flexibility was revealed in the IL-17A/F deletion model. Severe dermatitis is closely related to secondary arteriosclerosis caused by the persistent release of inflammatory cytokines. The results also proved that treatment against IL-17A and F may ameliorate arteriosclerosis.


Assuntos
Arteriosclerose , Dermatite Atópica , Camundongos , Humanos , Animais , Interleucina-17/metabolismo , Células Endoteliais/metabolismo , Citocinas/metabolismo , Dermatite Atópica/patologia , Inflamação/genética , RNA Mensageiro/genética
20.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629159

RESUMO

Long-term treatments for inflammatory skin diseases like atopic dermatitis or eczema can cause adverse effects. Super Protein Multifunction (SPM) was investigated as a potential treatment for managing skin inflammation by monitoring the expression of pro-inflammatory cytokines induced using LPS and poly(I:C)/TNFα in HaCaT keratinocytes and Hs27 fibroblasts as measured via RT-PCR. SPM solution was also assessed for its effect on cytokine release, measured using ELISA, in a UVB-irradiated 3D human skin model. To evaluate the efficiency of SPM, 20 patients with mild eczematous skin were randomized to receive SPM or vehicle twice a day for three weeks in a double-blind controlled trial. In vitro studies showed SPM inhibited inflammation-induced IL-1ß, IL-6, IL-33, IL-1α, TSLP, and TNFα expression or release. In the clinical study, the SPM group showed significant improvements in the IGA, PA, and DLQI scores compared to the vehicle group. Neither group showed significant differences in VAS (pruritus). Histological analysis showed reduced stratum corneum thickness and inflammatory cell infiltration. The results suggest that SPM may reduce inflammation in individuals with chronic eczematous skin.


Assuntos
Eczema , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/genética , Pele , Inflamação , Prurido , Citocinas , Excipientes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa