Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 32(31): e1907180, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32583491

RESUMO

Soft fiber-reinforced polymers (FRPs), consisting of rubbery matrices and rigid fabrics, are widely utilized in industry because they possess high specific strength in tension while allowing flexural deformation under bending or twisting. Nevertheless, existing soft FRPs are relatively weak against crack propagation due to interfacial delamination, which substantially increases their risk of failure during use. In this work, a class of soft FRPs that possess high specific strength while simultaneously showing extraordinary crack resistance are developed. The strategy is to synthesize tough viscoelastic matrices from acrylate monomers in the presence of woven fabrics, which generates soft composites with a strong interface and interlocking structure. Such composites exhibit fracture energy, Γ, of up to 2500 kJ m-2 , exceeding the toughest existing materials. Experimental elucidation shows that the fracture energy obeys a simple relation, Γ = W · lT , where W is the volume-weighted average of work of extension at fracture of the two components and lT is the force transfer length that scales with the square root of fiber/matrix modulus ratio. Superior Γ is achieved through a combination of extraordinarily large lT (10-100 mm), resulting from the extremely high fiber/matrix modulus ratios (104 -105 ), and the maximized energy dissipation density, W. The elucidated quantitative relationship provides guidance toward the design of extremely tough soft composites.

2.
Micromachines (Basel) ; 8(12)2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30400541

RESUMO

Various kinds of helical swimmers inspired by E. coli bacteria have been developed continually in many types of researches, but most of them are proposed by the rigid bodies. For the targeted drug delivery, the rigid body may hurt soft tissues of the working region with organs. Due to this problem, the biomedical applications of helical swimmers may be restricted. However, the helical microswimmers with the soft and deformable body are appropriate and highly adaptive in a confined environment. Thus, this paper presents a lotus-root-based helical microswimmer, which is fabricated by the fibers of lotus-root coated with magnetic nanoparticles to active under the magnetic fields. The helical microstructures are derived from the intrinsic biological structures of the fibers of the lotus-root. This paper aims to study the swimming characteristic of lotus-root-based microswimmers with deformable helical bodies. In the initial step under the uniform magnetic actuation, the helical microswimmers are bent lightly due to the heterogeneous distribution of the internal stress, and then they undergo a swimming motion which is a spindle-like rotation locomotion. Our experiments report that the microswimmers with soft bodies can locomote faster than those with rigid bodies. Moreover, we also find that the curvature of the shape decreases as a function of actuating field frequency which is related to the deformability of lotus-root fibers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa