Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 126: 287-296, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503756

RESUMO

Antibiotic production wastewater usually contains high concentrations of antibiotic residues, which can cause instability and deterioration of biological wastewater treatment units and also domestication and proliferation of antibiotic-resistance bacteria. An effective pretreatment on antibiotics production wastewater is expected to selectively reduce the concentration of antibiotics and decrease the toxicity, rather than mitigate organic and other contaminants before further treatments. In this work, two polymer-based solid acids, PS-S and CPS-S bearing high concentrations of -SOH3 groups (up to 4.57 mmol/g), were prepared and successfully used for hydrolytic mitigation of 100 mg/L tylosin within 20 min. The co-existence of high concentrations of COD and humic substances did not affect the mitigation of tylosin obviously, while more than 500 mg/L of nitrogenous compounds suppressed the hydrolytic efficiency. Recycle and reuse experiments showed that the solid acids performed well in five cycles after regeneration. Three transformation products (P1, P2 and P3) were identified using UPLC-QTOF-MS/MS. Sugar moieties including mycarse, mycaminose, and mycinose detached and released simultaneously or in order from the 16-member lactone ring through desugarization, which led to a dramatic decrease in antibacterial activity as revealed by cytotoxicity evaluations using S. aureus. Ecotoxicity estimation indicated the acute toxicities of the hydrolyzed products to model species (e.g., fish, daphnid and green algae) were classified as "not harmful". This work suggested an effective and selective method to pretreat tylosin-contained production wastewater by using polymer-based solid acids. These results will shed light on effective elimination of antibiotics pollution from pharmaceutical industries through strengthening the pretreatments.


Assuntos
Poliestirenos , Tilosina , Animais , Tilosina/toxicidade , Águas Residuárias , Polímeros , Staphylococcus aureus , Espectrometria de Massas em Tandem , Antibacterianos/toxicidade
2.
Environ Sci Technol ; 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34324324

RESUMO

High energy duty restricts the application of amine-based absorption in CO2 capture and limits the achievement of carbon neutrality. Although regenerating the amine solvent with solid acid catalysts can increase energy efficiency, inactivation of the catalyst must be addressed. Here, we report a robust metal-organic framework (MOF)-derived hybrid solid acid catalyst (SO42-/ZIF-67-C@TiO2) with improved acidity for promoting amine regeneration. The TiO2 coating effectively prevented the active components stripping from the surface of the catalyst, thus prolonging its lifespan. The well-protected Co-Nx sites and protonated groups introduced onto the TiO2 surface increased the amount and rate of CO2 desorption by more than 64.5 and 153%, respectively. Consequently, the energy consumption decreased by approximately 36%. The catalyzed N-C bond rupture and proton transfer mechanisms are proposed. This work provides an effective protection strategy for robust acid catalysts, thus advancing the CO2 capture with less energy duty.

3.
Environ Res ; 188: 109887, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32846653

RESUMO

Biochar has been recognized as a sustainable platform for developing functional materials including catalysts. This work demonstrated a method of converting biochar to sulfonated solid-acid catalysts, and the effectiveness of the catalysts for spiramycin hydrolysis was examined. Two biochar samples (H and X) were sulfonated with three reagents (concentrated H2SO4, ClSO3H and p-toluenesulfonic acid (TsOH)) under hydrothermal, simple heating, ambient temperature, and CHCl3-assisted treatments. The effect of elemental compositions and structural characteristics of the feeding materials (H and X) on the acidic properties of the sulfonated biochars were investigated. The results showed that the sulfonation ability of the three reagents was in the order of ClSO3H > H2SO4 > TsOH, while hydrothermal treatment provided the highest total acidity, and largest amount of acidic groups (e.g., SO3H, COOH and Ar-OH). Biochar X with higher O/C and N contents, and less graphitic features showed superior acidic properties than biochar H under all the employed treatments. The hydrolytic efficiencies of the sulfonated biochars under 200 W of microwave irradiation increased with increasing total acidity, and the amount of SO3H and COOH groups. After sulfonation, the O/C of biochars increased, while H/C decreased, and the aromatic and graphitic features did not change. The electromagnetic energy absorbed by the sulfonated biochars did not notably contribute to spiramycin hydrolysis. Thus, this work demonstrated an effective and promising method for maneuvering biochar-based functional solid-acid catalysts for antibiotic remediation in contaminated water.


Assuntos
Espiramicina , Catálise , Carvão Vegetal , Hidrólise
4.
Chemistry ; 20(36): 11511-21, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25056112

RESUMO

A new series of multiquaternary ammonium structure-directing agents, based on 1,4-diazabicyclo[2.2.2]octane, was prepared. ZSM-5 zeolites with nanosheet morphology (10 nm crystal thickness) were synthesized under hydrothermal conditions using multiquaternary ammonium surfactants as the zeolite structure-generating agents. Both wide-angle and small-angle diffraction patterns were obtained using only a suitable structure-directing agent under a specific zeolite synthesis composition. A mechanism of zeolite formation is proposed based on the results obtained from various physicochemical characterizations. ZSM-5 materials were investigated in catalytic reactions requiring medium to strong acidity, which are important for the synthesis of a wide range of industrially important fine and specialty chemicals. The catalytic activity of ZSM-5 materials was compared with that of the conventional ZSM-5 and amorphous mesoporous aluminosilicate Al-MCM-41. The synthesis strategy of the present investigation using the new series of structure-directing agents could be extended for the synthesis of other related zeolites or other porous materials in the future. Zeolite with a structural feature as small as the size of a unit cell (5-10 nm) with hierarchically ordered porous structure would be very promising for catalysis.

5.
Front Bioeng Biotechnol ; 12: 1372155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572362

RESUMO

Solid acid catalysts are widely used in the field of biomass catalytic conversion owing to their advantages of low environmental pollution, easy separation and reusability. Nevertheless, there are relatively few studies on the mechanism of solid acid liquefaction for biomass. In this study, the effect of acid strength and acid amount of various solid acids on the liquefaction efficiency has been investigated using waste bamboo sawdust generated from the pulp and paper industry as the raw material. In addition, the physicochemical changes of cellulose, hemicellulose and lignin during the reaction process of bamboo sawdust have been studied, and the liquefaction mechanism of bamboo sawdust under the action of various solid acids has been concluded. As a result, the liquefaction efficiency of bamboo sawdust under the polyol system of PEG400/propanetriol is mainly related to the acid strength of the solid acid, and the greater the acid strength of the solid acid, the better the catalytic effect on the bamboo sawdust, in which the residual amount of bamboo sawdust liquefaction catalyzed by the SPA catalyst is only 17.72%. Noteworthy, the most difficult component to liquefy is the crystallization of natural cellulose I into cellulose II during the reaction process, which is the primary obstacle to the complete liquefaction of bamboo sawdust by solid acid. Overall, these findings are valuable for the high value utilization of waste bamboo sawdust in the pulp and paper industry, as well as the application of solid acid catalytic technology for biomass.

6.
Nanomaterials (Basel) ; 14(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38607149

RESUMO

Owing to the growing concerns about the dwindling fossil fuel reserves, increasing energy demand, and climate emergency, it is imperative to develop and deploy sustainable energy technologies to ensure future energy supply and to transition to the net-zero world. In this context, there is great potential in the biorefinery concept for supplying drop in biofuels in the form of biodiesel. Biodiesel as a fuel can certainly bridge the gap where electrification or the use of hydrogen is not feasible, for instance, in heavy vehicles and in the farm and marine transportation sectors. However, the biodiesel industry also generates a large amount of crude glycerol as the by-product. Due to the presence of several impurities, crude glycerol may not be a suitable feedstock for all high-value products derived from glycerol, but it fits well with glycerol esterification for producing glycerol acetins, which have numerous applications. This review critically looks at the processes using nanostructured solid/liquid acid catalysts for glycerol esterification, including the economic viability of the scale-up. The homogeneous catalysts reviewed herein include mineral acids and Brønsted acidic ionic liquids, such as SO3H-functionalized and heteropoly acid based ionic liquids. The heterogeneous catalysts reviewed herein include solid acid catalysts such as metal oxides, ion-exchange resins, zeolites, and supported heteropoly acid-based catalysts. Furthermore, the techno-economic analysis studies have shown the process to be highly profitable, confirming the viability of glycerol esterification as a potential tool for economic value addition to the biorefinery industry.

7.
ChemSusChem ; 16(9): e202201991, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36637905

RESUMO

Careless release of plastic waste is a pressing problem for marine and other eco-environments, and materials recycling of this stream is an open problem. For this purpose, a new metal-free acidic carbocatalyst with 8 wt % sulfur is constructed from a side product of the paper industry namely Na-lignosulfonate. The catalyst shows an extraordinary performance for the fragmentation of polymer waste which smoothly occurs above the ceiling temperature of the polymers. The reaction is run without hydrogen and at ambient pressure with commercially available high-density polyethylene (HDPE) as well as a real polymer waste mixture of high and low-density polyethylene (HDPE, LDPE). In all cases, a homologous series of n-alkanes and n-alkenes are obtained. The unique sulfur-rich carbonaceous structure (transfer hydrogenation functionality) and the metal-free character of the acidic carbocatalyst makes it inert against many typical catalyst poisons, among them water, salt, polar functionalities, and sulfur species. The described performance in plastic recycling, as well as the low cost and large-scale availability of lignosulfonate from the pulp industry, makes this metal-free acidic carbocatalyst promising for real-life environmental applications.

8.
J Hazard Mater ; 438: 129514, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35816799

RESUMO

We report the synthesis of H2SO4-modified biochars (SBCs) as solid-acid catalysts to activate H2O2 at circumneutral pH under visible light radiation. Spent coffee grinds were pyrolyzed with TiO2 at 300, 500 and 600 °C followed by steeping in 5 M H2SO4 and were used for the Fenton-like degradation of methyl orange (MO). The catalytic activity of SBC depended on the pyrolysis temperature and correlated well with the surface acidity and persistent free radical (PFR) concentration. Results showed that a complete MO removal and a TOC reduction of 70.2% can be achieved with SBC500 under photo-Fenton conditions. However, poisoning of the Lewis acid sites on SBC by PO43- led to a dramatic decrease in the removal of MO with inhibition effects more pronounced than with radical scavengers, suggesting the key role played by acid-sites on the activation of H2O2. Finally, electron paramagnetic resonance (EPR) studies identified •OH as the key transient in the degradation followed by •O2- and 1O2. These findings suggest that H2O2 was likely adsorbed on the surface oxygenated functional groups before being decomposed by accepting electrons from the PFRs on the SBC surface.


Assuntos
Peróxido de Hidrogênio , Ácidos de Lewis , Carvão Vegetal , Radicais Livres , Luz , Peróxidos
9.
Materials (Basel) ; 13(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155730

RESUMO

Different solid sulfonic titania-based catalysts were investigated for the hydrothermal dehydration of fructose to 5-hydroxymethylfurfural (5-HMF). The catalytic behavior of the materials was evaluated in terms of fructose conversion and selectivity to 5-HMF. The surface and structural properties of the catalysts were investigated by means of X-ray diffraction (XRD), N2 adsorption isotherms, thermo-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and acid capacity measurements. Special attention was focused on the reaction conditions, both in terms of 5-HMF selectivity and the sustainability of the process, choosing water as the solvent. Among the various process condition studied, TiO2-SO3H catalyzed a complete conversion (99%) of 1.1M fructose and 5-HMF selectivity (50%) and yield (50%) at 165 °C. An important improvement of the HMF selectivity (71%) was achieved when the reaction was carried out by using a lower fructose concentration (0.1M) and lower temperature (140 °C). The catalytic activities of the materials were related to their acid capacities as much as their textural properties. In particular, a counterbalance between the acidity and the structure of the pores in which the catalytic sites are located, results in the key issue for switch the selectivity towards the achievement of 5-HMF.

10.
Bioresour Technol ; 298: 122432, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31767425

RESUMO

It is imminent to develop renewable resources to replace fossil-derived energies as fossil resources are on the brink of exhaustion. Lignin is one of the major components of lignocellulosic biomass, which is a natural amorphous three-dimensional polymer with abundant C-O bonds and aromatic structure. Hence, valorization of lignin into high value-added liquid fuels and chemicals is regarded as a promising strategy to mitigate fossil resource shortages. Solid acid catalysts are extensively studied due to environmentally friendly in terms of the ease of separation, recovery and reduced amount of wastes. Hence, this review focuses on summarizing the recent progress of catalytic valorization of lignin over different kinds of solid acid catalysts including zeolites, heteropolyacids, metal oxides, amorphous SiO2-Al2O3, metal phosphates, and Lewis acid. Based on reviewing of current progress of lignin conversion, the challenges and future prospects are emphasized.


Assuntos
Lignina , Dióxido de Silício , Biomassa , Catálise , Ácidos de Lewis
11.
Front Chem ; 7: 233, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31106190

RESUMO

Many countries have opted to produce biodiesel from vegetable oils for energy security and climate change concerns. Consequently, the availability of abundant glycerol, as a by-product in biodiesel production, is more obvious. Many institutions and companies have explored different routes to convert glycerol to highly-added chemical products and fuel additives. As the addition of the second reactant to glycerol may end up with worse exergy calculation, the conversion of glycerol over solid acid catalysts without the addition of the second reactant is preferred in this mini-review. Glycerol aromatization and glycerol dehydration over zeolite catalysts were focused with an emphasis on recent papers in the past 3 years. The role of acidity, hydrophilicity-hydrophobicity, zeolite frameworks are highlighted. The presence of water in the glycerol feed affected the stability of the catalysts. Low cost and naturally abundant zeolite and minerals are proposed. Numerous low-cost catalysts such as natural zeolites and natural clays are potentially used for this purpose.

12.
Environ Technol ; 39(15): 1955-1966, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28639534

RESUMO

In this paper, glycerol esterification with acetic acid (AA) was studied on several solid acid catalysts: Al2O3, Al-MCM-41, HPA/SiO2, HBEA, Amberlyst 15 and Amberlyst 36 with the aim of determining the reaction conditions and the nature of the surface acid sites required to produce selectively triacetylglycerol (triacetin). The acidity of the catalysts (nature, density and strength of acid sites) was characterized by temperature-programmed desorption of NH3 and FTIR of adsorbed pyridine. Al2O3 (Lewis acidity) did not show any activity in the reaction. In contrast, highest activity and selectivity to the triacetylated product (triacetin) were obtained on catalysts with Brønsted acidity: Amberlyst 15 and Amberlyst 36. The effect of temperature and molar ratio of AA to glycerol was studied, and the results showed that both parameters have a significant impact on the production of the desired product. Glycerol conversion rate and selectivity to triacetin increased when temperature or AA to glycerol molar ratio were increased, reaching a triacetin yield on Amberlyst 36 of 44% at 393 K and AA to glycerol molar ratio of 6. Deactivation and reusability of Amberlyst 36 were evaluated by performing consecutive catalytic tests. The presence of some irreversible deactivation due to sulfur loss was observed. In addition, the feasibility of using crude glycerol from biodiesel production as reactant was also investigated. Conversion of crude pretreated glycerol yielded values of triacetin and diacetin similar to those obtained with the commercial pure glycerol although at a lower rate.


Assuntos
Ácido Acético/química , Biocombustíveis , Catálise , Esterificação , Glicerol , Dióxido de Silício
13.
ChemSusChem ; 11(17): 2870-2880, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-29975011

RESUMO

A new type of biomass-derived non-ionic surfactants has been obtained by reacting hydroxymethylfurfural (HMF), glycerol, and fatty alcohols. For instance, 5-(octyloxymethyl)furfural glyceryl acetal can be obtained in a one-pot process by etherification of HMF with fatty alcohols followed by acetalization with glycerol. For a successful solid catalyst, acidity and polarity have to be optimized to improve conversion, selectivity, and catalyst deactivation owing to the different adsorption characteristics of the reactant molecules. Accordingly, Beta zeolite with a high Si/Al ratio and practically free of connectivity defects showed good results when dealing with these biomass derivatives, which include a highly polar reactant such as glycerol. The scope of the reaction is good and a variety of new stable surfactant molecules can be obtained that present hydrophilic-lipophilic balance (HLB ) values in the range 4.9 to 6.6, which are of interest for water in oil emulsions.

14.
ChemSusChem ; 7(6): 1703-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24729382

RESUMO

Efficient transformation of biomass-derived feedstocks to chemicals and fuels remains a daunting challenge in utilizing biomass as alternatives to fossil resources. A three-phase catalytic system, consisting of an aqueous phase, a hydrophobic ionic-liquid phase, and a solid-acid catalyst phase of nanostructured vanadium phosphate and mesostructured cellular foam (VPO-MCF), is developed for efficient conversion of biomass-derived fructose to 5-hydroxymethylfurfural (HMF). HMF is a promising, versatile building block for production of value-added chemicals and transportation fuels. The essence of this three-phase system lies in enabling the isolation of the solid-acid catalyst from the aqueous phase and regulation of its local environment by using a hydrophobic ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]). This system significantly inhibits the side reactions of HMF with H2O and leads to 91 mol % selectivity to HMF at 89 % of fructose conversion. The unique three-phase catalytic system opens up an alternative avenue for making solid-acid catalyst systems with controlled and locally regulated microenvironment near catalytically active sites by using a hydrophobic ionic liquid.


Assuntos
Frutose/química , Furaldeído/análogos & derivados , Líquidos Iônicos/química , Dióxido de Silício/química , Compostos de Vanádio/química , Catálise , Furaldeído/química , Imidazóis/química , Sulfonamidas , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa