Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930864

RESUMO

The low light absorption efficiency has seriously hindered the application of two-dimensional transition metal dichalcogenide (TMDC) nanosheets in the field of optoelectronic devices. Various approaches have been used to improve the performance of TMDC nanosheets. Preparation of one-dimensional TMDC nanoscrolls in combination with photoactive materials has been a promising method to improve their properties recently. In this work, we report a facile method to enhance the optoelectronic performance of TMDC nanoscrolls by wrapping the photoactive organic dye rhodamine (R6G) into them. After R6G molecules were deposited on monolayer TMDC nanosheets by the solution method, the R6G/MoS2 nanoscrolls with lengths up to hundreds of microns were prepared in a short time by dropping a mixture of ammonia and ethanol solution on the R6G/MoS2 nanosheets. The as-obtained R6G/MoS2 nanoscrolls were well characterized by optical microscopy, atomic force microscopy, Raman spectroscopy, and transmission electron microscopy to prove the encapsulation of R6G. There are multiple type II heterojunction interfaces in the R6G/MoS2 nanoscrolls, which can promote the generation of photo-induced carriers and the following electron-hole separation. The separated electrons were transported rapidly along the axial direction of the R6G/MoS2 nanoscrolls, which greatly improves the efficiency of light absorption and photoresponse. Under the irradiation of an incident 405 nm laser, the photoresponsivity, carrier mobility, external quantum efficiency, and detectivity of R6G/MoS2 nanoscrolls were enhanced to 66.07 A/W, 132.93 cm2V-1s-1, 20,261%, and 1.25 × 1012 cm·Hz1/2W-1, which are four orders of magnitude higher than those of monolayer MoS2 nanosheets. Our work indicates that the R6G/TMDC hybrid nanoscrolls could be promising materials for high-performance optoelectronic devices.

2.
J Environ Manage ; 281: 111893, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434759

RESUMO

Hydroponic cultivation is revolutionizing agricultural crop production techniques all over the world owing to its minimal environmental footprint, enhanced pest control, and high crop yield. However, waste nutrient solutions (WNS) generated from hydroponic systems contain high concentrations of N and P; moreover, they are discharged into surface and subsurface environments, leading to eutrophication and subsequent ecosystem degradation. In this study, the nutrient concentrations in WNS from 10 hydroponic indoor tomato, capsicum, and strawberry farms (greenhouses) were monitored for up to six months. The concentrations of N and P in WNS discharged from these farms were 48.0-494.0 mg L-1 and 12.7-96.9 mg L-1, respectively, which exceeded the Korean water quality guidelines (40.0 mg L-1 N and 4.0 mg L-1 P) for effluents. These concentrations were varied and dependent on the supplied nutrient concentrations, crop types, and growth stages. In general, the concentrations of N and P were in the following order: tomato > capsicum > strawberry. High N as NO3- and P as PO43- but low organic C in WNS warrant subsequent treatment before discharge. Therefore, this study tested a pilot-scale sequencing batch reactor (SBR) system as a potential technology for WNS treatment. The SBR system had BOD, COD, nitrate, and phosphate removal efficiency of 100, 100, 89.5, and 99.8%, respectively. In addition, the SBR system removed other cations such as Ca2+, dissolved Fe, K+, Mg2+, and Na+ and the removal efficiencies of those ions were 48, 67, 18, 14 and 15%, respectively. Lower methanol addition (0.63 mg L-1) and extended aeration (~30 min) improved SBR performance efficiency of C, N, and P removal. Thus, SBR showed significant promise as a treatment alternative to WNS pollutants originating from hydroponic systems.


Assuntos
Nitrogênio , Fósforo , Reatores Biológicos , Ecossistema , Hidroponia , Nutrientes , Eliminação de Resíduos Líquidos
3.
Materials (Basel) ; 17(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38473621

RESUMO

This study aims to investigate the effect of hot deformation on commercially available Ti-6246 alloy below its ß-transus transition temperature at 900 °C, knowing that the α → ß transition temperature of Ti-6246 alloy is about 935 °C. The study systematically applies a thermomechanical processing cycle, including hot rolling at 900 °C and solution and ageing treatments at various temperatures, to investigate microstructural and mechanical alterations. The solution treatments are performed at temperatures of 800 °C, 900 °C and 1000 °C, i.e., below and above the ß-transus transition temperature, for 9 min, followed by oil quenching. The ageing treatment is performed at 600 °C for 6 h, followed by air quenching. Employing various techniques, such as X-ray diffraction, scanning electron microscopy, optical microscopy, tensile strength and microhardness testing, the research identifies crucial changes in the alloy's constituent phases and morphology during thermomechanical processing. In solution treatment conditions, it was found that at temperatures of 800 °C and 900 °C, the α'-Ti martensite phase was generated in the primary α-Ti phase according to Burger's relation, but the recrystallization process was preferred at a temperature of 900 °C, while at a temperature of 1000 °C, the α″-Ti martensite phase was generated in the primary ß-Ti phase according to Burger's relation. The ageing treatment conditions cause the α'-Ti/α″-Ti martensite phases to revert to their α-Ti/ß-Ti primary phases. The mechanical properties, in terms of strength and ductility, underwent an important beneficial evolution when applying solution treatment, followed by ageing treatment, which provided an optimal mixture of strength and ductility. This paper provides engineers with the opportunity to understand the mechanical performance of Ti-6246 alloy under applied stresses and to improve its applications by designing highly efficient components, particularly military engine components, ultimately contributing to advances in technology and materials science.

4.
Materials (Basel) ; 17(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255477

RESUMO

In the present study, the effects of varying heating and cooling rates during the solution treatment process on the microstructure and properties of AA7050 alloy wires were investigated using tensile tests, metallographic microscopy, electron backscattered diffraction, and transmission electron microscopy. It was found that the recrystallized grain size of the alloy, subjected to method of rapid heating, exhibited a smaller and more uniform distribution in comparison to method of slow heating. The low density of η' strengthening phases after the artificial aging treatment was formed using air cooling method. Meanwhile, by using the water quenching method sufficient solute atoms and more nucleation sites were provided resulting in a large number of η' strengthening phases being formed. In addition, the alloy processed using the water quenching method displayed higher strength than that treated using the air cooling method for the T6 and T73 states. Furthermore, coarse precipitates formed and less clusters were observed in the matrix, while high density nanoscale clusters and no continuous precipitation are formed when using the water quenching method.

5.
Materials (Basel) ; 17(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39336338

RESUMO

A novel non-magnetic Fe-21Cr-15Ni-5Mn-2Mo austenitic stainless steel with high strength and plasticity has been developed. The microstructure and liquid helium temperature (4.2 K) tensile properties of the top and bottom samples of large-size forged flat steel after solution treatment at 1090 °C were investigated. The results showed that the average grain size of the bottom sample (48.0 ± 6.7 µm) was smaller than that of the top sample (58.8 ± 15.3 µm), and the MX precipitates and Z phases were distributed in the matrix of the samples. The 4.2 K strengths of the samples at the top and bottom were high, and large amounts of annealing twin boundaries played a certain role in strengthening. After cryogenic tensile testing, large amounts of deformation twins, stacking faults, and dislocations were generated inside the austenite grains of both samples, which helped the material to obtain higher plasticity and strength. The top and bottom samples possessed excellent synergies of strength and plasticity at 4.2 K, and the 4.2 K tensile properties of the top sample were as follows: ultimate tensile strength (UTS) of 1850 MPa, yield strength (YS) of 1363 MPa, and elongation (EL) of 26%. The tested steel is thus believed to meet the requirements of combined excellent strength and plasticity within a deep cryogenic environment, and it would be a promising material candidate for manufacturing superconducting coil cases to serve in new generation fusion engineering.

6.
Materials (Basel) ; 17(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793305

RESUMO

Three types of solution treatment and aging were designed to reveal the α' decomposition and its effect on the mechanical properties of near-α Ti-80 alloy, as follows: solution at 970 °C then quenching (ST), ST + aging at 600 °C for 5 h (STA-1), and ST + aging 600 °C for 24 h (STA-2). The results show that the microstructures of the ST samples were mainly composed of equiaxed αp and acicular α', with a large number of dislocations confirmed by the KAM results. After subsequent aging for 5 h, α' decomposed into acicular fine αs and nano-ß (intergranular ß, intragranular ß) in the STA-1 specimen, which obstructed dislocation motion during deformation, resulting in the STA-1 specimen exhibiting the most excellent yield strength (1012 MPa) and maintaining sufficient elongation (8.1%) compared with the ST (898 MPa) and STA-2 (871 MPa) samples. By further extending the aging time to 24 h, the size of acicular αs and nano-ß gradually increased while the density of dislocations decreased, which resulted in a decrease in strength and an increase in plasticity. Based on this, a microstructures-properties correlation model was proposed. This study provides a new method for strength-plasticity matching of near-α titanium alloys through α' decomposition to acicular αs+nano-ß.

7.
Materials (Basel) ; 17(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38591473

RESUMO

Thin twin-roll cast strips from a model Al-Cu-Mg-Li-Zr alloy with a small addition of Sc were prepared. A combination of a fast solidification rate and a favorable effect of Sc microalloying refines the grain size and the size of primary phase particles and reduces eutectic cell dimensions to 10-15 µm. Long-term homogenization annealings used in conventionally cast materials lasting several tens of hours followed by a necessary dimension reduction through rolling/extruding could be substituted by energy and material-saving procedure. It consists of two-step short annealings at 300 °C/30 min and 450 °C/30 min, followed by the refinement and hardening of the structure using constrained groove pressing. A dense dispersion of 10-20 nm spherical Al3(Sc,Zr) precipitates intensively forms during this treatment and effectively stabilizes the structure and inhibits the grain growth during subsequent solution treatment at 530 °C/30 min. Small (3%) pre-straining after quenching assures more uniform precipitation of strengthening Al2Cu (θ'), Al2CuMg (S'), and Al2CuLi (T1) particles during subsequent age-hardening annealing at 180 °C/14 h. The material does not contain a directional and anisotropic structure unavoidable in rolled or extruded sheets. The proposed procedure thus represents a model near net shape processing strategy for manufacturing lightweight high-strength sheets for cryogenic applications in aeronautics.

8.
Materials (Basel) ; 17(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38399115

RESUMO

The study presented in this paper is focused on the effect of varying the solution treatment duration on both the microstructural and mechanical properties of a cold-deformed by rolling Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) alloy, referred to as TNZTSF. Cold-crucible induction using the levitation synthesis technique, conducted under an argon-controlled atmosphere, was employed to fabricate the TNZTSF alloy. After synthesis, the alloy underwent cold deformation by rolling, reaching a total deformation degree (total applied thickness reduction) of 60%. Subsequently, a solution treatment was conducted at 850 °C, with varying treatment durations ranging from 2 to 30 min in 2 min increments. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were utilized for the structural analysis, while the mechanical properties were assessed using both tensile and hardness testing. The findings indicate that (i) in both the cold-deformed-by-rolling and solution-treated states, the TNZTSF alloy exhibits a microstructure consisting of a single ß-Ti phase; (ii) in the solution-treated state, the microstructure reveals a rise in the average grain size and a decline in the internal average microstrain as the duration of the solution treatment increases; and (iii) owing to the ß-phase stability, a favorable mix of elevated strength and considerable ductility properties can be achieved.

9.
Materials (Basel) ; 16(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37445078

RESUMO

The pores and coarse lamellar Mg17Al12 that inevitably occur in the weld zone are the major challenge for laser-welded magnesium (Mg) alloys including AZ31B. In order to improve microstructure uniformity and eliminate welding defects, a new process assisted with combination of heat and cryogenic treatment was applied in this study. The results showed that after solution treatment, the number and size of precipitates decreased and the uniformity of the microstructure improved. After cryogenic treatment, the lamellar Mg17Al12 was cracked into particles, and the grain size was refined. After solution + cryogenic treatment, Al8Mn5 substituted the lamellar Mg17Al12. Through studying the changes in microhardness, precipitates, and microstructure under different treatments, it was found that the conversation of Mg17Al12 from lamellar state into particle-like state as well as the appearance of dispersed Al8Mn5 particles played a second-phase strengthening role in improving the mechanical properties of Mg alloy laser-welded joint, and the tensile strength (258.60 MPa) and elongation (10.90%) of the sample were 4.4% and 32.6% higher than those of the as-welded joint.

10.
Materials (Basel) ; 16(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37445037

RESUMO

It is usually required that Ti-1300 alloys be able to withstand a greater load under special conditions, such as the controllable collision of a space shuttle and rapid collision of an automobile. Because of a good combination of strength and toughness, Ti-1300 alloys are widely applied in the aerospace industry. However, during the service process, the alloy components inevitably bear extreme loads. This paper uses high-speed tensile technology to systematically study the effects of different strain rates on the deformation of the microstructure and deformation mechanism of Ti-1300 alloys and to clarify a relation between the microstructure and mechanical properties. The results show that no phase transformation occurs during the high-speed tensile process at strain rates of 200 s-1 and 500 s-1. The deformation mechanism is mainly due to dislocation slip. The fracture mode is ductile fracture at the two strain rates, due to the connection between micro-voids promoted by dislocation slip. The ultimate tensile strengths are 1227 MPa and 1368 MPa, the yield strengths are 1050 MPa and 1220 MPa, and the elongations are 11.3% and 10.4%, respectively. The present results provide theoretical guidance for the further application of metastable ß titanium alloys in working environments with high strain rates.

11.
Materials (Basel) ; 16(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36984286

RESUMO

Hydrogen embrittlement and the anodic dissolution mechanism are two important aspects of the corrosion behavior of magnesium alloys. Here, to evaluate the effects of these two aspects on the corrosion failure of magnesium alloys under stress, the stress and corrosion behaviors of the AM50 magnesium alloy in air, deionized water, and NaCl solution after solid-solution (T4) treatment were investigated by X-ray diffraction, scanning electron microscopy, slow strain rate tensile testing, and vacuum dehydrogenation. The as-cast AM50 magnesium alloy was mainly composed of the α-Mg and ß-Mg17Al12 phases. After T4 treatment, the amount of the ß-Mg17Al12 phase was significantly reduced, and only a small amount existed at the grain boundaries. After T4 treatment, the stress corrosion resistance in deionized water improved, but it decreased in an NaCl environment. Dehydrogenation experiments showed that the effect of hydrogen on the corrosion process was weakened owing to the decrease of the ß-Mg17Al12 phase after solution treatment. The effects of hydrogen embrittlement and the anodic dissolution mechanism on the corrosion behavior of the AM50 magnesium alloy under stress were different. In deionized water, the hydrogen embrittlement mechanism played the major role, while the anodic dissolution mechanism played the major role in the presence of Cl- ions.

12.
Materials (Basel) ; 16(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37109840

RESUMO

The effects of solid solution treatment duration on the corrosion behavior and microstructure behavior of the cast Mg-8.5Li-6.5Zn-1.2Y (wt.%) alloy were investigated. This study revealed that with the treatment time for solid solutions increasing from 2 h to 6 h, the amount of α-Mg phase gradually decreases, and the alloy presents a needle-like shape after solid solution treatment for 6 h. Meanwhile, when the solid solution treatment time increases, the I-phase content drops. Exceptionally, under 4 h of solid solution treatment, the I-phase content has increased, and it is dispersed uniformly over the matrix. What we found in our hydrogen evolution experiments is that the hydrogen evolution rate of the as-cast Mg-8.5Li-6.5Zn-1.2Y alloy following solid solution processing for 4 h is 14.31 mL·cm-2·h-1, which is the highest rate. In the electrochemical measurement, the corrosion current density (icorr) value of as-cast Mg-8.5Li-6.5Zn-1.2Y alloy following solid solution processing for 4 h is 1.98 × 10-5, which is the lowest density. These results indicate that solid solution treatment can significantly improve the corrosion resistance of the Mg-8.5Li-6.5Zn-1.2Y alloy. The I-phase and the α-Mg phase are the primary elements influencing the corrosion resistance of the Mg-8.5Li-6.5Zn-1.2Y alloy. The existence of the I-phase and the border dividing the α-Mg phase and ß-Li phase easily form galvanic corrosion. Although the I-phase and the boundary between the α-Mg phase and ß-Li phase will be corrosion breeding sites, they are more effective in inhibiting corrosion.

13.
Materials (Basel) ; 16(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37048968

RESUMO

Ameliorating the high-temperature performance of cast Al-Si alloys used as engine components is essential. The effects of different T6 heat-treatment processes on the microstructure and mechanical properties of cast Al-Si-Cu-Mg-Ni-Cr alloys were investigated in the present study. The results demonstrate that, under the optimal solution treatment conditions of 500 °C for 2 h and 540 °C for 4 h, the T-Al9FeNi phase was present in the alloy, and the roundness of primary Si and the aspect ratio of eutectic Si in the alloy reached valley values of 1.46 and 2.56, respectively. With increasing ageing time at 180 °C, the tensile strength significantly improved, while the microhardness first increased and then decreased. When the ageing time was 4 h, microhardness reached a peak value of 155.82 HV. The fracture characteristics changed from quasi-cleavage to the coexistence of quasi-cleavage and dimples. After heat treatment, the high-temperature tensile properties of the alloy improved, which is a significant advantage compared to the as-cast alloy. The stable Al3Ni and Al9FeNi phases inhibited the cracking of the alloy at 350 °C.

14.
Materials (Basel) ; 16(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984392

RESUMO

In order to explore the microstructure evolution of an Mg-RE alloy refined by Al during solution treatment, an Mg-3Y-4Nd-2Al alloy was treated at 545 °C for different time periods. Phase evolution of the alloy was investigated. After solution treatment, the Mg-RE eutectic phase in the Mg-3Y-4Nd-2Al alloy dissolves, the granular Al2RE phase does not change, the acicular Al11RE3 phase breaks into the short rod-like Al2RE phase, and the lamellar Al2RE phase precipitates in the grains. With the extension of solution time, the precipitated phase of the lamellar Al2RE increased at first and then decreased, and its orientation relationship with the matrix is <112>Al2RE//<21¯1¯0>Mg and {111}Al2RE//{0002}Mg. The undissolved granular Al2RE phase can improve the thermal stability of the alloy grain by pinning the grain boundary, and the grain size did not change after solution treatment. Solution treatment significantly improved the plasticity of the alloy. After 48 h of solution treatment, the elongation increased to 17.5% from 8.5% in the as-cast state.

15.
Front Bioeng Biotechnol ; 11: 1166334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994360

RESUMO

Blood contact materials require strong anti-fouling capabilities to avoid thrombus formation. Recently, TiO2-based photocatalytic antithrombotic treatment has gained focus. Nevertheless, this method is restricted to titanium materials with photocatalytic abilities. This study offers an alternative solution that can be applied to a broader range of materials: piranha solution treatment. Our findings revealed that the free radicals generated by the treatment effectively altered the surface physicochemical properties of various inorganic materials, enhancing their surface hydrophilicity and oxidizing organic contaminants, thus improving their antithrombotic properties. Additionally, the treatment resulted in contrasting effects on the cellular affinity of SS and TiO2. While it significantly reduced the adhesion and proliferation of SMCs on SS surfaces, it significantly enhanced these on TiO2 surfaces. These observations suggested that the impact of the piranha solution treatment on the cellular affinity of biomaterials was closely tied to the intrinsic properties of the materials. Thus, materials suitable for piranha solution treatment could be selected based on the functional requirements of implantable medical devices. In conclusion, the broad applicability of piranha solution surface modification technology in both blood-contact and bone implant materials highlights its promising prospects.

16.
Materials (Basel) ; 16(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36770258

RESUMO

Grain refinement has been found to be an effective method for simultaneously enhancing strength and toughness. To avoid the sharp coarsening of grains in Cu-Ni-Sn alloys during solution treatment and thereby overcoming the tradeoff between strength and ductility, this work attempted to modify the composition and improve the thermal stability of the fine-grained structure in Cu-Ni-Sn alloys. The grain growth behavior during a solution treatment of the Cu-15Ni-8Sn alloys with/without Si and Ti additions was systematically investigated. The result reveals that compared to the grain size of 146 µm in the based alloy (without trace additions) after solution processing at 1073 K for 2 h, the fine-grained structure with a size below 20 µm is maintained owing to the benefit from Si and Ti addition. It was observed that the addition of Si and Ti offer the inhibition effect on the dissolution of the γ phase and Ni16Si7Ti6 particles after solution treatment. The grain boundary movement is severely hindered by these two aspects: the pinning effect from these particles, and the drag effect induced by additional solute atoms. Based on the analysis of grain growth kinetics, the activation energy of grain growth is increased from 156 kJ/mol to 353 kJ/mol with the addition of Si and Ti.

17.
Materials (Basel) ; 16(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068191

RESUMO

This paper examines the optimal aging temperature of WE43 alloy that has undergone precipitation hardening in conjunction with deep cryogenic treatment. The microstructure and phase composition were investigated, a microanalysis of the chemical composition was performed, and instrumental indentation tests were performed to determine the parameters of the micro-mechanical properties of the alloy after different heat treatment variants. It has been proven that a decrease in the aging temperature from 250 °C to 225 °C and the introduction of a deep cryogenic treatment lead to favorable changes in the microstructure of the alloy (reduction in grain size, increase in the number, and change in the type of ß-phase precipitates). The changes in the alloy structure achieved by lowering the aging temperature contribute to the improvement of the micromechanical properties of the test material. The most advantageous results were recorded for an alloy subjected to solution treatment and aged at 225 °C for 24 h with deep cryogenic treatment: a 30% increase in hardness, a 10% increase in Young's modulus, an improvement in elastic properties, and increased resistance to deformation of the alloy were shown compared to the initial (as-received) state. Raising the aging temperature to 250 °C leads to a phenomenon known as alloy overaging for both alloys after classical precipitation hardening and after deep cryogenic treatment. The results indicate the significant effectiveness of the proposed heat treatment in improving the service life of the Mg-Y-Nd-Zr (WE43) alloy.

18.
Materials (Basel) ; 15(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806650

RESUMO

In this work, the quantification of key microstructural features like γ' size morphology distribution, grain size, and localized stress distribution, especially near a fracture, were coupled with mechanical properties under various temperatures in Ni-base powder metallurgy superalloys subjected to sub-solvus or super-solvus heat treatments. Compared to super-solvus heat-treated alloy, sub-solvus heat-treated superalloy with a finer grain size exhibited higher ductility/strength at 550 °C, whilst adverse trend was observed at higher temperatures (750 and 830 °C). Besides, for both alloys, the strength and ductility decreased with the decrease in strain rate, resulting from oxidation behavior. Larger grain size or less grain boundary density can facilitate the retardation of oxidation behavior and weaken the propensity of early failure at higher temperatures.

19.
Materials (Basel) ; 15(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955188

RESUMO

To study the heat-treatment process of a semi-solid copper alloy, a thixotropic back-extruded tin-bronze shaft sleeve was heat-treated at 630 °C, 660 °C, 690 °C and 720 °C for 1 h, respectively. Microstructure changes and mechanical properties under different solution temperatures of shaft sleeve were characterized using a metallographic microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), hardness tester, and tensile tester. The results show that the tensile strength first increases and then decreases; the elongation decreases; and the Brinell hardness increases gradually with increasing solution temperature. When the solution treatment is at 690 °C, the tin-bronze shaft sleeve's microstructure and comprehensive mechanical properties are the best. The shape factor is 0.75, the average grain size is 82.52 µm, the Brinell hardness is 122 HBW, the tensile strength is 437 MPa, and the elongation is 17.4%, which is 3.4 times higher than that before solution treatment.

20.
Adv Sci (Weinh) ; 9(25): 2202356, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36093410

RESUMO

Antimony selenosulfide (Sb2(S,Se)3), a simple alloyed compound containing earth-abundant constituents, with a tunable bandgap and high absorption coefficient has attracted significant attention in high-efficiency photovoltaic applications. Optimizing interfacial defects and absorber layers to a high standard is essential in improving the efficiency of Sb2(S,Se)3 solar cells. In particular, the electron transport layer (ETL) greatly affects the final device performance of the superstrate structure. In this study, a simple and effective hydrazine hydrate (N2H4) solution post-treatment is proposed to modify CdS ETL in order to enhance Sb2(S,Se)3 solar cell efficiency. By this process, oxides and residual chlorides, caused by CdCl2 treated CdS under a high temperature over 400 °C in air, are appropriately removed, rendering smoother and flatter CdS ETL as well as high-quality Sb2(S,Se)3 thin films. Furthermore, the interfacial energy band alignment and recombination loss are both improved, resulting in an as-fabricated FTO/CdS-N2H4/Sb2(S,Se)3/spiro-OMeTAD/Au solar cell with a high PCE of 10.30%, placing it in the top tier of Sb-based solar devices. This study provides a fresh perspective on interfacial optimization and promotes the future development of antimony chalcogenide-based planar solar cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa