Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762575

RESUMO

Myristoylated alanine-rich C-kinase substrate (MARCKS) is a critical member of a signaling cascade that influences disease-relevant neural functions such as neural growth and plasticity. The effector domain (ED) of MARCKS interacts with the extracellular glycan polysialic acid (PSA) through the cell membrane to stimulate neurite outgrowth in cell culture. We have shown that a synthetic ED peptide improves functional recovery after spinal cord injury in female but not male mice. However, peptides themselves are unstable in therapeutic applications, so we investigated more pharmacologically relevant small organic compounds that mimic the ED peptide to maximize therapeutic potential. Using competition ELISAs, we screened small organic compound libraries to identify molecules that structurally and functionally mimic the ED peptide of MARCKS. Since we had shown sex-specific effects of MARCKS on spinal cord injury recovery, we assayed neuronal viability as well as neurite outgrowth from cultured cerebellar granule cells of female and male mice separately. We found that epigallocatechin, amiodarone, sertraline, tegaserod, and nonyloxytryptamine bind to a monoclonal antibody against the ED peptide, and compounds stimulate neurite outgrowth in cultured cerebellar granule cells of female mice only. Therefore, a search for compounds that act in males appears warranted.

2.
Biomolecules ; 12(3)2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35327631

RESUMO

Cell adhesion molecule L1 is a cell surface glycoprotein that promotes neuronal cell migration, fosters regeneration after spinal cord injury and ameliorates the consequences of neuronal degeneration in mouse and zebrafish models. Counter-indicative features of L1 were found in tumor progression: the more L1 is expressed, the more tumor cells migrate and increase their metastatic potential. L1's metastatic potential is further evidenced by its promotion of epithelial-mesenchymal transition, endothelial cell transcytosis and resistance to chemo- and radiotherapy. These unfortunate features are indicated by observations that cells that normally do not express L1 are induced to express it when becoming malignant. With the aim to ameliorate the devastating functions of L1 in tumors, we designed an alternative approach to counteract tumor cell migration. Libraries of small organic compounds were screened using the ELISA competition approach similar to the one that we used for identifying L1 agonistic mimetics. Whereas in the former approach, a function-triggering monoclonal antibody was used for screening libraries, we here used the function-inhibiting monoclonal antibody 324 that reduces the migration of neurons. We now show that the L1 antagonistic mimetics anagrelide, 2-hydroxy-5-fluoropyrimidine and mestranol inhibit the migration of cultured tumor cells in an L1-dependent manner, raising hopes for therapy.


Assuntos
Glioblastoma , Molécula L1 de Adesão de Célula Nervosa , Animais , Anticorpos Monoclonais , Adesão Celular , Movimento Celular , Glioblastoma/tratamento farmacológico , Camundongos , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa