Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 27(43): 11094-11101, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34196050

RESUMO

Solar-driven photothermal antibacterial devices have attracted a lot of interest due to the fact that solar energy is one of the cleanest sources of energy in the world. However, conventional materials have a narrow absorbance band, resulting in deficient solar harvesting. In addition, lack of knowledge on temperature change in these devices during the photothermal process has also led to a waste of energy. Here, we presented an elegant multi-channel optical device with a multilayer structure to simultaneously address the above-mentioned issues in solar-driven antibacterial devices. In the photothermal channel, semiconductor IrO2 -nanoaggregates exhibited higher solar absorbance and photothermal conversion efficiency compared with nanoparticles. In the luminescence channel, thermal-sensitive Er-doped upconversion nanoparticles were utilized to reflect the microscale temperature in real-time. The bacteria were successfully inactivated during the photothermal effect under solar irradiation with temperature monitoring. This study could provide valuable insight for the development of smart photothermal devices for solar-driven photothermal bacterial inactivation in the future.


Assuntos
Dispositivos Ópticos , Energia Solar , Bactérias , Retroalimentação , Temperatura
2.
Micromachines (Basel) ; 10(6)2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31212971

RESUMO

New architectures of transparent conductive electrodes (TCEs) incorporating graphene monolayers in different configurations have been explored with the aim to improve the performance of silicon-heterojunction (SHJ) cell front transparent contacts. In SHJ technology, front electrodes play an important additional role as anti-reflectance (AR) coatings. In this work, different transparent-conductive-oxide (TCO) thin films have been combined with graphene monolayers in different configurations, yielding advanced transparent electrodes specifically designed to minimize surface reflection over a wide range of wavelengths and angles of incidence and to improve electrical performance. A preliminary analysis reveals a strong dependence of the optoelectronic properties of the TCEs on (i) the order in which the different thin films are deposited or the graphene is transferred and (ii) the specific TCO material used. The results shows a clear electrical improvement when three graphene monolayers are placed on top on 80-nm-thick ITO thin film. This optimum TCE presents sheet resistances as low as 55 Ω/sq and an average conductance as high as 13.12 mS. In addition, the spectral reflectance of this TCE also shows an important reduction in its weighted reflectance value of 2-3%. Hence, the work undergone so far clearly suggests the possibility to noticeably improve transparent electrodes with this approach and therefore to further enhance silicon-heterojunction cell performance. These results achieved so far clearly open the possibility to noticeably improve TCEs and therefore to further enhance SHJ contact-technology performance.

3.
Annu Rev Chem Biomol Eng ; 6: 13-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26083057

RESUMO

Devices that directly capture and store solar energy have the potential to significantly increase the share of energy from intermittent renewable sources. Photo-electrochemical solar-hydrogen generators could become an important contributor, as these devices can convert solar energy into fuels that can be used throughout all sectors of energy. Rather than focusing on scientific achievement on the component level, this article reviews aspects of overall component integration in photo-electrochemical water-splitting devices that ultimately can lead to deployable devices. Throughout the article, three generalized categories of devices are considered with different levels of integration and spanning the range of complete integration by one-material photo-electrochemical approaches to complete decoupling by photovoltaics and electrolyzer devices. By using this generalized framework, we describe the physical aspects, device requirements, and practical implications involved with developing practical photo-electrochemical water-splitting devices. Aspects reviewed include macroscopic coupled multiphysics device models, physical device demonstrations, and economic and life cycle assessments, providing the grounds to draw conclusions on the overall technological outlook.


Assuntos
Eletrólise/instrumentação , Hidrogênio/química , Energia Solar , Água/química , Desenho de Equipamento , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa