Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Fish Shellfish Immunol ; 123: 194-206, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35227881

RESUMO

This study sought to investigate whether a "natural diet" (mimicking the fatty acid composition of freshwater aquatic insects eaten by salmon parr) during the freshwater (FW) life stage of pre-smolt Atlantic salmon (Salmo salar L.) affected red blood cells and gill fatty acid composition as well as eicosanoid metabolism in gill during smolting at different temperatures. Before being transferred to seawater (SW), salmon parr were fed with a modified (MO) diet containing vegetable oils (rapeseed, palm, and linseed oils) supplemented with eicosapentaenoic acid (EPA) and arachidonic acid (ARA) to completely replace the fish oil (FO). Fatty acid composition in red blood cells and gill tissues was determined before SW transfer and six weeks after. Additionally, the expression of genes associated with eicosanoid metabolism and Na+/K+-ATPase (NKA) activity in salmon gill was examined at different temperatures before SW transfer and 24 h after. The results showed the changes in fatty acid composition, including sum monounsaturated fatty acids (MUFAs), docosahexaenoic acid (DHA), ARA, EPA, and sum n-6 polyunsaturated fatty acids (n-6 PUFA) in both red blood cells and gill tissues at the FW stage were consistent with the fatty acid profiles of the supplied MO and FO fish diets; however sum EPA and DHA composition exhibited opposite trends to those of the FO diet. The proportion of ARA, EPA, and n-6 PUFA increased, whereas sum MUFAs and DHA decreased in the red blood cells and gill tissues of MO-fed fish compared to those fed with the FO diet at FW stage. Additionally, 5-lipoxygenase-activating protein (Flap) expression was downregulated in MO-fed fish prior to SW transfer. During the process of SW transfer at different temperatures, the MO diet remarkably suppressed NKAα1a expression in MO-fed fish both at 12 and 16 °C. The MO diet also upregulated phospholipase A2 group IV (PLA2g4) expression in gills at 8, 12, and 16 °C, but suppressed phospholipase A2 group VI (PLA2g6) expression in gills at 12 °C compared to FO-fed fish at 12 °C and MO-fed fish at 8 °C. The MO diet also upregulated Cyclooxygenase 2 (Cox-2) expression at 8 °C compared to FO-fed fish and increased Arachidonate 5-lipoxygenase (5-Lox) expression in MO-fed fish at 16 °C compared to both FO-fed fish at 16 °C and MO-fed fish at 8 °C. Our study also determined that both SW transfer water temperatures and diets during the FW period jointly influenced the mRNA expression of PLA2g4, PLA2g6, and Lpl, whereas 5-Lox was more sensitive to dietary changes. In conclusion, the MO diet affected the fatty acid composition in gill and in red blood cells. When transferred to SW, dietary ARA supplementation could promote the bioavailability for eicosanoid synthesis in gill mainly via PLA2g4 activation, and potentially inhibit the stress and inflammatory response caused by different water temperatures through dietary EPA supplementation.


Assuntos
Ácido Eicosapentaenoico , Salmo salar , Animais , Ácido Araquidônico , Dieta/veterinária , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados , Óleos de Peixe , Fosfolipases A2 , Óleos de Plantas , Salmo salar/metabolismo , Água
2.
Artigo em Inglês | MEDLINE | ID: mdl-35346822

RESUMO

Smoltification in salmonids occurs during spring in response to increasing photoperiod to prepare for marine life. Smoltification is associated with increased hypo-osmoregulatory ability and enhanced growth potential, mediated by growth hormone and insulin-like growth factor (IGF)-1. Rainbow trout is uniquely insensitive to the induction of smoltification-associated changes by photoperiod, such as the activation of gill Na+,K+-ATPase (NKA). We measured the circulating IGF-1 and IGF-binding protein (IGFBP)-2b levels in yearling rainbow trout exposed to natural and manipulated photoperiods during spring and correlated these with gill NKA activity and body size. Although the effect of photoperiod manipulation on body size and circulating IGF-1 and IGFBP-2b was negligible, they were positively correlated with gill NKA activity in fish under simulated natural photoperiod. We next pit-tagged yearling rainbow trout and fed them a restricted ration or to satiation under a natural photoperiod. In April, gill NKA activity was higher in the satiation group than in the restricted group and positively correlated with body size and growth rate. In addition, circulating IGFBP-2b was positively correlated with gill NKA, size and growth, whereas circulating IGF-1 was correlated only with size and growth. The relationship between circulating IGF-1 and growth intensified from May to June, suggesting that the IGF-1-growth relationship was disrupted in April when gill NKA was activated. Two additional IGFBPs were related to growth parameters but not to gill NKA activity. The present study suggests that circulating IGFBP-2b and IGF-1 mediate the size-dependent activation of gill NKA in yearling rainbow trout during spring.


Assuntos
Brânquias , Oncorhynchus mykiss , Animais , Tamanho Corporal , Brânquias/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Fator de Crescimento Insulin-Like I/metabolismo , Oncorhynchus mykiss/metabolismo , Fotoperíodo , ATPase Trocadora de Sódio-Potássio/metabolismo
3.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955964

RESUMO

Smoltification (parr-smolt transformation) is a complex developmental process consisting of developmental changes that lead to remodeling of the Atlantic salmon gill. Here, the expression changes of miRNAs and mRNAs were studied by small-RNA sequencing and microarray analysis, respectively, to identify miRNAs and their predicted targets associated with smoltification and subsequent sea water adaptation (SWA). In total, 18 guide miRNAs were identified as differentially expressed (gDE miRNAs). Hierarchical clustering analysis of expression changes divided these into one cluster of 13 gDE miRNAs with decreasing expression during smoltification and SWA that included the miRNA-146, miRNA-30 and miRNA-7132 families. Another smaller cluster that showed increasing expression consisted of miR-101a-3p, miR-193b-5p, miR-499a-5p, miR-727a-3p and miR-8159-5p. The gDE miRNAs were predicted to target 747 of the genes (DE mRNAs), showing expression changes in the microarray analysis. The predicted targets included genes encoding NKA-subunits, aquaporin-subunits, cystic fibrosis transmembrane conductance regulator and the solute carrier family. Furthermore, the predicted target genes were enriched in biological processes associated with smoltification and SWA (e.g., immune system, reactive oxygen species, stress response and extracellular matrix organization). Collectively, the results indicate that remodeling of the gill involves the post-transcriptional regulation of gene expression by the characterized gDE miRNAs.


Assuntos
MicroRNAs , Salmo salar , Animais , Expressão Gênica , Brânquias/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Água do Mar
4.
BMC Genomics ; 22(1): 824, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34781893

RESUMO

BACKGROUND: Rainbow trout (Oncorhynchus mykiss) is a salmonid species with a complex life-history. Wild populations are naturally divided into freshwater residents and sea-run migrants. Migrants undergo an energy-demanding adaptation for life in seawater, known as smoltification, while freshwater residents display these changes in an attenuated magnitude and rate. Despite this, in seawater rainbow trout farming all fish are transferred to seawater. Under these circumstances, weeks after seawater transfer, a significant portion of the fish die (around 10%) or experience growth stunting (GS; around 10%), which represents an important profitability and welfare issue. The underlying causes leading to GS in seawater-transferred rainbow trout remain unknown. In this study, we aimed at characterising the GS phenotype in seawater-transferred rainbow trout using untargeted and targeted approaches. To this end, the liver proteome (LC-MS/MS) and lipidome (LC-MS) of GS and fast-growing phenotypes were profiled to identify molecules and processes that are characteristic of the GS phenotype. Moreover, the transcription, abundance or activity of key proteins and hormones related to osmoregulation (Gill Na+, K + -ATPase activity), growth (plasma IGF-I, and liver igf1, igfbp1b, ghr1 and ctsl) and stress (plasma cortisol) were measured using targeted approaches. RESULTS: No differences in Gill Na+, K + -ATPase activity and plasma cortisol were detected between the two groups. However, a significant downregulation in plasma IGF-I and liver igf1 transcription pointed at this growth factor as an important pathomechanism for GS. Changes in the liver proteome revealed reactive-oxygen-species-mediated endoplasmic reticulum stress as a key mechanism underlying the GS phenotype. From the lipidomic analysis, key observations include a reduction in triacylglycerols and elevated amounts of cardiolipins, a characteristic lipid class associated with oxidative stress, in GS phenotype. CONCLUSION: While the triggers to the activation of endoplasmic reticulum stress are still unknown, data from this study point towards a nutritional deficiency as an underlying driver of this phenotype.


Assuntos
Oncorhynchus mykiss , Animais , Cromatografia Líquida , Estresse do Retículo Endoplasmático , Transtornos do Crescimento , Oncorhynchus mykiss/genética , Água do Mar , Espectrometria de Massas em Tandem
5.
Fish Shellfish Immunol ; 118: 188-196, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34252544

RESUMO

Before seawater transfer, farmed Atlantic salmon are subjected to treatments that may affect the immune system and susceptibility to pathogens. E.g., exposure to constant light (CL) stimulates smoltification, which prepares salmon to life in sea water, but endocrine changes in this period are associated with suppression of immune genes. Salmon are vaccinated towards end of the freshwater period to safeguard that adequate vaccine efficacy is achieved by the time the fish is transferred to sea. In the present study, we investigated how the responses to vaccination and viral infection varied depending on the time of CL onset relative to vaccination. The salmon were either exposed to CL two weeks prior to vaccination (2-PRI) or exposed to CL at the time of vaccination (0-PRI). A cohabitant challenge with salmonid alphavirus, the causative agent of pancreatic disease, was performed 9 weeks post vaccination. The immunological effects of the different light manipulation were examined at 0- and 6-weeks post vaccination, and 6 weeks post challenge. Antibody levels in serum were measured using a serological bead-based multiplex panel as well as ELISA, and 92 immune genes in heart and spleen were measured using an integrated fluidic circuit-based qPCR array for multiple gene expression. The 2-PRI group showed a moderate transcript down-regulation of genes in the heart at the time of vaccination, which were restored 6 weeks after vaccination (WPV). Conversely, at 6WPV a down-regulation was seen for the 0-PRI fish. Moreover, the 2-PRI group had significantly higher levels of antibodies binding to three of the vaccine components at 6WPV, compared to 0-PRI. In response to SAV challenge, transcription of immune genes between 2-PRI and 0-PRI was markedly dissimilar in the heart and spleen of control fish, but no difference was found between vaccinated salmon from the two CL regimens. Thus, by using labor-saving high throughput detection methods, we demonstrated that light regimens affected antibody production and transcription of immune genes in non-vaccinated and virus challenged salmon, but the differences between the light treatment groups appeared eliminated by vaccination.


Assuntos
Infecções por Alphavirus , Alphavirus , Doenças dos Peixes , Salmo salar , Infecções por Alphavirus/prevenção & controle , Infecções por Alphavirus/veterinária , Animais , Doenças dos Peixes/virologia , Expressão Gênica , Salmo salar/virologia , Vacinação/veterinária , Eficácia de Vacinas
6.
Aquaculture ; 544: 737085, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34789951

RESUMO

Assessment of seawater readiness of freshwater salmon smolts is a crucial husbandry step with economic implications in salmon aquaculture but current methods rely on delayed centralised enzymic activity measurement. The efficiency of a qRT-PCR assay for sodium potassium ATPase (NKA) α1a mRNA was tested in a 3-year study on 19 hatcheries across Scotland incorporating environmental factors such as temperature and metal contamination. The NKA qRT-PCR assay was transferred to a mobile laboratory and on-site testing was carried out at 3 hatchery sites. For the first two years standard enzymatic and gene expression assays had similar success rates in detecting smoltification (NKA activity 60%, qRT-PCR 57%). In the third year, all but one site were determined as sea water ready by qRT-PCR but only at 4 by enzymatic testing. On site testing with mobile qRT-PCR was successfully performed on four farm sites. Altogether, high sensitivity was shown for the in lab (98.9%, SE 0.24) and mobile (93.43%, SE 0.119) assays when tested using a quantitative RNA standard. Some indication for obscured smoltification assay results due to environmental increased heavy metal contamination was observed. Our results prove it is possible to test a smoltification marker on site and provide results on the day of testing during the smolt period allowing for informed decisions on seawater transfer.

7.
J Fish Biol ; 99(2): 513-523, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33786821

RESUMO

The San Francisco Bay Delta is experiencing seasonally warmer waters and saltwater intrusion into historically freshwater ecosystems due to climate change. Steelhead/rainbow trout (Oncorhynchus mykiss) are resident in the Bay-Delta from juvenile development through the smoltification process. Due to increases in sea level, premature seawater (SW) acclimation may co-occur with increased temperatures on pre-smolt juveniles. To evaluate the interactive effects of salinity and temperature on juvenile life stages of salmonids, rainbow trout alevin (3 days post-hatching) were exposed to 13, 16.4 and 19°C for 10 days and then challenged for 24 h to 18 parts per thousand SW. Similarly, fry (4 weeks post-hatching) were exposed to 13, 16.4 and 19°C for 2 weeks (14 days) and then challenged to SW. Estradiol-17ß (E2 ), cortisol, triiodothyronine (T3 ) and thyroxine (T4 ) were measured in whole animal homogenates and muscle tissue using enzyme-linked immunosorbent assays. Transcripts of gill Na+ /K+ ATPase ß (NKAα1b), brain growth hormone I (gh1) and brain gonadotropin-releasing hormone receptor 2 (gnrh2) were also measured. Alevin exhibited a significant temperature-dependent decrease in survival, and fry showed a temperature-dependent decrease in condition factor. The gene expression of NKAα1b, gh1 and gnrh2 significantly decreased in all SW-challenged alevin, and a significant decrease in gnrh2 expression was observed in fry with temperature. Alevin T3 and T4 concentrations significantly increased with increasing temperature. There was a temperature-dependent increase in E2 of fry but not of alevin. The results of this study demonstrate that increasing temperature and SW exposure may adversely affect the survival and SW acclimation of alevin and fry stages of salmonids and that the tolerances of younger juvenile stages should be considered when assessing the response of salmonid populations to climate change stressors.


Assuntos
Oncorhynchus mykiss , Animais , Ecossistema , Brânquias , Salinidade , Temperatura
8.
Dokl Biol Sci ; 501(1): 201-205, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34962607

RESUMO

The Na+/K+-ATPase (NKA) activity in smolts of pink salmon Oncorhynchus gorbuscha (a salmon species introduced in 1959 into the rivers of the Kola Peninsula) was studied in a ten-day cage experiment with fresh, estuarine, and sea water; the fish were caught during seaward migration in the Indera River of the White Sea basin. The development of tolerance to increased salinity in pink salmon smolts was accompanied by NKA activation. In estuarine water characterized by salinity fluctuations (from fresh to sea water) and in the marine environment (28‰), the NKA activity in pink salmon smolts was significantly higher than in the individuals kept in the cages installed in fresh water. The hypoosmoregulatory ability of pink salmon fry was registered, these data indicated that smoltification in this fish species took place in early ontogenesis. The changes in NKA activity evidenced the readiness of migrating pink salmon fry for the marine phase of their life cycle.


Assuntos
Salmão , ATPase Trocadora de Sódio-Potássio , Animais , Estuários , Água Doce , Salmão/metabolismo , Água do Mar , Sódio , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-32165323

RESUMO

Exposure to a temperature increase may disrupt smoltification and delay or stop the downstream migration of smolts. Thermal regimes are often different between a river and its tributaries, but the effects of a relative temperature shift are not well described. We used expression of smoltification genes coupled with gill Na+/K+-ATPase activity (NKA) and plasma cortisol and growth hormone (GH) levels to investigate the impact of a 5 °C difference between tributary and river on salmon juveniles. Responses to a temperature challenge were examined at four time points during the smoltification period, with juveniles reared under three regimes including control, early and late temperature increase. The temperature shifts reduced gill NKA, plasma GH and cortisol levels which indicate hypo-osmoregulation impairment and may reduce the survival of smolts. Out of the 22 genes examined, the expression of six genes was influenced by the temperature treatments, while changes in further eleven genes were influenced by the date of sampling. Genes usually known to be upregulated during smoltification were downregulated after the temperature increase, notably nkaα1b, nkcc1a and igf1r. Upregulation of some genes involved in the hormonal regulation and acid-base equilibrium in early June may indicate a switch towards desmoltification. This study gives further insights about the impact of temperature increase on the molecular processes underlying smoltification and possible responses to human-related water temperature increase. The data also suggest dual roles in the smoltification and desmoltification for GH and IGF1 and points to the implication of genes in the smoltification process, that have previously been unstudied (nbc) or with little data available (igf2).


Assuntos
Brânquias/fisiologia , Salmo salar/fisiologia , Aclimatação/fisiologia , Migração Animal , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Osmorregulação , Salmo salar/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Temperatura , Equilíbrio Hidroeletrolítico
10.
J Fish Dis ; 42(9): 1271-1282, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31211446

RESUMO

In today's aquaculture of Atlantic salmon (Salmo salar L.), a majority of viral disease outbreaks occur after seawater transfer. A relevant question is how the parr-smolt transformation influences the efficacy of viral vaccines and the innate resistance against viral diseases. In this study, vaccinated and unvaccinated A. salmon parr were exposed to different photoperiodic regimens (1-, 3- or 6-week continuous light-WCL). Fish groups at different stages in the smoltification process were induced, as demonstrated by differences in morphological and physiological smolt parameters. At the time of seawater transfer, the 6-WCL group had reached a more pronounced stage in the smoltification process than the 1-WCL group. In unvaccinated fish, the subsequent cohabitation challenge with infectious pancreatic necrosis virus (IPNV) gave a significantly higher accumulated mortality in the 6-WCL group (87%) compared to the 1-WCL group (39%). In the vaccinated groups, this effect was not apparent and there were no differences in accumulated mortality between the 1 WCL, 3 WCL and 6-WCL groups. These data suggest that the resistance to IPN in A. salmon was negatively influenced by smoltification, while vaccine-mediated protection to IPN was maintained equally well irrespective of smolt status.


Assuntos
Infecções por Birnaviridae/veterinária , Resistência à Doença , Doenças dos Peixes/prevenção & controle , Vírus da Necrose Pancreática Infecciosa/imunologia , Salmo salar , Vacinação/veterinária , Vacinas Virais/administração & dosagem , Animais , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/virologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Imunidade Inata
11.
Fish Physiol Biochem ; 45(4): 1245-1260, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31190261

RESUMO

Anthropogenic use of water systems may cause temperature fluctuations between tributaries and large rivers for which physiological population related-effects on osmoregulatory capacity of Atlantic salmon are not well described. We simulated the downstream route in the case of the River Meuse basin to investigate the impact of a 5 °C temperature shift during smoltification on hypo-osmoregulatory capacities of smolts. Three temperature regimes were tested: control temperature-treatment (T1) without temperature shift, early (T2) or late (T3) temperature shift-treatment. Moreover, fish were subjected to seawater challenge during and after the downstream migration peak time. Two allochtonous strains were used: Loire-Allier (LA) and Cong (CG). Without temperature shift (T1), significant differences between the strains were noticed in the peak date and maximum activity of gill Na+/K+ATPase as well as in plasma sodium and potassium concentrations. For early (T2) and late (T3) temperature shift-treatments, gill Na+/K+ATPase activity, plasma osmolality and ion concentrations were negatively influenced in both strains. After salinity challenge, the highest osmolality was measured in smolts subjected to the temperature shift. Predictably circulating levels of GH and IGF-1 changed over the smolting period but they did not explain the observed modifications in hypo-osmoregulatory abilities whatever the population. The results show a negative impact of a temperature shift on hypo-osmoregulatory capacities of smolts regardless of population differences in smoltification timing under conditions without temperature shift. The resilience of such physiological impact was sustained at least for 1 week, comforting the role of high temperature in influencing the rate of changes occurring during smoltification. Therefore, favouring the downstream migration to help smolts reach the sea faster may mitigate the impact of a rapid temperature increase.


Assuntos
Migração Animal , Osmorregulação , Salmo salar/fisiologia , Temperatura , Animais , Proteínas de Peixes/metabolismo , Brânquias/enzimologia , Hormônio do Crescimento/sangue , Fator de Crescimento Insulin-Like I/análise , ATPase Trocadora de Sódio-Potássio/metabolismo , Especificidade da Espécie
12.
Fish Shellfish Immunol ; 74: 573-583, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29353080

RESUMO

Pancreas disease (PD) caused by salmonid alphavirus (SAV) is the most serious viral disease in Norwegian aquaculture. Study of the immune response to SAV will aid preventative measures including vaccine development. The innate immune response was studied in Atlantic salmon infected by either bath immersion (BI) or by intra-muscular (i.m.) injection (IM) with SAV subtype 3, two and nine weeks after seawater transfer (Phases A and B respectively). Phase A results have been previously published (Moore et al., 2017) and Phase B results are presented here together with a comparison of results achieved in Phase A. There was a rapid accumulation of infected fish in the IM-B (IM Phase B) group and all fish sampled were SAV RNA positive by 7 dpi (days post infection). In contrast, only a few SAV RNA positive (infected) fish were identified at 14, 21 and 28 dpi in the BI-B (BI Phase B) group. Differences in the transcription of several immune genes were apparent when compared between the infected fish in the IM-B and BI-B groups. Transcription of the analysed genes peaked at 7 dpi in the IM-B group and at 14 dpi in the BI-B group. However, this latter finding was difficult to interpret due to the low prevalence of SAV positive fish in this group. Additionally, fish positive for SAV RNA in the BI-B group showed higher transcription of IL-1ß, IFNγ and CXCL11_L1, all genes associated with the inflammatory response, compared to the IM-B group. Histopathological changes in the heart were restricted to the IM-B group, while (immune) cell filtration into the pancreas was observed in both groups. Compared to the Phase A fish that were exposed to SAV3 two weeks after seawater transfer, the Phase B fish in the current paper, showed a higher and more sustained innate immune gene transcription in response to the SAV3 infection. In addition, the basal transcription of several innate immune genes in non-infected control fish in Phase B (CT-B) was also significantly different when compared to Phase A control fish (CT-A).


Assuntos
Alphavirus/fisiologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Imunidade Inata , Salmo salar/imunologia , Água do Mar , Aclimatação , Infecções por Alphavirus/imunologia , Animais , Proteínas de Peixes/metabolismo , Rim Cefálico/virologia , Coração/virologia , Pâncreas/virologia , RNA/genética , RNA/metabolismo , Fatores de Tempo
13.
Fish Shellfish Immunol ; 82: 579-590, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30176338

RESUMO

Salmonid alphavirus (SAV) causes pancreas disease (PD) in Atlantic salmon (Salmo salar L.) and disease outbreaks are mainly detected after seawater transfer. The influence of the smoltification process on the immune responses, specifically the adaptive response of Atlantic salmon after SAV infection, is not fully understood. In this study, Atlantic salmon post-smolts were infected by either bath immersion (BI) or intramuscular injection (IM) with SAV subtype 3, 2 weeks (Phase A) or 9 weeks (Phase B) after seawater transfer. The transcript levels of genes related to cellular, humoral and inflammatory responses were evaluated on head kidney samples collected at 3, 7, 14, 21, and 28 days post-infection (dpi). Corresponding negative control groups (CT) were established accordingly. Significant differences were found between both phases and between the IM and BI groups. The anti-inflammatory cytokine IL-10 was up-regulated in Phase A at a higher level than in Phase B. High mRNA levels of the genes RIG-1, SOCS1 and STAT1 were observed in all groups except the BI-B group (BI-Phase B). Moreover, the IM-B group showed a higher regulation of genes related to cellular responses, such as CD40, MHCII, and IL-15, that indicated the activation of a strong cell-mediated immune response. CD40 mRNA levels were elevated one week earlier in the BI-B group than in the BI-A group (BI-Phase A). A significant up-regulation of IgM and IgT genes was seen in both IM groups, but the presence of neutralizing antibodies to SAV was detected only in Phase B fish at 21 and 28 dpi. In addition, we found differences in the basal levels of some of the analysed genes between non-infected control groups of both phases. Findings suggest that Atlantic salmon post-smolts adapted for a longer time to seawater before they come into contact with SAV, developed a stronger humoral and cell-mediated immune response during a SAV infection.


Assuntos
Aclimatação , Doenças dos Peixes/imunologia , Imunidade Celular , Imunidade Humoral , Salmo salar/imunologia , Alphavirus/fisiologia , Infecções por Alphavirus/imunologia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Água do Mar
14.
Gen Comp Endocrinol ; 258: 205-212, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29317213

RESUMO

Non-native strains of Atlantic salmon are used in reinstatement trials where populations are extinct. Environmental cues like photoperiod and temperature are known to influence the smolting process and there is evidence of strain-, stock- or population-specific differences associated with seaward migration or smoltification. The objective of this study was to compare morphological, osmoregulatory and endorcrine features between two strains, one originating from a cold and short river in Ireland (Cong) and another from a long and warm river in France (Loire-Allier), reared under Belgian conditions in order to highlight major differences in restocking adaptability. Comprehensive endocrine profiles, consistent with their interactive role of mediating changes associated with smolting, have been observed. Na+/K+ATPase activity (1.3-10.5 µmol ADP∗mg prot.-1∗h-1) and hormone plasma levels (e.g. 55-122 ng∗mL-1 of cortisol and 4.5-6.4 ng∗mL-1 of GH) were consistent with reported values. We observed strain-related differences of the influence of temperature and daylength on cortisol, GH and sodium plasma levels. These may be related to the respective environmental conditions prevailing in the river of origin, which have impacted the genetic background for smoltification. Using Na+/K+ATPase activity as an indicator, both strains smoltified successfully and simultaneously testifying a prevailing influence of environmental cues over genetic factors for smoltification.


Assuntos
Sistema Endócrino/metabolismo , Hormônios/metabolismo , Osmorregulação/fisiologia , Salmo salar/classificação , Salmo salar/metabolismo , Tolerância ao Sal/fisiologia , Aclimatação/fisiologia , Animais , Bélgica , França , Brânquias/metabolismo , Hidrocortisona/sangue , Fotoperíodo , Rios , Salmo salar/sangue , Salmo salar/crescimento & desenvolvimento , Estações do Ano , Água do Mar , ATPase Trocadora de Sódio-Potássio/metabolismo , Temperatura
15.
J Fish Biol ; 93(3): 540-549, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29931747

RESUMO

The present study investigated the effects of transferring freshwater (FW) acclimated S. salar (678 g) that had been maintained under a constant photoperiod and thermal regime, into FW (salinity 0) and salt water (SW; salinity 35) on growth and physiological responses over a 28 day period. There were no mortalities observed throughout the study and no significant differences in mass or fork length between FW and SW groups after 28 days. Compared with fish transferred to FW, plasma osmolality and plasma chloride levels increased significantly in fish in SW by day 1. In the SW group, plasma chloride and osmolality had decreased significantly at day 14 when compared with day 1. Na+ -K+ -ATPase activity was significantly higher in SW compared with the FW group from day 7 and thereafter, but continued to increase until day 22. No differences in plasma cortisol and thyroxine were observed between FW and SW groups throughout the study. Plasma glucose significantly increased from day 1 to day 2 in SW but not in the FW group and levels were significantly reduced in SW compared with the FW group at day 28. Plasma cholesterol and triglyceride levels were significantly higher in FW at day 22 and day 14 to day 22, respectively, when compared with the SW group. In the SW group, plasma cholesterol and triglyceride levels did not change significantly throughout the study. The findings of this study suggest that large S. salar retained in FW maintain a high level of SW tolerance in the absence of photoperiod and thermal regimes necessary for smoltification, as demonstrated by 100% survival, unaffected growth performance, increased Na+ -K+ -ATPase activity and a capacity to regulate plasma chloride and osmolality for 28 days in the SW group.


Assuntos
Salmo salar/sangue , Tolerância ao Sal , Estresse Fisiológico , Aclimatação , Animais , Aquicultura , Cloretos/sangue , Água Doce , Brânquias/enzimologia , Hidrocortisona/sangue , Concentração Osmolar , Salinidade , Salmo salar/crescimento & desenvolvimento , Água do Mar , ATPase Trocadora de Sódio-Potássio/metabolismo , Tiroxina/sangue
16.
J Fish Biol ; 93(3): 490-500, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29931678

RESUMO

The present study assessed whether non-anadromous masu salmon Oncorhynchus masou in Miyazaki, southern Japan, smoltify, and if so, at what time of the year. Yearling O. masou of Miyazaki and an anadromous population from Hokkaido, northern Japan, were reared in hatcheries in their respective regions and sampled monthly from February to June to examine the spring smoltification period. The Hokkaido population showed a peak of gill Na+ -K+ -ATPase (NKA) activity in May, which was accompanied with an increase in mRNA levels of the seawater (SW)-type NKA alpha subunit, nkaα1b. Increases in gill NKA activity and nkaa1b levels were not seen in Miyazaki populations. Transferring yearling Miyazaki population to 70% SW (salinity of 23) in mid-April resulted in an increased serum osmolality over 4 days. These results suggest that they do not smoltify in their second spring. Next, profiles of gill NKA activity and its subunit mRNA levels in under-yearling Miyazaki population in the autumn were examined. Two phenotypes differing in body color during this period were categorized as parr and smolt-like fish. Smolt-like fish had higher gill NKA activity than parr in December while there was no significant difference in gill nkaα1b levels. Smolt-like fish acclimated to 70% SW better than parr as judged by lower serum osmolality. However, serum osmolality in smolt-like fish did not return to the basal level 7 days after transfer to 70% SW, suggesting that their hypo-osmoregulatory ability was not fully developed to a level comparable to anadromous populations of this species. The present study suggests that, if O. masou in Miyazaki go though a smoltification process, it occurs in its first autumn instead of the second spring and is less pronounced compared with anadromous populations.


Assuntos
Brânquias/enzimologia , Oncorhynchus/crescimento & desenvolvimento , Tolerância ao Sal , ATPase Trocadora de Sódio-Potássio/metabolismo , Equilíbrio Hidroeletrolítico , Aclimatação , Animais , Japão , Oncorhynchus/metabolismo , RNA Mensageiro , Salinidade , Água do Mar
17.
BMC Physiol ; 17(1): 2, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28100217

RESUMO

BACKGROUND: In preparation for migration from freshwater to marine habitats, Atlantic salmon (Salmo salar L.) undergo smoltification, a transformation that includes the acquisition of hyposmoregulatory capacity. The growth hormone (Gh)/insulin-like growth-factor (Igf) axis promotes the development of branchial ionoregulatory functions that underlie ion secretion. Igfs interact with a suite of Igf binding proteins (Igfbps) that modulate hormone activity. In Atlantic salmon smolts, igfbp4,-5a,-5b1,-5b2,-6b1 and-6b2 transcripts are highly expressed in gill. We measured mRNA levels of branchial and hepatic igfbps during smoltification (March, April, and May), desmoltification (July) and following seawater (SW) exposure in March and May. We also characterized parallel changes in a broad suite of osmoregulatory (branchial Na+/K+-ATPase (Nka) activity, Na + /K + /2Cl - cotransporter 1 (nkcc1) and cystic fibrosis transmembrane regulator 1 (cftr1) transcription) and endocrine (plasma Gh and Igf1) parameters. RESULTS: Indicative of smoltification, we observed increased branchial Nka activity, nkcc1 and cftr1 transcription in May. Branchial igfbp6b1 and -6b2 expression increased coincidentally with smoltification. Following a SW challenge in March, igfbp6b1 showed increased expression while igfbp6b2 exhibited diminished expression. igfbp5a,-5b1 and-5b2 mRNA levels did not change during smolting, but each had lower levels following a SW exposure in March. CONCLUSIONS: Salmonids express an especially large suite of igfbps. Our data suggest that dynamic expression of particular igfbps accompanies smoltification and SW challenges; thus, transcriptional control of igfbps may provide a mechanism for the local modulation of Igf activity in salmon gill.


Assuntos
Aclimatação/fisiologia , Água Doce , Brânquias/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/biossíntese , Salmo salar/metabolismo , Água do Mar , Animais , Ecossistema , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/sangue , Osmorregulação/fisiologia , Salmo salar/sangue
18.
J Fish Dis ; 40(9): 1195-1212, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28188652

RESUMO

The aim of the present study was to investigate cataract development in diploid (2N) and triploid (3N) Atlantic salmon smolts and post-smolts at two water temperatures (10 and 16 °C) given diets with different histidine supplementation (LH, 10.4 and HH, 13.1 g kg-1 ) before and after seawater transfer. In freshwater, a severe cataract outbreak was recorded in both ploidies reared at 16 °C. The cataract score was significantly higher in triploids compared to diploids, and the severity was lower in both ploidies fed the HH diet. The cataract development at 10 °C was minor. Low gill Na+ , K+ -ATPase activity in fish reared at 16 °C before seawater transfer was followed by osmoregulatory stress with elevated plasma electrolyte concentrations and high mortality in sea water. Both diploids and triploids reared at 10 °C developed cataracts during the seawater period, with higher severities in triploids than diploids and a reduced severity in the fish fed the HH diet. The findings of this study demonstrate the importance of environmental conditions in the husbandry of Atlantic salmon, and particularly triploids, with regard to smoltification and adjusted diets to mitigate cataract development in fresh and sea water.


Assuntos
Catarata/veterinária , Dieta/veterinária , Doenças dos Peixes/epidemiologia , Histidina/administração & dosagem , Salmo salar , Ração Animal/análise , Animais , Catarata/epidemiologia , Catarata/etiologia , Suplementos Nutricionais/análise , Diploide , Relação Dose-Resposta a Droga , Doenças dos Peixes/etiologia , Temperatura Alta , Incidência , Prevalência , Distribuição Aleatória , Salmo salar/genética , Triploidia
19.
J Fish Dis ; 40(10): 1253-1265, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28105681

RESUMO

Gill diseases cause considerable losses in Norwegian salmon farming. In 2015, we characterized salmon gill poxvirus (SGPV) and associated gill disease. Using newly developed diagnostic tools, we show here that SGPV infection is more widely distributed than previously assumed. We present seven cases of complex gill disease in Atlantic salmon farmed in seawater and freshwater from different parts of Norway. Apoptosis, the hallmark of acute SGPV infection, was not easily observed in these cases, and qPCR analysis was critical for identification of the presence of SGPV. Several other agents including Costia-like parasites, gill amoebas, Saprolegnia spp. and bacteria were observed. The studied populations experienced significant mortalities, which increased to extreme levels when severe SGPV infections coincided with smoltification. SGPV infection appears to affect the smoltification process directly by affecting the gills and chloride cells in particular. SGPV may be considered a primary pathogen as it was often found prior to identification of complex gill disease. It is hypothesized that SGPV-induced gill damage may impair innate immunity and allow invasion of secondary invaders. The distinct possibility that SGPV has been widely overlooked as a primary pathogen calls for extended use of SGPV qPCR in Atlantic salmon gill health management.


Assuntos
Doenças dos Peixes/virologia , Infecções por Poxviridae/veterinária , Poxviridae/fisiologia , Salmo salar , Animais , Aquicultura , Água Doce , Brânquias/virologia , Infecções por Poxviridae/virologia , Água do Mar
20.
Fish Physiol Biochem ; 43(4): 1187-1194, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28343271

RESUMO

Although protein degradation limits the rate of muscle growth in fish, the role of proteolytic systems responsible for degrading myofibrillar proteins in skeletal muscle is not well defined. The study herein aims to evaluate the role of calpains (calcium-activated proteases) and proteasomes (ATP-dependent proteases) in mediating muscle protein turnover at different life stages in wild salmonids. Protease activities were estimated in Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) parr and smolts from the Indera River (Kola Peninsula, Russia). Calpain and proteasome activities in Atlantic salmon skeletal muscles were lower in smolts as compared with parr. Reduced muscle protein degradation accompanying Atlantic salmon parr-smolt transformation appeared to provide intense muscle growth essential for a minimum threshold size achievement that is required for smoltification. Calpain and proteasome activities in brown trout parr and smolts at age 3+ did not significantly differ. However, calpain activity was higher in smolts brown trout 4+ as compared with parr, while proteasome activity was lower. Results suggest that brown trout smoltification does not correspond with intense muscle growth and is more facultative and plastic in comparison with Atlantic salmon smoltification. Obtained data on muscle protein degradation capacity as well as length-weight parameters of fish reflect differences between salmon and trout in growth and smoltification strategies.


Assuntos
Músculo Esquelético/fisiologia , Proteólise , Salmonidae/crescimento & desenvolvimento , Salmonidae/fisiologia , Envelhecimento , Animais , Feminino , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica/fisiologia , Masculino , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa