Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Environ Sci Technol ; 58(22): 9624-9635, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38772914

RESUMO

Low-carbon technologies are essential for the aluminum industry to meet its climate targets despite increasing demand. However, the penetration of these technologies is often delayed due to the long lifetimes of the industrial assets currently in use. Existing models and scenarios for the aluminum sector omit this inertia and therefore potentially overestimate the realistic mitigation potential. Here, we introduce a technology-explicit dynamic material flow model for the global primary (smelters) and secondary (melting furnaces) aluminum production capacities. In business-as-usual scenarios, we project emissions from smelters and melting furnaces to rise from 710 Mt CO2-eq./a in 2020 to 920-1400 Mt CO2-eq./a in 2050. Rapid implementation of inert anodes in smelters can reduce emissions by 14% by 2050. However, a limitation of emissions compatible with a 2 °C scenario requires combined action: (1) an improvement of collection and recycling systems to absorb all the available postconsumer scrap, (2) a fast and wide deployment of low-carbon technologies, and (3) a rapid transition to low-carbon electricity sources. These measures need to be implemented even faster in scenarios with a stronger increase in aluminum demand. Lock-in effects are likely: building new capacity using conventional technologies will compromise climate mitigation efforts and would require premature retirement of industrial assets.


Assuntos
Alumínio , Modelos Teóricos , Carbono , Tecnologia , Reciclagem
2.
Ecotoxicology ; 33(1): 66-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38183574

RESUMO

Species-specific anatomical and morphological characteristics of Pinus sylvestris and Larix sibirica needles were studied at different levels of tree stand pollution by aluminum smelter emissions. The anatomical characteristics of the needle were studied using light microscopy. The level of tree stand pollution was determined using the cluster analysis outcomes of the pollutant elements content (fluorine, sulfur, and heavy metals) in the needles. Four levels of tree stand pollution were separated: low, moderate, high, and critical, as well as background tree stand in unpolluted areas. It was found that the state of tree phytomass deteriorated with increasing levels of pollution (from low to critical): pine crown defoliation increased to 85%, and larch defoliation increased to 65%. The life span of pine needles was reduced to 2-3 years, with a background value of 6-7 years. The change of morphological parameters was more pronounced in P. sylvestris: the weight and length of the 2-year-old shoot decreased by 2.7-3.1 times compared to the background values; the weight of needles on the shoot and the number of needle pairs on the shoot-by 1.9-2.1 times. The length of the needle and shoot and the number of L. sibirica brachyblasts decreased by 1.8-1.9 times. The anatomical parameters of the needle also changed to a greater extent in P. sylvestris. Up to the high level of tree pollution, we observed a decrease in the cross-sectional area of the needle, central cylinder, vascular bundle, area and thickness of mesophyll, number and diameter of resin ducts by 18-66% compared to background values. At the critical pollution level, when the content of pollutant elements in pine needles reached maximum values, the anatomical parameters of the remaining few green needles were close to background values. In our opinion, this may be due to the activation of mechanisms aimed at maintaining the viability of trees. A reduction in thickness and area of assimilation tissue in the L. sibirica needle was detected only at the critical pollution level. An upward trend in these parameters was found at low, medium, and high pollution levels of tree stand, which may indicate an adaptive nature. The results suggested that at a similar pollution level of trees, the greatest amount of negative anatomical and morphological changes were recorded in pine needles, which indicates a greater sensitivity of this species to technogenic emissions.


Assuntos
Poluentes Ambientais , Larix , Pinus sylvestris , Pinus , Alumínio , Pinus/fisiologia , Árvores
3.
Environ Monit Assess ; 196(5): 448, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607467

RESUMO

Soil in mining wastelands is seriously polluted with heavy metals. Zero-valent iron (ZVI) is widely used for remediation of heavy metal-polluted soil because of its excellent adsorption properties; however, the remediation process is affected by complex environmental conditions, such as acid rain and freeze-thaw cycles. In this study, the effects of different pH values and freeze-thaw cycles on remediation of antimony (Sb)- and arsenic (As)-contaminated soil by ZVI were investigated in laboratory simulation experiments. The stability and potential human health risks associated with the remediated soil were evaluated. The results showed that ZVI has a significant stabilizing effect on Sb and As in both acidic and alkaline soils contaminated with dual levels of Sb and As, and the freeze-thaw process in different pH value solution systems further enhances the ability of ZVI to stabilize Sb and As, especially in acidic soils. However, it should be noted that apart from the pH=1.0 solution environment, ZVI's ability to stabilize As is attenuated under other circumstances, potentially leading to leaching of its unstable form and thereby increasing contamination risks. This indicates that the F1 (2% ZVI+pH=1 solution+freeze-thaw cycle) processing exhibits superior effectiveness. After F1 treatment, the bioavailability of Sb and As in both soils also significantly decreased during the gastric and intestinal stages (about 60.00%), the non-carcinogenic and carcinogenic risks of Sb and As in alkaline soils are eliminated for children and adults, with a decrease ranging from 60.00% to 70.00%, while in acidic soil, the non-carcinogenic and carcinogenic risks of As to adults and children is acceptable, but Sb still poses non-carcinogenic risks to children, despite reductions of about 65.00%. These findings demonstrate that soil pH is a crucial factor influencing the efficacy of ZVI in stabilizing Sb and As contaminants during freeze-thaw cycles. This provides a solid theoretical foundation for utilizing ZVI in the remediation of Sb- and As-contaminated soils, emphasizing the significance of considering both pH levels and freeze-thaw conditions to ensure effective and safe treatment.


Assuntos
Antimônio , Arsênio , Humanos , Adulto , Criança , Ferro , Monitoramento Ambiental , Medição de Risco , Solo , Concentração de Íons de Hidrogênio
4.
J Environ Sci (China) ; 144: 100-112, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38802223

RESUMO

The abandoned smelters present a substantial pollution threat to the nearby soil and groundwater. In this study, 63 surface soil samples were collected from a zinc smelter to quantitatively describe the pollution characteristics, ecological risks, and source apportionment of heavy metal(loid)s (HMs). The results revealed that the average contents of Zn, Cd, Pb, As, and Hg were 0.4, 12.2, 3.3, 5.3, and 12.7 times higher than the risk screening values of the construction sites, respectively. Notably, the smelter was accumulated heavily with Cd and Hg, and the contribution of Cd (0.38) and Hg (0.53) to ecological risk was 91.58%. ZZ3 and ZZ7 were the most polluted workshops, accounting for 25.7% and 35.0% of the pollution load and ecological risk, respectively. The influence of soil parent materials on pollution was minor compared to various workshops within the smelter. Combined with PMF, APCS-MLR and GIS analysis, four sources of HMs were identified: P1(25.5%) and A3(18.4%) were atmospheric deposition from the electric defogging workshop and surface runoff from the smelter; P2(32.7%) and A2(20.9%) were surface runoff of As-Pb foul acid; P3(14.5%) and A4(49.8%) were atmospheric deposition from the leach slag drying workshop; P4(27.3%) and A1(10.8%) were the smelting process of zinc products. This paper described the distribution characteristics and specific sources of HMs in different process workshops, providing a new perspective for the precise remediation of the smelter by determining the priority control factors.


Assuntos
Monitoramento Ambiental , Metalurgia , Metais Pesados , Poluentes do Solo , Zinco , Metais Pesados/análise , Zinco/análise , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Sistemas de Informação Geográfica , Modelos Químicos
5.
Microb Ecol ; 86(4): 2894-2903, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37632540

RESUMO

Peatlands store approximately one-half of terrestrial soil carbon and one-tenth of non-glacial freshwater. Some of these important ecosystems are located near heavy metal emitting smelters. To improve the understanding of smelter impacts and potential recovery after initial pollution controls in the 1970s (roughly 50 years of potential recovery), we sampled peatlands along a distance gradient of 134 km from a smelter in Sudbury, Ontario, Canada, an area with over a century of nickel (Ni) and copper (Cu) mining activity. This work is aimed at evaluating potential shifts in bacterial and archaeal community structures in Sphagnum moss and its underlying peat within smelter-impacted poor fens. In peat, total Ni and Cu concentrations were higher (0.062-0.067 and 0.110-0.208 mg/g, respectively) at sites close to the smelter and exponentially dropped with distance from the smelter. This exponential decrease in Ni concentrations was also observed in Sphagnum. 16S rDNA amplicon sequencing showed that peat and Sphagnum moss host distinct microbiomes with peat accommodating a more diverse community structure. The microbiomes of Sphagnum were dominated by Proteobacteria (62.5%), followed by Acidobacteria (11.9%), with no observable trends with distance from the smelter. Dominance of Acidobacteria (32.4%) and Proteobacteria (29.6%) in peat was reported across all sites. No drift in taxonomy was seen across the distance gradient or from the reference sites, suggesting a potential microbiome recovery toward that of the reference peatlands microbiomes after decades of pollution controls. These results advance the understanding of peat and Sphagnum moss microbiomes, as well as depict the sensitivities and the resilience of peatland ecosystems.


Assuntos
Metais Pesados , Sphagnopsida , Ecossistema , Solo/química , Ontário
6.
Biometals ; 36(4): 847-864, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36463375

RESUMO

Red blood cell parameters were assessed in a natural population of the northern red-backed vole (Clethrionomys rutilus Pallas, 1779) in the zone of influence of the Kirovgrad Copper Smelter along a gradient of pollution by heavy metals (Cu, Zn, Cd, and Pb) at three catching sites (polluted [Imp] and controls [Bg-1, and Bg-2]). The difference of the smelter area (Imp group of voles) from both background groups (Bg-1 and Bg-2) was proven by means of a set of 13 parameters in univariate and multivariate analyses. Among the detected erythrocyte disturbances, we noted the following: a decrease in activities of Na+,K+-ATPase and antioxidant enzymes (SOD, GSH-Px, and CAT); an increase in the concentration of lipid peroxidation products, in osmotic fragility, and in intravascular hemolysis; interruption of carbohydrate metabolism; and lowered oxygen-carrying capacity. A higher load of Cd (p = 0.0009) and possibly Pb (p = 0.054) in the Imp animals was confirmed by quantitation of heavy metals in the liver. Most erythrocyte parameters (11 out of 13) covaried with individual Cd load by obeying a semilogarithmic dependence; such a relation was not found for Cu, Zn, and Pb. A decrease in the growth rate of structural and functional erythrocyte aberrations ("resistance improvement") with increasing cadmium load is probably due to compensatory enhancement of the synthesis of metallothioneins in the liver and kidneys and hence a greater proportion of Cd bound to metallothioneins. Problems of differences/similarities in Cd-associated reactivity among the animals are discussed too, taking into account the catching sites (polluted [Imp] and controls [Bg-1, and Bg-2]) and reproductive-age (i.e., immature underyearlings, mature underyearlings, and individuals that overwintered). The persistence of differences in erythrocyte status observed by us between the Imp and background groups after normalization to Cd load may be due to the action of other (unexamined) adverse factors and calls for further ecotoxicological studies.


Assuntos
Metais Pesados , Poluentes do Solo , Animais , Cobre/análise , Cádmio/toxicidade , Cádmio/análise , Chumbo , Arvicolinae , Eritrócitos/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-36661379

RESUMO

The content of 41 chemical elements (Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Rb, Sb, Sc, Se, Sm, Sr, Tb, Th, Ti, Tm, U, V, W, and Zn) was determined in attic dust, household dust and soil samples collected from 33 houses in the area of the town of Veles, North Macedonia. Silver, Cd, Cu, Li, P, and, Pb were analyzed by inductively coupled plasma - atomic emission spectrometry while the other elements were analyzed by neutron activation analysis. The study area has been continuously exposed to high amounts of potentially toxic elements due to the emission from an abandoned Pb-Zn smelter plant. In this study, attic and household dust together with soil samples collected from the yards of the houses were used to assess the level of historical and present air contamination by potentially toxic elements. It was found that the contents of Ag, As, Cd, Cu, In, Pb, Sb, Se, and, Zn in dust samples represented an anthropogenic association of elements, with very high contents in samples collected from the town of Veles, which is close to the Pb-Zn smelter, compared with those collected from the mountainous area.


Assuntos
Metais Pesados , Oligoelementos , Metais Pesados/análise , Poeira/análise , Chumbo/análise , Cádmio/análise , República da Macedônia do Norte , Monitoramento Ambiental/métodos , Lítio , Zinco/análise , Solo/química , Oligoelementos/análise
8.
Environ Geochem Health ; 45(7): 5467-5480, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37099043

RESUMO

Antimony (Sb) and arsenic (As) co-contamination occurs in Sb smelting areas and is harmful to the surrounding ecological environment. The purpose of this study is to explore the spatial distribution characteristics of Sb and As in abandoned Sb smelting area and carry out risk assessments. Soil samples were collected from the smelting area profile and background points, and groundwater samples were also collected. Samples from two geological background sections were collected to understand the geological background characteristics of Sb and As. The spatial distribution was drawn via the inverse distance weighted interpolation method. The hazard assessment was carried out by the geo-accumulation index and potential ecological hazard methods. The results showed that special high geological background value of Sb and As in study area. Sb and As co-contamination is one of the characters in soil. And the contents of Sb and As decrease as depth increases, reflecting the weak migration capacity. The spatial distribution of Sb and As is affected by slag distribution and rainfall leaching. The Sb content in groundwater was higher in the wet and normal seasons than in the dry season, slag leaching may be one of the elements. The potential ecological hazards of Sb and As are high and considerable, respectively. In abandoned smelting area with high geological background values, it is necessary to focus on the pollution abatement and protection of ecological health.


Assuntos
Arsênio , Poluentes do Solo , Antimônio/análise , Arsênio/análise , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Solo , China , Medição de Risco
9.
Environ Monit Assess ; 195(6): 782, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261617

RESUMO

Community gardens have been seen sprouting up in and around urban settings such as Philadelphia and Pittsburgh over the past several decades. Due to the long histories of industrial activities and urbanization, these soils in urban regions may be at a high risk for various contaminants such as metals and metalloids. Using inductively coupled plasma mass spectrometry (ICP-MS), we measured 7 elements (lead (Pb), zinc (Zn), copper (Cu), vanadium (V), cadmium (Cd), nickel (Ni), and arsenic (As)) in soil samples collected from a total of 21 community gardens in Philadelphia City, Philadelphia suburban areas, and Pittsburgh City during September and October 2021. We found that the city areas in Philadelphia and Pittsburgh had higher elemental concentrations in community garden soils compared to the suburbs. We found that all elements except vanadium were below the Pennsylvania Department of Environmental Protection (PADEP) guidelines. When compared to more stringent Canadian Council of Ministers of the Environment (CCME) guidelines of a maximum of 140 mg/kg of lead in the soil, 36% percent of Philadelphia community gardens, 60% of Pittsburgh gardens, and 20% of the Philadelphia suburb gardens exceeded the CCME guideline. In Philadelphia city, generally, elemental concentrations exhibited a negative trend with increasing distance to historical smelter locations, although a significant correlation was observed for only zinc. We found that the soil from the raised beds had lower concentrations of lead and arsenic, but many of the samples from the raised beds had higher concentrations of zinc, copper, vanadium, and nickel. This discrepancy in raised beds is most likely attributed to these elements being actively deposited in the soil from present day sources such as vehicles on the road and active industrial sites. Understanding and recognizing such variations of these contaminants in community gardens are essential to understanding how industrial legacies and modern pollution continue to put urban communities at a disproportionate risk of health impacts.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Jardins , Níquel/análise , Cobre/análise , Solo/química , Vanádio/análise , Arsênio/análise , Philadelphia , Monitoramento Ambiental/métodos , Canadá , Zinco/análise , Poluentes do Solo/análise , Metais Pesados/análise
10.
Environ Monit Assess ; 195(10): 1165, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676510

RESUMO

This study investigates the characteristics of potentially toxic elements in soils collected from the vicinity of a lead smelter in East Java, Indonesia. The objective is to assess the impact of the lead smelter on the surrounding soil. The study involves chemical composition analysis, spatial distribution mapping, and potential ecological and health risk assessments. Soil samples were collected from the surface area (0-10 cm) and subsurface (15-30 cm) within radii of 1.5 km, 3 km, and 5 km from the lead smelter. The samples were analyzed for As, Cr, Cu, Ni, Pb, and Zn using energy-dispersive X-ray fluorescence. Principal component analysis (PCA) was performed to identify the sources of potentially toxic elements in the soil. The results indicate severe Pb contamination within a 1.5 km radius of the smelter, with an average contamination factor (Cf) value of 22.0, posing a high potential health risk. The contamination factor indicated that the soils were heavily polluted by As and Pb and moderately polluted by Cu, Ni, and Zn. The results of PCA showed that smelter releases are the main source of potentially toxic element contamination in the soil, accounting for 66.2%. The health risk assessment suggested that the children and adults in the study region were exposed to non-carcinogenic risks caused by As and Pb. Oral ingestion was identified as the primary exposure route impacting health risks. The carcinogenic risk from potentially toxic elements in soil was found to exceed the acceptable level for children and adults in the study region. Therefore, it is necessary for the government to take effective measures, including designing regulations and interventions, and improving lead smelter management to mitigate potential contamination and minimize the impact of lead smelter releases on the surrounding environment, especially to protect human health, particularly that of children.


Assuntos
Monitoramento Ambiental , Chumbo , Adulto , Criança , Humanos , Indonésia , Medição de Risco , Carcinógenos , Solo
11.
Int Arch Occup Environ Health ; 95(2): 365-375, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34609586

RESUMO

OBJECTIVE: Copper smelter workers are exposed to harmful chemical agents in dust and fumes which contain harmful metals such as copper and arsenic. These substances are known to be respiratory irritants. METHODS: This study aimed at investigating the effect of occupational exposure to copper and arsenic on the respiratory system. A group of 75 male exposed workers, and 75 male administrative employees (control group) were recruited from a secondary copper smelting factory. Full history, complete clinical examination, ventilatory function parameters (FVC, FEV1, FVC/FEV1 and FEF), and chest X-ray were done for both groups. Serum levels of ICAM-1 and IL8 (as markers of epithelial injury) were measured by ELISA. Serum copper and arsenic were measured by atomic absorption spectrophotometer. RESULTS: The exposed group was associated with increased respiratory symptoms, higher serum copper, arsenic, and ICAM-1and Il-8 as compared to the control group. There was a significant decrease in ventilatory parameters among the exposed group: 58.7% of the exposed group had restrictive lung impairment, 40% had obstructive impairment. In the exposed group a positive correlation between serum copper, arsenic and serum ICAM and IL8 was found. While a negative correlation was observed between both serum ICAM, IL8 and ventilatory parameters among the exposed group. Moreover, 36% of the exposed group had radiological infiltrates on chest X.ray. CONCLUSION: Occupational exposure to copper and arsenic was associated with ventilatory and radiological impairment, with a corresponding increase in the serum level of ICAM-1 and IL8, which can be used as biomarkers for pulmonary impairment among copper smelter workers.


Assuntos
Arsênio , Exposição Ocupacional , Cobre , Humanos , Interleucina-8 , Pulmão , Masculino , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise
12.
Ecotoxicol Environ Saf ; 233: 113312, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217308

RESUMO

Arsenic and antimony are common toxic metalloids found in associated minerals. These metalloids generally cause high-concentration pollution in non-ferrous metal smelting soils; however, few studies have investigated the pollution characteristics of these two metalloids at non-ferrous smelting sites using varying soil particle sizes. In this study, the valency distributions and geochemical fractions were investigated with varying soil particle sizes (≤ 0.05, 0.05-0.25, 0.25-1, and 1-2 mm). Soils were mainly concentrated in ≤ 0.05 and 0.05-0.25 mm with mass percentages of 32.97% and 29.02%, respectively. The highest total As and Sb concentrations in ≤ 0.05 mm were found to be 20,350 and 3655 mg/kg, respectively. In addition, As(Ⅲ), As(Ⅴ), Sb(Ⅲ), and Sb(Ⅴ) concentrations in this soil particle size were found to be 224, 19,813, 1036, and 24 mg/kg, respectively. The geochemical fractions of As and Sb in varying soil particle sizes were mainly residual, accounting for 50% and 90% in the ≤ 0.05 mm. Soil may bind ≤ 0.25 mm due to the disparity found in the geochemical compositions and valency distributions of arsenic and antimony. X-ray diffraction and scanning electron microscopy/energy dispersive system analysis confirmed that arsenolite accumulated in particle sizes of ≤ 0.05 and 0.05-0.25 mm. The results of this study may provide a scientific reference for risk assessment and restoration strategies for non-ferrous metal smelting soils.


Assuntos
Arsênio , Poluentes do Solo , Antimônio/análise , Arsênio/análise , Monitoramento Ambiental , Tamanho da Partícula , Solo/química , Poluentes do Solo/análise
13.
Ecotoxicology ; 31(10): 1492-1505, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36445649

RESUMO

Changes in the antioxidant protection system of Larix sibirica Ledeb at different pollution levels caused by emissions from a large aluminum smelter (BrAS) have been studied. We revealed that the content of peroxide (H2O2) in the needles is a reliable marker of oxidative stress in the trees under pollution. The crucial role of non-enzymatic components, in particular, proline, phenolic compounds, ascorbic acid, glutathione, in reducing the level of free radicals in the needles cells was found. Proline concentration in the needles significantly rises with the increase in pollution levels from low to high. Under critical level pollution, it decreases by 40% compared to the background. The total content of ascorbic acid (ASC) in the needles of polluted trees varies slightly; however, there are significant changes in its various forms. With an increase in pollution to a high level, the content of the reduced form of ASC in the needles increases by 1.5-2.9 times compared to the background content. At a critical level of pollution, the total level of ascorbic acid and its reduced form falls, the content of the oxidized form reaches minimum values. The total content of phenolic compounds in the needles increased by 50-55%, concentration of flavonoids by 1.5-1.8 times, catechins by 1.9-2.5 times, proanthocyanidins by 45% compared to the background level under low, moderate, high pollution, whereas under critical pollution their content decreased. The absolute concentration of the reduced form glutathione in the needles falls by 1.9-3.0 times, the oxidized form increases by 1.5-2.0 times compared to the background. The ratio of reduced glutathione to oxidized glutathione decreased, especially during critical pollution. The data obtained show significant activation of Siberian larch biochemical protection at low, moderate and high levels of pollution by the aluminum smelter emissions. At a critical levels of contamination, a significant depletion of the pool of low-molecular antioxidants was observed.


Assuntos
Antioxidantes , Larix , Alumínio , Peróxido de Hidrogênio , Peso Molecular , Ácido Ascórbico , Glutationa , Prolina
14.
Ecotoxicology ; 30(10): 2083-2095, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34546442

RESUMO

Changes in the fatty acid (FA) composition of total lipids of Pinus sylvestris needles at different pollution levels caused by emissions from a large aluminum smelter (BrAS) have been studied. In the needles of trees from unpolluted (background) territories, the FA spectrum is represented by 24 acids with prevalence of unsaturated FAs (71.6%). The main unsaturated FA are represented by oleic (C18: 1ω9), linoleic (C18: 2ω6), and α-linolenic (C18: 3ω3) acids. Under the influence of BrAS emissions, the total amount of identified FAs in the needles and the proportion of unsaturated FAs decrease, while the fraction of saturated FAs, on the contrary, increases from 25.4% in unpolluted needles to 33.2% in polluted ones. The content of palmitic FA (C16:0) in the needles exceeds background values by 1.5 times, behenic acid (C22:0) - by 1.6-2.5 times, arachidic acid (C20:0) - by 1.5 times, palmitic margaric acid (C17:0) - by 1.5-2.3 times. These FAs play the important role in the protection of plant membranes from the effects of abiotic stress factors, making them less permeable. The sum of short-chain saturated FAs (C12:0, C14:0, C15:0) increase by 4.8 times in needles of trees that are highly polluted. Pentadecanoic (C15:0) acid is found in the needles only in the background areas and at the low pollution level. With a more severe pollution, C15:0 is not identified, but lauric acid with the cis-configuration of double bonds in the structure (izo-C12:0) appears. The presence of "relict" ∆5-polymethylene FAs in the composition of pine needle membrane lipids is determined. In the background areas, they account for 12.9% of the total FAs. With the industrial pollution intensification, their total content increases and reaches 14.1%. ∆5-polymethylene FAs are also able to protect membranes against negative influences. Thus, changes in the quantitative and qualitative FA composition of pine needle total lipids indicate the activation of the stabilization mechanisms of membrane lipids due to their tight packing in a bilayer. It is one of the adaptive reactions of Pinus sylvestris in response to the impact of the aluminum industry emissions.


Assuntos
Alumínio , Pinus sylvestris , Ácidos Graxos , Ácidos Graxos Insaturados , Árvores
15.
J Environ Manage ; 293: 112899, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089961

RESUMO

The surroundings of mines and smelters may be exposed to wildfires, especially in semi-arid areas. The temperature-dependent releases of metal(loid)s (As, Cd, Cu, Pb, Zn) from biomass-rich savanna soils collected near a Cu smelter in Namibia have been studied under simulated wildfire conditions. Laboratory single-step combustion experiments (250-850 °C) and experiments with a continuous temperature increase (25-750 °C) were coupled with mineralogical investigations of the soils, ashes, and aerosols. Metals (Cd, Cu, Pb, Zn) were released at >550-600 °C, mostly at the highest temperatures, where complex aerosol particles, predominantly composed of slag-like aggregates, formed. In contrast, As exhibited several emission peaks at ~275 °C, ~370-410 °C, and ~580 °C, reflecting its complex speciation in the solid phase and indicating its remobilization, even during wildfires with moderate soil heating. At <500 °C, As was successively released via the transformation of As-bearing hydrous ferric oxides, arsenolite (As2O3) grains attached to the organic matter fragments, metal arsenates, and/or As-bearing apatite, followed by the thermal decomposition of enargite (Cu3AsS4) at >500 °C. The results indicate that the active and abandoned mining and smelting sites, especially those highly enriched in As, should be protected against wildfires, which can be responsible for substantial As re-emissions.


Assuntos
Metais Pesados , Poluentes do Solo , Incêndios Florestais , Monitoramento Ambiental , Pradaria , Metais Pesados/análise , Namíbia , Solo , Poluentes do Solo/análise
16.
J Environ Manage ; 287: 112348, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33735678

RESUMO

Leaching arsenic from solid waste selectively and removing arsenic from alkaline leachate efficiently are two key points in alkali treatment of copper smelter dust, and the latter is challenging. In this study, composite salt precipitation of magnesium ammonium arsenate (NH4MgAsO4·6H2O), similar to magnesium ammonium phosphate (NH4MgPO4·6H2O), was proposed to solve the difficult problem of separation arsenic from alkali. Based on the thermodynamic analysis, the selective leaching of arsenic from copper smelting dust was carried out in the NaOH-Na2S system. In the alkali leaching system, more than 80% arsenic can be leached out from the dust with the diffusion-controlled type in the Avrami model, while the leaching rates of valuable metals are less than 0.5%. For the strong alkaline leachate containing arsenic obtained by alkali leaching, the selective removal of arsenic was achieved by adding magnesium salt and ammonium salt. With the change of the amount of magnesium salt and ammonium salt, the sedimentation performance and composition of the arsenic slag changed accordingly. At the mole ratio of NH4+: As = 8:1 and Mg2+: As = 1.5:1, 96.38% of arsenic was removed, and the content of arsenic in the arsenic slag composed of MgNH4AsO4·6H2O reached 28.96%. On this basis, the circulating alkali leaching of copper smelter dust based on arsenic-alkali separation was successfully carried out. The whole scheme is not only economical and safe, but also achieves the reuse of wastewater without secondary pollution, which provides an alternative solution for the treatment of arsenic containing solid waste.


Assuntos
Arsênio , Álcalis , Cobre , Poeira
17.
Bull Environ Contam Toxicol ; 106(2): 363-369, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33439273

RESUMO

Smelting activities are an important source of heavy metals in soil. More seriously, oral ingestion of crops growing in contaminated soil potentially cause harmful effects on human health. The main purpose of this study is to apply the in vitro model (PBET) and Monte Carlo Simulation (MSC) to the health risk assessment process in order to more accurately and realistically evaluate health risks of residents eating contaminated potato. Results indicated in the raw and cooked potato, the bioaccessibility of Pb was 65.9% and 74.5%, and that of Cd was 79.6% and 61.7%, respectively. Additionally, the bioaccessible hazard quotient (BHQ) was less than the permitted level except for the BHQ of Pb for children. This indicated there wasn't potential non-carcinogenic risk for most potato-consumers but the dietary exposure risk for local children cannot be neglected. Sensitivity analysis showed that the bioaccessibility and ingestion rate appeared decisive with respect to potentially deleterious health effects.


Assuntos
Metais Pesados , Poluentes do Solo , Solanum tuberosum , Cádmio/análise , Criança , China , Monitoramento Ambiental , Humanos , Chumbo , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
18.
Ecotoxicol Environ Saf ; 196: 110529, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32247240

RESUMO

Cadmium (Cd) is a highly toxic element and non-essential to human. Herein, the source and fate of Cd were examined in a typical sediment profile from the North River, South China, which was affected by the massive Pb-Zn smelting activities for decades. An exceptionally high enrichment of Cd, 107-441 mg/kg, was observed across the whole profile. Approximately 50-75% of Cd was retained in the weak acid soluble fraction. Risk assessment based on geoaccumulation index (Igeo), potential ecological risk index (Eri), bioavailable metal index (BMI) and toxic risk index (TRI) further indicated an extremely strong degree of potential ecological pollution and high toxic risks. The mineralogical composition of particles from the sediment profile exhibited the presence of pyrite, magnetite, wurtzite and greenockite. This further confirmed that Cd was migrated from smelting slags to the North River basin and enriched in sediment profile. Sediment Cd speciation analysis also implied a possible transformation of Cd from metal oxides in smelting slags to adsorbed phases and carbonates, which enhances the bioavailability of Cd. The findings indicate proper countermeasures or remediation approaches should be promptly taken towards high ecological risks of Cd arising from the depth profile extending nearly 1 m, due to lead-zinc smelting related activities.


Assuntos
Cádmio/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Chumbo/análise , Rios/química , Poluentes Químicos da Água/análise , Zinco/análise , Carbonatos/análise , China , Ecologia , Humanos , Medição de Risco
19.
Ecotoxicol Environ Saf ; 188: 109895, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31706238

RESUMO

Seventeen soil samples collected in an industrial park located in Ningxia Province, Northwestern China were analyzed for polychlorinated naphthalenes (PCNs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and polychlorinated biphenyls (PCBs). The PCN, PCDD/F, and PCB concentration ranges were 183-3340, 7.00-215, and 45.1-355 pg/g, respectively. Positive matrix factorization showed that secondary ferrous metal smelters and cement kilns contributed more than 70% of the total PCN concentration. Historical use of Halowax 1051 also affected the PCN concentrations in soil. Principal component analysis indicated that the PCDD/F concentrations in soil in the study area were mainly affected by thermal processes in secondary ferrous metal smelters. CB-209 was an important contributor to total PCBs in the study area, and likely originated from the phthalocyanine-type pigments used in a local recycled paper mill. Samples S10, S1, S17, and S6 had high ∑TEQ (PCDD/Fs + PCNs + PCBs) concentrations, and the carcinogenic risks of PCDD/Fs, PCNs, and PCBs for workers from these samples were 0.487 × 10-6, 0.234 × 10-6, 0.230 × 10-6, and 0.210 × 10-6, respectively. According to our results, the health risks of PCDD/Fs, PCNs, and PCBs for workers in this area should be given more attention.


Assuntos
Monitoramento Ambiental/métodos , Hidrocarbonetos Clorados/análise , Indústrias , Naftalenos/análise , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análise , Poluentes do Solo/análise , China , Humanos , Medição de Risco , Solo/química
20.
Int J Phytoremediation ; 21(6): 577-582, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30656957

RESUMO

To solve the problems of improving arable soils contaminated with fluorides of aluminum smelter, it is necessary to select plants that combine the ability to bioaccumulate pollutants without compromising the viability. It makes sense to carry out the search among field crops cultivated in the region, as they are most adapted to specific soil and climatic conditions. Indicators of productivity and bioaccumulation factors (Bf) were studied in Galega orientalis Lam., Melilótus officinális Lam., Heliánthus tuberósus L., Zéa máys L., Avena sativa L., Medicago sativa L., and Raphanus sativus var. oleifera Metzg which are zonal for agriculture of Baikal Siberia. In the field experiments on the gray forest soils uncontaminated and contaminated by aluminum technogenic exhaust, it was shown that zonal cultivars of M. officinális Lam. and R. sativus var. oleifera Metzg have the greatest potential for phytoextraction of fluorides from contaminated soils (Bf >1).


Assuntos
Raphanus , Poluentes do Solo/análise , Biodegradação Ambiental , Fluoretos , Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa