Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
Sensors (Basel) ; 24(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794020

RESUMO

Waste management is one of the many major challenges faced by all urban cities around the world. With the increase in population, the current mechanisms for waste collection and disposal are under strain. The waste management problem is a global challenge that requires a collaborative effort from different stakeholders. Moreover, there is a need to develop technology-based solutions besides engaging the communities and establishing novel policies. While there are several challenges in waste management, the collection of waste using the current infrastructure is among the top challenges. Waste management suffers from issues such as a limited number of collection trucks, different types of household and industrial waste, and a low number of dumping points. The focus of this paper is on utilizing the available waste collection transportation capacity to efficiently dispose of the waste in a time-efficient manner while maximizing toxic waste disposal. A novel knapsack-based technique is proposed that fills the collection trucks with waste bins from different geographic locations by taking into account the amount of waste and toxicity in the bins using IoT sensors. Using the Knapsack technique, the collection trucks are loaded with waste bins up to their carrying capacity while maximizing their toxicity. The proposed model was implemented in MATLAB, and detailed simulation results show that the proposed technique outperforms other waste collection approaches. In particular, the amount of high-priority toxic waste collection was improved up to 47% using the proposed technique. Furthermore, the number of waste collection visits is reduced in the proposed scheme as compared to the conventional method, resulting in the recovery of the equipment cost in less than a year.

2.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38610235

RESUMO

In a LoRaWAN network, the backend is generally distributed as Software as a Service (SaaS) based on container technology, and recently, a containerized version of the LoRaWAN node stack is also available. Exploiting the disaggregation of LoRaWAN components, this paper focuses on the emulation of complex end-to-end architecture and infrastructures for smart city scenarios, leveraging on lightweight virtualization technology. The fundamental metrics to gain insights and evaluate the scaling complexity of the emulated scenario are defined. Then, the methodology is applied to use cases taken from a real LoRaWAN application in a smart city with hundreds of nodes. As a result, the proposed approach based on containers allows for the following: (i) deployments of functionalities on diverse distributed hosts; (ii) the use of the very same SW running on real nodes; (iii) the simple configuration and management of the emulation process; (iv) affordable costs. Both premise and cloud servers are considered as emulation platforms to evaluate the resource request and emulation cost of the proposed approach. For instance, emulating one hour of an entire LoRaWAN network with hundreds of nodes requires very affordable hardware that, if realized with a cloud-based computing platform, may cost less than USD 1.

3.
Sensors (Basel) ; 24(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38610436

RESUMO

Due to increasing urbanization, nowadays, cities are facing challenges spanning multiple domains such as mobility, energy, environment, etc. For example, to reduce traffic congestion, energy consumption, and excessive pollution, big data gathered from legacy systems (e.g., sensors not conformant with modern standards), geographic information systems, gateways of public administrations, and Internet of Things technologies can be exploited to provide insights to assess the current status of a city. Moreover, the possibility to perform what-if analyses is fundamental to analyzing the impact of possible changes in the urban environment. The few available solutions for scenario definitions and analyses are limited to addressing a single domain and providing proprietary formats and tools, with scarce flexibility. Therefore, in this paper, we present a novel scenario model and editor integrated into the open-source Snap4City.org platform to enable several processing and what-if analyses in multiple domains. Different from state-of-the-art software, the proposed solution responds to a series of identified requirements, implements NGSIv2-compliant data models with formal descriptions of the urban context, and a scenario versioning method. Moreover, it allows us to carry out analyses on different domains, as shown with some examples. As a case study, a traffic congestion analysis is provided, confirming the validity and usefulness of the proposed solution. This work was developed in the context of CN MOST, the National Center on Sustainable Mobility in Italy, and for the Tourismo EC project.

4.
Sensors (Basel) ; 24(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38610556

RESUMO

Rapid global urbanization has led to a growing urban population, posing challenges in transportation management. Persistent issues such as traffic congestion, environmental pollution, and safety risks persist despite attempts to mitigate them, hindering urban progress. This paper focuses on the critical need for accurate traffic flow forecasting, considered one of the main effective solutions for containing traffic congestion in urban scenarios. The challenge of predicting traffic flow is addressed by proposing a two-level machine learning approach. The first level uses an unsupervised clustering model to extract patterns from sensor-generated data, while the second level employs supervised machine learning models. Although the proposed approach requires the availability of data from traffic sensors to realize the training of the machine learning models, it allows traffic flow prediction in urban areas without sensors. In order to verify the prediction capability of the proposed approach, a real urban scenario is considered.

5.
Sensors (Basel) ; 24(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38610286

RESUMO

The Internet of Things (IoT) is a critical component of smart cities and a key contributor to the achievement of the United Nations Sustainable Development Goal (UNSDG) 11: Sustainable Cities and Communities. The IoT is an infrastructure that enables devices to communicate with each other over the Internet, providing critical components for smart cities, such as data collection, generation, processing, analysis, and application handling. IoT-based applications can promote sustainable urban development. Many studies demonstrate how the IoT can improve smart cities' sustainable development. This systematic literature review provides valuable insights into the utilization of the IoT in the context of smart cities, with a particular focus on its implications for sustainable urban development. Based on an analysis of 73 publications, we discuss the role of IoT in the sustainable development of smart cities, focusing on smart communities, smart transportation, disaster management, privacy and security, and emerging applications. In each domain, we have detailed the attributes of IoT sensors. In addition, we have examined various communication technologies and protocols suitable for transmitting sensor-generated data. We have also presented the methods for analyzing and integrating these data within the IoT application layer. Finally, we identify research gaps in the literature, highlighting areas that require further investigation.

6.
Sensors (Basel) ; 24(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123859

RESUMO

The analysis of large volumes of data collected from heterogeneous sources is increasingly important for the development of megacities, the advancement of smart city technologies, and ensuring a high quality of life for citizens. This study aimed to develop algorithms for analyzing and interpreting social media data to assess citizens' opinions in real time and for verifying and examining data to analyze social tension and predict the development of situations during the implementation of urban projects. The developed algorithms were tested using an urban project in the field of transportation system development. The study's material included data from social networks, messenger channels and chats, video hosting platforms, blogs, microblogs, forums, and review sites. An interdisciplinary approach was utilized to analyze the data, employing tools such as Brand Analytics, TextAnalyst 2.32, GPT-3.5, GPT-4, GPT-4o, and Tableau. The results of the data analysis showed identical outcomes, indicating a neutral perception among users and the absence of social tension surrounding the project's implementation, allowing for the prediction of a calm development of the situation. Additionally, recommendations were developed to avert potential conflicts and eliminate sources of social tension for decision-making purposes.

7.
Sensors (Basel) ; 24(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793949

RESUMO

The built environment's impact on human activities has been a hot issue in urban research. Compared to motorized spaces, the built environment of pedestrian and cycling street spaces dramatically influences people's travel experience and travel mode choice. The streets' built environment data play a vital role in urban design and management. However, the multi-source, heterogeneous, and massive data acquisition methods and tools for the built environment have become obstacles for urban design and management. To better realize the data acquisition and for deeper understanding of the urban built environment, this study develops a new portable, low-cost Arduino-based multi-sensor array integrated into a single portable unit for built environment measurements of street cycling spaces. The system consists of five sensors and an Arduino Mega board, aimed at measuring the characteristics of the street cycling space. It takes air quality, human sensation, road quality, and greenery as the detection objects. An integrated particulate matter laser sensor, a light intensity sensor, a temperature and humidity sensor, noise sensors, and an 8K panoramic camera are used for multi-source data acquisition in the street. The device has a mobile power supply display and a secure digital card to improve its portability. The study took Beijing as a sample case. A total of 127.97 G of video data and 4794 Kb of txt records were acquired in 36 working hours using the street built environment data acquisition device. The efficiency rose to 8474.21% compared to last year. As an alternative to conventional hardware used for this similar purpose, the device avoids the need to carry multiple types and models of sensing devices, making it possible to target multi-sensor data-based street built environment research. Second, the device's power and storage capabilities make it portable, independent, and scalable, accelerating self-motivated development. Third, it dramatically reduces the cost. The device provides a methodological and technological basis for conceptualizing new research scenarios and potential applications.

8.
Sensors (Basel) ; 24(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793960

RESUMO

State-of-the-art smart cities have been calling for economic but efficient energy management over a large-scale network, especially for the electric power system. It is a critical issue to monitor, analyze, and control electric loads of all users in the system. In this study, a non-intrusive load monitoring method was designed for smart power management using computer vision techniques popular in artificial intelligence. First of all, one-dimensional current signals are mapped onto two-dimensional color feature images using signal transforms (including the wavelet transform and discrete Fourier transform) and Gramian Angular Field (GAF) methods. Second, a deep neural network with multi-scale feature extraction and attention mechanism is proposed to recognize all electrical loads from the color feature images. Third, a cloud-based approach was designed for the non-intrusive monitoring of all users, thereby saving energy costs during power system control. Experimental results on both public and private datasets demonstrate that the method achieves superior performances compared to its peers, and thus supports efficient energy management over a large-scale Internet of Things network.

9.
Sensors (Basel) ; 24(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793967

RESUMO

The arising of the Cyber-Physical Systems' vision and concepts drives technological evolution toward a new architectural design for the infrastructure of an environment referred to as a Smart Environment. This perspective alters the way systems within Smart City landscapes are conceived, designed, and ultimately realized. Modular architecture, resource-sharing techniques, and precise deployment approaches (such as microservices-oriented or reliant on the FaaS paradigm) serve as the cornerstones of a Smart City cognizant of multiple Cyber-Physical Systems composing it. This paper presents a framework integrating Digital Decisioning, encompassing the automated combination of human-derived knowledge and data-derived knowledge (e.g., business rules and machine learning), to enhance decision-making processes and application definition within the Smart City context.

10.
Sensors (Basel) ; 24(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257573

RESUMO

The high-accuracy and high-stability space-based time system is necessary for satellite navigation systems to achieve high quality of service (QoS) on navigation and positioning in smart city applications. This paper proposes a precise and high-stability space-based time system established under the autonomous time scale of navigation satellites. The generation, maintenance, and transfer of high-precision space-based time references are researched. A centralized time comparison method based on the ALGOS algorithm conducts the two-way time comparison of the inter-satellite link. Specifically, using the relative clock difference observations of all links between satellites for a certain period of time, the clock difference, clock speed, and clock drift parameters of n-1 stars in a constellation of n stars relative to the same reference can be estimated simultaneously. Simulations are conducted on real collected data from the Beidou navigation systems when providing services to smart cities around the world. The simulation results show the high accuracy and stability of the proposed space-based time system under the autonomous time scale reference. Moreover, the clock offset monitoring arc coverage is much higher than the satellite clock offset obtained by the direct observation of the satellite and the anchor station. It proves the efficiency of the proposed space-based time system to be used for satellite clock offset modeling and prediction.

11.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38400445

RESUMO

With the advent of IoT, cities will soon be populated by autonomous vehicles and managed by intelligent systems capable of actively interacting with city infrastructures and vehicles. In this work, we propose a model based on reinforcement learning that teaches to autonomous connected vehicles how to save resources while navigating in such an environment. In particular, we focus on budget savings in the context of auction-based intersection management systems. We trained several models with Deep Q-learning by varying traffic conditions to find the most performance-effective variant in terms of the trade-off between saved currency and trip times. Afterward, we compared the performance of our model with previously proposed and random strategies, even under adverse traffic conditions. Our model appears to be robust and manages to save a considerable amount of currency without significantly increasing the waiting time in traffic. For example, the learner bidder saves at least 20% of its budget with heavy traffic conditions and up to 74% in lighter traffic with respect to a standard bidder, and around three times the saving of a random bidder. The results and discussion suggest practical adoption of the proposal in a foreseen future real-life scenario.

12.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38610248

RESUMO

IoT (Internet-of-Things)-powered devices can be exploited to connect vehicles to smart city infrastructure, allowing vehicles to share their intentions while retrieving contextual information about diverse aspects of urban viability. In this paper, we place ourselves in a transient scenario in which next-generation vehicles that are able to communicate with the surrounding infrastructure coexist with traditional vehicles with limited or absent IoT capabilities. We focus on intersection management, in particular on reusing existing traffic lights empowered by a new management system. We propose an auction-based system in which traffic lights are able to exchange contextual information with vehicles and other nearby traffic lights with the aim of reducing average waiting times at intersections and consequently overall trip times. We use bid propagation to improve standard vehicle trip times while allowing emergency vehicles to free up the way ahead without needing ad hoc system for such vehicle, only an increase in their budget. The proposed system is then tested against two baselines: the classical Fixed Time Control system currently adopted for traffic lights, and an auction strategy that does not exploit traffic light coordination. We performed a large set of experiments using the well known MATSim transport simulator on both a synthetic Manhattan map and on a map we built of an urban area located in Modena, Northern Italy. Our results show that the proposed approach performs better than the classical fixed time control system and the auction strategy that does not exploit coordination among traffic lights.

13.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610370

RESUMO

Smart cities facilitate the comprehensive management and operation of urban data generated within a city, establishing the foundation for smart services and addressing diverse urban challenges. A smart system for public laundry management uses artificial intelligence-based solutions to solve the challenges of the inefficient utilization of public laundries, waiting times, overbooking or underutilization of machines, balancing of loads across machines, and implementation of energy-saving features. We propose SmartLaundry, a real-time system design for public laundry smart recommendations to better manage the loads across connected machines. Our system integrates the current status of the connected devices and data-driven forecasted usage to offer the end user connected via a mobile application a list of recommended machines that could be used. We forecast the daily usage of devices using traditional machine learning techniques and deep learning approaches, and we perform a comparative analysis of the results. As a proof of concept, we create a simulation of the interaction with our system.

14.
Sensors (Basel) ; 24(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38931665

RESUMO

Process algebra is one of the most suitable formal methods to model smart IoT systems for smart cities. Each IoT in the systems can be modeled as a process in algebra. In addition, the nondeterministic behavior of the systems can be predicted by defining probabilities on the choice operations in some algebra, such as PALOMA and PACSR. However, there are no practical mechanisms in algebra either to measure or control uncertainty caused by the nondeterministic behavior in terms of satisfiability of the system requirements. In our previous research, to overcome the limitation, a new process algebra called dTP-Calculus was presented to verify probabilistically the safety and security requirements of smart IoT systems: the nondeterministic behavior of the systems was defined and controlled by the static and dynamic probabilities. However, the approach required a strong assumption to handle the unsatisfied probabilistic requirements: enforcing an optimally arbitrary level of high-performance probability from the continuous range of the probability domain. In the paper, the assumption from the previous research is eliminated by defining the levels of probability from the discrete domain based on the notion of Permissible Process and System Equivalences so that satisfiability is incrementally enforced by both Permissible Process Enhancement in the process level and Permissible System Enhancement in the system level. In this way, the unsatisfied probabilistic requirements can be incrementally enforced with better-performing probabilities in the discrete steps until the final decision for satisfiability can be made. The SAVE tool suite has been developed on the ADOxx meta-modeling platform to demonstrate the effectiveness of the approach with a smart EMS (emergency medical service) system example, which is one of the most practical examples for smart cities. SAVE showed that the approach is very applicable to specify, analyze, verify, and especially, predict and control uncertainty or risks caused by the nondeterministic behavior of smart IoT systems. The approach based on dTP-Calculus and SAVE may be considered one of the most suitable formal methods and tools to model smart IoT systems for smart cities.

15.
Sensors (Basel) ; 24(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38931546

RESUMO

The growing interest in building data management, especially the building information model (BIM), has significantly influenced urban management, materials supply chain analysis, documentation, and storage. However, the integration of BIM into 3D GIS tools is becoming more common, showing progress beyond the traditional problem. To address this, this study proposes data transformation methods involving mapping between three domains: industry foundation classes (IFC), city geometry markup language (CityGML), and web ontology framework (OWL)/resource description framework (RDF). Initially, IFC data are converted to CityGML format using the feature manipulation engine (FME) at CityGML standard's levels of detail 4 (LOD4) to enhance BIM data interoperability. Subsequently, CityGML is converted to the OWL/RDF diagram format to validate the proposed BIM conversion process. To ensure integration between BIM and GIS, geometric data and information are visualized through Cesium Ion web services and Unreal Engine. Additionally, an RDF graph is applied to analyze the association between the semantic mapping of the CityGML standard, with Neo4j (a graph database management system) utilized for visualization. The study's results demonstrate that the proposed data transformation methods significantly improve the interoperability and visualization of 3D city models, facilitating better urban management and planning.

16.
Sensors (Basel) ; 24(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38610580

RESUMO

This paper contributes to the development of a Next Generation First Responder (NGFR) communication platform with the key goal of embedding it into a smart city technology infrastructure. The framework of this approach is a concept known as SmartHub, developed by the US Department of Homeland Security. The proposed embedding methodology complies with the standard categories and indicators of smart city performance. This paper offers two practice-centered extensions of the NGFR hub, which are also the main results: first, a cognitive workload monitoring of first responders as a basis for their performance assessment, monitoring, and improvement; and second, a highly sensitive problem of human society, the emergency assistance tools for individuals with disabilities. Both extensions explore various technological-societal dimensions of smart cities, including interoperability, standardization, and accessibility to assistive technologies for people with disabilities. Regarding cognitive workload monitoring, the core result is a novel AI formalism, an ensemble of machine learning processes aggregated using machine reasoning. This ensemble enables predictive situation assessment and self-aware computing, which is the basis of the digital twin concept. We experimentally demonstrate a specific component of a digital twin of an NGFR, a near-real-time monitoring of the NGFR cognitive workload. Regarding our second result, a problem of emergency assistance for individuals with disabilities that originated as accessibility to assistive technologies to promote disability inclusion, we provide the NGFR specification focusing on interactions based on AI formalism and using a unified hub platform. This paper also discusses a technology roadmap using the notion of the Emergency Management Cycle (EMC), a commonly accepted doctrine for managing disasters through the steps of mitigation, preparedness, response, and recovery. It positions the NGFR hub as a benchmark of the smart city emergency service.


Assuntos
Desastres , Serviços Médicos de Emergência , Socorristas , Humanos , Cidades , Benchmarking
17.
Sensors (Basel) ; 24(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38610447

RESUMO

In Portugal, more than 98% of domestic cooking oil is disposed of improperly every day. This avoids recycling/reconverting into another energy. Is also may become a potential harmful contaminant of soil and water. Driven by the utility of recycled cooking oil, and leveraging the exponential growth of ubiquitous computing approaches, we propose an IoT smart solution for domestic used cooking oil (UCO) collection bins. We call this approach SWAN, which stands for Smart Waste Accumulation Network. It is deployed and evaluated in Portugal. It consists of a countrywide network of collection bin units, available in public areas. Two metrics are considered to evaluate the system's success: (i) user engagement, and (ii) used cooking oil collection efficiency. The presented system should (i) perform under scenarios of temporary communication network failures, and (ii) be scalable to accommodate an ever-growing number of installed collection units. Thus, we choose a disruptive approach from the traditional cloud computing paradigm. It relies on edge node infrastructure to process, store, and act upon the locally collected data. The communication appears as a delay-tolerant task, i.e., an edge computing solution. We conduct a comparative analysis revealing the benefits of the edge computing enabled collection bin vs. a cloud computing solution. The studied period considers four years of collected data. An exponential increase in the amount of used cooking oil collected is identified, with the developed solution being responsible for surpassing the national collection totals of previous years. During the same period, we also improved the collection process as we were able to more accurately estimate the optimal collection and system's maintenance intervals.

18.
J Environ Manage ; 355: 120568, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460329

RESUMO

Urban greenness serves as a key indicator of sustainable urban development, with smart city construction emerging as a primary strategy for its enhancement. However, there is little empirical evidence considering multi-dimension between urban greenness and smart city construction on the city level. This study focuses on the impact on urban greenness of smart city construction in megacities, using the difference-in-differences regression model to evaluate the impact based on urban development conditions in various aspects from 2010 to 2021 in 10 megacities in China. The results of panel data of different indicator samples show unique conclusions. First, smart city pilot policy in megacities has significant impact on urban greenness, primarily due to demographic and economic developments. Second, the impact is different between the megacity and national level, and different factors of urban greenness have different effects on smart city construction. Third, the effects are time-lagged and lasted for years, and regional heterogeneity divided by building climate zones is existed, where the effect is more obvious in city agglomeration. These findings of smart city construction reveal the unique influences on megacity greenness, and can be generalized to cities with similar characteristics accordingly.


Assuntos
Desenvolvimento Sustentável , Reforma Urbana , Cidades , China , Clima , Desenvolvimento Econômico
19.
J Environ Manage ; 365: 121469, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955046

RESUMO

Promoting the formation of the green lifestyle (GL) is a crucial step in achieving comprehensive green transformation of urban economic and social development. The widespread adoption of GL is influenced by various environmental regulations. Previous research mainly focused on the impact of individual policies on GL from the single policy perspective. The mechanisms of the combined effects of policies have not been thoroughly explored, particularly the contributions of each policy during periods of overlap. This paper takes the dual-policy of the New-type Urbanization Policy (NUP) and Smart City Policy (SCP) in China as an example. It employs panel data collected from 271 cities in China during 2007-2019 and establishes a multi-period difference-in-difference model to identify the combined effects of the dual-policy on residents' GL. Additionally, the Shapley value decomposition method is utilized to identify the contribution magnitude of each policy when they act simultaneously. The following conclusions are yielded. Firstly, the combined effects of dual-policy are more effective than a single policy in influencing residents' GL. Secondly, the Shapley value decomposition method reveals that when both policies are simultaneously implemented, SCP contributes a greater weight compared to NUP. Thirdly, the dual-policy can promote residents' adoption of GL through mechanisms such as green technological innovation, public participation in environmental protection, and the agglomeration of tertiary industries. Fourthly, the impact of dual-policy on residents' GL varies across different types and sizes of cities. This study attempts to unseal the "black box" of how the dual-policy influences residents' GL during the green transformation of cities in China, providing theoretical references for relevant urban policies in other countries and contributing to Chinese solutions and experience to global urban green development.


Assuntos
Cidades , Estilo de Vida , Urbanização , China , Humanos , Conservação dos Recursos Naturais
20.
Environ Monit Assess ; 196(8): 720, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985219

RESUMO

Managing e-waste involves collecting it, extracting valuable metals at low costs, and ensuring environmentally safe disposal. However, monitoring this process has become challenging due to e-waste expansion. With IoT technology like LoRa-LPWAN, pre-collection monitoring becomes more cost-effective. Our paper presents an e-waste collection and recovery system utilizing the LoRa-LPWAN standard, integrating intelligence at the edge and fog layers. The system incentivizes WEEE holders, encouraging participation in the innovative collection process. The city administration oversees this process using innovative trucks, GPS, LoRaWAN, RFID, and BLE technologies. Analysis of IoT performance factors and quantitative assessments (latency and collision probability on LoRa, Sigfox, and NB-IoT) demonstrate the effectiveness of our incentive-driven IoT solution, particularly with LoRa standard and Edge AI integration. Additionally, cost estimates show the advantage of LoRaWAN. Moreover, the proposed IoT-based e-waste management solution promises cost savings, stakeholder trust, and long-term effectiveness through streamlined processes and human resource training. Integration with government databases involves data standardization, API development, security measures, and functionality testing for efficient management.


Assuntos
Resíduo Eletrônico , Gerenciamento de Resíduos , Gerenciamento de Resíduos/métodos , Inteligência Artificial , Monitoramento Ambiental/métodos , Internet das Coisas , Conservação dos Recursos Naturais/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa