Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Cell ; 187(6): 1508-1526.e16, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38442711

RESUMO

Dorsal root ganglia (DRG) somatosensory neurons detect mechanical, thermal, and chemical stimuli acting on the body. Achieving a holistic view of how different DRG neuron subtypes relay neural signals from the periphery to the CNS has been challenging with existing tools. Here, we develop and curate a mouse genetic toolkit that allows for interrogating the properties and functions of distinct cutaneous targeting DRG neuron subtypes. These tools have enabled a broad morphological analysis, which revealed distinct cutaneous axon arborization areas and branching patterns of the transcriptionally distinct DRG neuron subtypes. Moreover, in vivo physiological analysis revealed that each subtype has a distinct threshold and range of responses to mechanical and/or thermal stimuli. These findings support a model in which morphologically and physiologically distinct cutaneous DRG sensory neuron subtypes tile mechanical and thermal stimulus space to collectively encode a wide range of natural stimuli.


Assuntos
Gânglios Espinais , Células Receptoras Sensoriais , Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Gânglios Espinais/citologia , Células Receptoras Sensoriais/citologia , Pele/inervação
2.
Annu Rev Biochem ; 90: 507-534, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153212

RESUMO

Mechanosensation is the ability to detect dynamic mechanical stimuli (e.g., pressure, stretch, and shear stress) and is essential for a wide variety of processes, including our sense of touch on the skin. How touch is detected and transduced at the molecular level has proved to be one of the great mysteries of sensory biology. A major breakthrough occurred in 2010 with the discovery of a family of mechanically gated ion channels that were coined PIEZOs. The last 10 years of investigation have provided a wealth of information about the functional roles and mechanisms of these molecules. Here we focus on PIEZO2, one of the two PIEZO proteins found in humans and other mammals. We review how work at the molecular, cellular, and systems levels over the past decade has transformed our understanding of touch and led to unexpected insights into other types of mechanosensation beyond the skin.


Assuntos
Descoberta de Drogas/métodos , Canais Iônicos/química , Canais Iônicos/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Barorreflexo/fisiologia , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Propriocepção/fisiologia , Células-Tronco/fisiologia , Tato
3.
Cell ; 184(22): 5608-5621.e18, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34637701

RESUMO

Mammals use glabrous (hairless) skin of their hands and feet to navigate and manipulate their environment. Cortical maps of the body surface across species contain disproportionately large numbers of neurons dedicated to glabrous skin sensation, in part reflecting a higher density of mechanoreceptors that innervate these skin regions. Here, we find that disproportionate representation of glabrous skin emerges over postnatal development at the first synapse between peripheral mechanoreceptors and their central targets in the brainstem. Mechanoreceptor synapses undergo developmental refinement that depends on proximity of their terminals to glabrous skin, such that those innervating glabrous skin make synaptic connections that expand their central representation. In mice incapable of sensing gentle touch, mechanoreceptors innervating glabrous skin still make more powerful synapses in the brainstem. We propose that the skin region a mechanoreceptor innervates controls the developmental refinement of its central synapses to shape the representation of touch in the brain.


Assuntos
Tronco Encefálico/metabolismo , Mecanorreceptores/metabolismo , Sinapses/metabolismo , Percepção do Tato/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Canais Iônicos/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Imagem Óptica , Optogenética , Pele/inervação
4.
Cell ; 168(1-2): 295-310.e19, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28041852

RESUMO

The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception.


Assuntos
Medula Espinal/citologia , Medula Espinal/metabolismo , Sinapses , Animais , Axônios/metabolismo , Dendritos/metabolismo , Interneurônios/citologia , Interneurônios/metabolismo , Mecanorreceptores/metabolismo , Camundongos , Biologia Molecular/métodos , Vias Neurais , Percepção do Tato
5.
Annu Rev Neurosci ; 44: 383-402, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236889

RESUMO

Nearly all structures in our body experience mechanical forces. At a molecular scale, these forces are detected by ion channels that function as mechanotransducers converting physical forces into electrochemical responses. Here we focus on PIEZOs, a family of mechanically activated ion channels comprising PIEZO1 and PIEZO2. The significance of these channels is highlighted by their roles in touch and pain sensation as well as in cardiovascular and respiratory physiology, among others. Moreover, mutations in PIEZOs cause somatosensory, proprioceptive, and blood disorders. The goal here is to present the diverse physiology and pathophysiology of these unique channels, discuss ongoing research and critical gaps in the field, and explore the pharmaceutical interest in targeting PIEZOs for therapeutic development.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Canais Iônicos/genética , Percepção da Dor
6.
J Neurosci ; 44(26)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38744531

RESUMO

The neurophysiological effects of spinal cord stimulation (SCS) for chronic pain are poorly understood, resulting in inefficient failure-prone programming protocols and inadequate pain relief. Nonetheless, novel stimulation patterns are regularly introduced and adopted clinically. Traditionally, paresthetic sensation is considered necessary for pain relief, although novel paradigms provide analgesia without paresthesia. However, like pain relief, the neurophysiological underpinnings of SCS-induced paresthesia are unknown. Here, we paired biophysical modeling with clinical paresthesia thresholds (of both sexes) to investigate how stimulation frequency affects the neural response to SCS relevant to paresthesia and analgesia. Specifically, we modeled the dorsal column (DC) axonal response, dorsal column nucleus (DCN) synaptic transmission, conduction failure within DC fiber collaterals, and dorsal horn network output. Importantly, we found that high-frequency stimulation reduces DC fiber activation thresholds, which in turn accurately predicts clinical paresthesia perception thresholds. Furthermore, we show that high-frequency SCS produces asynchronous DC fiber spiking and ultimately asynchronous DCN output, offering a plausible biophysical basis for why high-frequency SCS is less comfortable and produces qualitatively different sensation than low-frequency stimulation. Finally, we demonstrate that the model dorsal horn network output is sensitive to SCS-inherent variations in spike timing, which could contribute to heterogeneous pain relief across patients. Importantly, we show that model DC fiber collaterals cannot reliably follow high-frequency stimulation, strongly affecting the network output and typically producing antinociceptive effects at high frequencies. Altogether, these findings clarify how SCS affects the nervous system and provide insight into the biophysics of paresthesia generation and pain relief.


Assuntos
Parestesia , Estimulação da Medula Espinal , Estimulação da Medula Espinal/métodos , Humanos , Parestesia/fisiopatologia , Parestesia/terapia , Masculino , Feminino , Adulto , Manejo da Dor/métodos , Modelos Neurológicos , Pessoa de Meia-Idade , Medula Espinal/fisiologia , Medula Espinal/fisiopatologia
7.
Annu Rev Physiol ; 83: 205-230, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33085927

RESUMO

Temperature is a universal cue and regulates many essential processes ranging from enzymatic reactions to species migration. Due to the profound impact of temperature on physiology and behavior, animals and humans have evolved sophisticated mechanisms to detect temperature changes. Studies from animal models, such as mouse, Drosophila, and C. elegans, have revealed many exciting principles of thermosensation. For example, conserved molecular thermosensors, including thermosensitive channels and receptors, act as the initial detectors of temperature changes across taxa. Additionally, thermosensory neurons and circuits in different species appear to adopt similar logic to transduce and process temperature information. Here, we present the current understanding of thermosensation at the molecular and cellular levels. We also discuss the fundamental coding strategies of thermosensation at the circuit level. A thorough understanding of thermosensation not only provides key insights into sensory biology but also builds a foundation for developing better treatments for various sensory disorders.


Assuntos
Neurônios/fisiologia , Sensação Térmica/fisiologia , Animais , Humanos , Temperatura
8.
J Neurosci ; 43(13): 2362-2380, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36801824

RESUMO

Body ownership and the sense of agency are two central aspects of bodily self-consciousness. While multiple neuroimaging studies have investigated the neural correlates of body ownership and agency separately, few studies have investigated the relationship between these two aspects during voluntary movement when such experiences naturally combine. By eliciting the moving rubber hand illusion with active or passive finger movements during functional magnetic resonance imaging, we isolated activations reflecting the sense of body ownership and agency, respectively, as well as their interaction, and assessed their overlap and anatomic segregation. We found that perceived hand ownership was associated with activity in premotor, posterior parietal, and cerebellar regions, whereas the sense of agency over the movements of the hand was related to activity in the dorsal premotor cortex and superior temporal cortex. Moreover, one section of the dorsal premotor cortex showed overlapping activity for ownership and agency, and somatosensory cortical activity reflected the interaction of ownership and agency with higher activity when both agency and ownership were experienced. We further found that activations previously attributed to agency in the left insular cortex and right temporoparietal junction reflected the synchrony or asynchrony of visuoproprioceptive stimuli rather than agency. Collectively, these results reveal the neural bases of agency and ownership during voluntary movement. Although the neural representations of these two experiences are largely distinct, there are interactions and functional neuroanatomical overlap during their combination, which has bearing on theories on bodily self-consciousness.SIGNIFICANCE STATEMENT How does the brain generate the sense of being in control of bodily movement (agency) and the sense that body parts belong to one's body (body ownership)? Using fMRI and a bodily illusion triggered by movement, we found that agency is associated with activity in premotor cortex and temporal cortex, and body ownership with activity in premotor, posterior parietal, and cerebellar regions. The activations reflecting the two sensations were largely distinct, but there was overlap in premotor cortex and an interaction in somatosensory cortex. These findings advance our understanding of the neural bases of and interplay between agency and body ownership during voluntary movement, which has implications for the development of advanced controllable prosthetic limbs that feel like real limbs.


Assuntos
Ilusões , Percepção do Tato , Humanos , Imagem Corporal , Propriedade , Encéfalo , Lobo Temporal , Mãos , Movimento , Percepção Visual , Propriocepção
9.
J Oral Rehabil ; 51(3): 593-600, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38193561

RESUMO

BACKGROUND: Qualitative sensory testing (QualST) is a simple, standardised, chairside method for evaluating somatosensory function; however, testing focuses on detection of cold, touch and pain with no recognition of perceptions of pleasantness and unpleasantness. OBJECTIVES: The study aimed to utilise the stimuli in QualST, with the addition of a soft brush, to investigate stimulus-evoked perceptions of pleasantness and unpleasantness on the facial skin and if any side-to-side differences. Additional aims were to determine the inter- and intra-rater reliability using the modified QualST protocol and in the side-to-side differences. METHODS: Thirty healthy adult female participants underwent three sessions of sensitivity testing as per the modified QualST protocol. Stimuli were applied bilaterally to the facial skin, and participants provided separate yes/no responses for presence of stimulus-evoked pleasantness, unpleasantness and/or differences between sides. RESULTS: The stimuli were able to evoke sensations of pleasantness and unpleasantness with little differences in responses between the Q-tip and goat hair brush for the perceptions. Side-to-side differences in evoked perceptions were observed and greatest, when evaluating for pinprick-evoked unpleasantness (range between sessions = 18-19 participants). Acceptable percentage (≥90%) and excellent Cohen's Kappa (≥0.762) inter- and intra-rater agreements were identified for one or more positive responses for each stimulus modality and the targeted perception. CONCLUSION: The modified QualST protocol provides a simple, reproducible method for the investigation of perceptions of pleasantness and unpleasantness, with readily accessible instrumentation to dental professionals and allowing for a more holistic approach in somatosensory testing.


Assuntos
Dor , Tato , Adulto , Humanos , Feminino , Reprodutibilidade dos Testes , Medição da Dor , Face
10.
J Neurosci ; 42(1): 44-57, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34759028

RESUMO

The primary somatosensory cortex (S1) is important for the control of movement as it encodes sensory input from the body periphery and external environment during ongoing movement. Mouse S1 consists of several distinct sensorimotor subnetworks that receive topographically organized corticocortical inputs from distant sensorimotor areas, including the secondary somatosensory cortex (S2) and primary motor cortex (M1). The role of the vibrissal S1 area and associated cortical connections during active sensing is well documented, but whether (and if so, how) non-whisker S1 areas are involved in movement control remains relatively unexplored. Here, we demonstrate that unilateral silencing of the non-whisker S1 area in both male and female mice disrupts hind paw movement during locomotion on a rotarod and a runway. S2 and M1 provide major long-range inputs to this S1 area. Silencing S2→non-whisker S1 projections alters the hind paw orientation during locomotion, whereas manipulation of the M1 projection has little effect. Using patch-clamp recordings in brain slices from male and female mice, we show that S2 projection preferentially innervates inhibitory interneuron subtypes. We conclude that interneuron-mediated S2-S1 corticocortical interactions are critical for efficient locomotion.SIGNIFICANCE STATEMENT Somatosensory cortex participates in controlling rhythmic movements, such as whisking and walking, but the neural circuitry underlying movement control by somatosensory cortex remains relatively unexplored. We uncover a corticocortical circuit in primary somatosensory cortex that regulates paw orientation during locomotion in mice. We identify neuronal elements that comprise these cortical pathways using pharmacology, behavioral assays, and circuit-mapping methods.


Assuntos
Vias Eferentes/fisiologia , Interneurônios/fisiologia , Orientação Espacial/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Feminino , Locomoção/fisiologia , Masculino , Camundongos , Movimento/fisiologia
11.
J Neurosci ; 42(13): 2701-2715, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35135855

RESUMO

Lateralization is a hallmark of somatosensory processing in the mammalian brain. However, in addition to their contralateral representation, unilateral tactile stimuli also modulate neuronal activity in somatosensory cortices of the ipsilateral hemisphere. The cellular organization and functional role of these ipsilateral stimulus responses in awake somatosensory cortices, especially regarding stimulus coding, are unknown. Here, we targeted silicon probe recordings to the vibrissa region of primary (S1) and secondary (S2) somatosensory cortex of awake head-fixed mice of either sex while delivering ipsilateral and contralateral whisker stimuli. Ipsilateral stimuli drove larger and more reliable responses in S2 than in S1, and activated a larger fraction of stimulus-responsive neurons. Ipsilateral stimulus-responsive neurons were rare in layer 4 of S1, but were located in equal proportion across all layers in S2. Linear classifier analyses further revealed that decoding of the ipsilateral stimulus was more accurate in S2 than S1, whereas S1 decoded contralateral stimuli most accurately. These results reveal substantial encoding of ipsilateral stimuli in S1 and especially S2, consistent with the hypothesis that higher cortical areas may integrate tactile inputs across larger portions of space, spanning both sides of the body.SIGNIFICANCE STATEMENT Tactile information obtained by one side of the body is represented in the activity of neurons of the opposite brain hemisphere. However, unilateral tactile stimulation also modulates neuronal activity in the other, or ipsilateral, brain hemisphere. This ipsilateral activity may play an important role in the representation and processing of tactile information, in particular when the sense of touch involves both sides of the body. Our work in the whisker system of awake mice reveals that neocortical ipsilateral activity, in particular that of deep layer excitatory neurons of secondary somatosensory cortex (S2), contains information about the presence and the velocity of unilateral tactile stimuli, which supports a key role for S2 in integrating tactile information across both body sides.


Assuntos
Córtex Somatossensorial , Percepção do Tato , Animais , Mamíferos , Camundongos , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Percepção do Tato/fisiologia , Vibrissas/fisiologia , Vigília
12.
J Neurosci ; 42(15): 3133-3149, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35232767

RESUMO

Pain-related sensory input is processed in the spinal dorsal horn (SDH) before being relayed to the brain. That processing profoundly influences whether stimuli are correctly or incorrectly perceived as painful. Significant advances have been made in identifying the types of excitatory and inhibitory neurons that comprise the SDH, and there is some information about how neuron types are connected, but it remains unclear how the overall circuit processes sensory input or how that processing is disrupted under chronic pain conditions. To explore SDH function, we developed a computational model of the circuit that is tightly constrained by experimental data. Our model comprises conductance-based neuron models that reproduce the characteristic firing patterns of spinal neurons. Excitatory and inhibitory neuron populations, defined by their expression of genetic markers, spiking pattern, or morphology, were synaptically connected according to available qualitative data. Using a genetic algorithm, synaptic weights were tuned to reproduce projection neuron firing rates (model output) based on primary afferent firing rates (model input) across a range of mechanical stimulus intensities. Disparate synaptic weight combinations could produce equivalent circuit function, revealing degeneracy that may underlie heterogeneous responses of different circuits to perturbations or pathologic insults. To validate our model, we verified that it responded to the reduction of inhibition (i.e., disinhibition) and ablation of specific neuron types in a manner consistent with experiments. Thus validated, our model offers a valuable resource for interpreting experimental results and testing hypotheses in silico to plan experiments for examining normal and pathologic SDH circuit function.SIGNIFICANCE STATEMENT We developed a multiscale computer model of the posterior part of spinal cord gray matter (spinal dorsal horn), which is involved in perceiving touch and pain. The model reproduces several experimental observations and makes predictions about how specific types of spinal neurons and synapses influence projection neurons that send information to the brain. Misfiring of these projection neurons can produce anomalous sensations associated with chronic pain. Our computer model will not only assist in planning future experiments, but will also be useful for developing new pharmacotherapy for chronic pain disorders, connecting the effect of drugs acting at the molecular scale with emergent properties of neurons and circuits that shape the pain experience.


Assuntos
Dor Crônica , Simulação por Computador , Humanos , Interneurônios/fisiologia , Células do Corno Posterior/metabolismo , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal , Sinapses
13.
Neuroimage ; 276: 120197, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245558

RESUMO

Tactile and movement-related somatosensory perceptions are crucial for our daily lives and survival. Although the primary somatosensory cortex is thought to be the key structure of somatosensory perception, various cortical downstream areas are also involved in somatosensory perceptual processing. However, little is known about whether cortical networks of these downstream areas can be dissociated depending on each perception, especially in human. We address this issue by combining data from direct cortical stimulation (DCS) for eliciting somatosensation and data from high-gamma band (HG) elicited during tactile stimulation and movement tasks. We found that artificial somatosensory perception is elicited not only from conventional somatosensory-related areas such as the primary and secondary somatosensory cortices but also from a widespread network including superior/inferior parietal lobules and premotor cortex. Interestingly, DCS on the dorsal part of the fronto-parietal area including superior parietal lobule and dorsal premotor cortex often induces movement-related somatosensations, whereas that on the ventral one including inferior parietal lobule and ventral premotor cortex generally elicits tactile sensations. Furthermore, the HG mapping results of the movement and passive tactile stimulation tasks revealed considerable similarity in the spatial distribution between the HG and DCS functional maps. Our findings showed that macroscopic neural processing for tactile and movement-related perceptions could be segregated.


Assuntos
Mapeamento Encefálico , Córtex Cerebral , Percepção de Movimento , Percepção do Tato , Córtex Cerebral/fisiologia , Córtex Somatossensorial/fisiologia , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Estimulação Transcraniana por Corrente Contínua , Epilepsia Resistente a Medicamentos/fisiopatologia
14.
J Neurophysiol ; 130(5): 1183-1193, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703491

RESUMO

Sensory processing consists in the integration and interpretation of somatosensory information. It builds upon proprioception but is a distinct function requiring complex processing by the brain over time. Currently little is known about the effect of aging on sensory processing ability or the influence of other covariates such as motor function, proprioception, or cognition. In this study, we measured upper limb passive and active sensory processing, motor function, proprioception, and cognition in 40 healthy younger adults and 54 older adults. We analyzed age differences across all measures and evaluated the influence of covariates on sensory processing through regression. Our results showed larger effect sizes for age differences in sensory processing (r = 0.38) compared with motor function (r = 0.18-0.22) and proprioception (r = 0.10-0.27) but smaller than for cognition (r = 0.56-0.63). Aside from age, we found no evidence that sensory processing performance was related to motor function or proprioception, but active sensory processing was related to cognition (ß = 0.30-0.42). In conclusion, sensory processing showed an age-related decline, whereas some proprioceptive and motor abilities were preserved across age.NEW & NOTEWORTHY Sensory processing consists in the integration and interpretation of sensory information by the brain over time and can be affected by lesion while proprioception remains intact. We investigated how sensory processing can be used to reproduce and identify shapes. We showed that the effect of age on sensory processing is more pronounced than its effect on proprioception or motor function. Age and cognition are related to sensory processing, not proprioception or motor function.


Assuntos
Propriocepção , Extremidade Superior , Cognição , Percepção
15.
J Neurophysiol ; 130(4): 1015-1027, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671429

RESUMO

It is well established that vibrotactile stimuli are represented in somatotopic maps. However, less is known about whether these somatotopic representations are modulated by task demands and maybe even in the absence of tactile input. Here, we used a vibrotactile discrimination task as a tool to investigate these questions in further detail. Participants were required to actively perceive and process tactile stimuli in comparison to a no-task control condition where identical stimuli were passively perceived (no-memory condition). Importantly, both vibrotactile stimuli were either applied to the right index or little finger, allowing us to investigate whether cognitive task demands shape finger representations in primary somatosensory cortex (S1). Using multivoxel pattern analysis and representational similarity analysis, we found that S1 finger representations were more distinct during the memory than the no-memory condition. Interestingly, this effect was not only observed while tactile stimuli were presented but also during the delay period (i.e., in the absence of tactile stimulation). Our findings imply that when individuals are required to focus on tactile stimuli, retain them in their memory, and engage in active processing of distinctive stimulus features, this exerts a modulatory effect on the finger representations present in S1.NEW & NOTEWORTHY Using multivoxel pattern analysis, we found that discrimination task demands shape finger representations in the contralateral primary somatosensory cortex (S1), and that somatotopic representations are modulated by task demands not only during tactile stimulation but also to a certain extent in the absence of tactile input.


Assuntos
Córtex Somatossensorial , Percepção do Tato , Humanos , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Dedos , Percepção do Tato/fisiologia , Mapeamento Encefálico
16.
Hum Brain Mapp ; 44(9): 3568-3585, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37145934

RESUMO

Scientists traditionally use passive stimulation to examine the organisation of primary somatosensory cortex (SI). However, given the close, bidirectional relationship between the somatosensory and motor systems, active paradigms involving free movement may uncover alternative SI representational motifs. Here, we used 7 Tesla functional magnetic resonance imaging to compare hallmark features of SI digit representation between active and passive tasks which were unmatched on task or stimulus properties. The spatial location of digit maps, somatotopic organisation, and inter-digit representational structure were largely consistent between tasks, indicating representational consistency. We also observed some task differences. The active task produced higher univariate activity and multivariate representational information content (inter-digit distances). The passive task showed a trend towards greater selectivity for digits versus their neighbours. Our findings highlight that, while the gross features of SI functional organisation are task invariant, it is important to also consider motor contributions to digit representation.


Assuntos
Mapeamento Encefálico , Córtex Somatossensorial , Humanos , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Mapeamento Encefálico/métodos , Dedos/fisiologia , Imageamento por Ressonância Magnética/métodos , Movimento/fisiologia
17.
J Anat ; 242(5): 927-952, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680380

RESUMO

The vertebrate trigeminal nerve is the primary mediator of somatosensory information from nerve endings across the face, extending nerve branches through bony canals in the face and mandibles, terminating in sensory receptors. Reptiles evolved several extreme forms of cranial somatosensation in which enhanced trigeminal tissues are present in species engaging in unique mechanosensory behaviors. However, morphology varies by clade and ecology among reptiles. Few lineages approach the extreme degree of tactile somatosensation possessed by crocodylians, the only remaining members of a clade that underwent an ecological transition from the terrestrial to semiaquatic habitat, also evolving a specialized trigeminal system. It remains to be understood how trigeminal osteological correlates inform how adaptations for enhanced cranial sensation evolved in crocodylians. Here we identify an increase in sensory abilities in Early Jurassic crocodylomorphs, preceding the transitions to a semiaquatic habitat. Through quantification of trigeminal neurovascular canal branching patterns in an extant phylogenetic bracket we quantify and identify morphologies associated with sensory behaviors in representative fossil taxa, we find stepwise progression of increasing neurovascular canal density, complexity, and distribution from the primitive archosaurian to the derived crocodilian condition. Model-based inferences of sensory ecologies tested on quantified morphologies of extant taxa with known sensory behaviors indicate a parallel increase in sensory abilities among pseudosuchians. These findings establish patterns of reptile trigeminal ecomorphology, revealing evolutionary patterns of somatosensory ecology.


Assuntos
Jacarés e Crocodilos , Evolução Biológica , Animais , Filogenia , Nervo Trigêmeo , Crânio/anatomia & histologia
18.
Cerebellum ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828231

RESUMO

Recent work showed that individuals with cerebellar degeneration could leverage intact reinforcement learning (RL) to alter their movement. However, there was marked inter-individual variability in learning, and the factors underlying it were unclear. Cerebellum-dependent sensory prediction may contribute to RL in motor contexts by enhancing body state estimates, which are necessary to solve the credit-assignment problem. The objective of this study was to test the relationship between the predictive component of state estimation and RL in individuals with cerebellar degeneration. Individuals with cerebellar degeneration and neurotypical control participants completed two tasks: an RL task that required them to alter the angle of reaching movements and a state estimation task that tested the somatosensory perception of active and passive movement. The state estimation task permitted the calculation of the active benefit shown by each participant, which is thought to reflect the cerebellum-dependent predictive component of state estimation. We found that the cerebellar and control groups showed similar magnitudes of learning with reinforcement and active benefit on average, but there was substantial variability across individuals. Using multiple regression, we assessed potential predictors of RL. Our analysis included active benefit, somatosensory acuity, clinical ataxia severity, movement variability, movement speed, and age. We found a significant relationship in which greater active benefit predicted better learning with reinforcement in the cerebellar, but not the control group. No other variables showed significant relationships with learning. Overall, our results support the hypothesis that the integrity of sensory prediction is a strong predictor of RL after cerebellar damage.

19.
Cereb Cortex ; 32(7): 1480-1493, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34427294

RESUMO

While detecting somatic stimuli from the external environment, an accurate determination of their spatial and temporal properties is essential for human behavior. Whether and how detection relates to human capacity for somatosensory spatial discrimination (SD) and temporal discrimination (TD) remains unclear. Here, participants underwent functional magnetic resonance imaging scanning when simply detecting vibrotactile stimuli of the leg, judging their location (SD), or deciding their number in time (TD). By conceptualizing tactile discrimination as consisting of detection and determination processes, we found that tactile detection elicited activation specifically involved in SD within the right inferior and superior parietal lobules, 2 regions previously implicated in the control of spatial attention. These 2 regions remained activated in the determination process, during which functional connectivity between these 2 regions predicted individual SD ability. In contrast, tactile detection produced little activation specifically related to TD. Participants' TD ability was implemented in brain regions implicated in coding temporal structures of somatic stimuli (primary somatosensory cortex) and time estimation (anterior cingulate, pre-supplementary motor area, and putamen). Together, our findings indicate a close link between somatosensory detection and SD (but not TD) at the neural level, which aids in explaining why we can promptly respond toward detected somatic stimuli.


Assuntos
Córtex Motor , Navegação Espacial , Giro do Cíngulo , Humanos , Imageamento por Ressonância Magnética , Lobo Parietal , Putamen , Córtex Somatossensorial/diagnóstico por imagem
20.
Support Care Cancer ; 31(12): 627, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37828382

RESUMO

PURPOSE: Patients with head and neck cancer (HNC) are at high risk of malnutrition due to eating difficulties partly mediated by sensory alterations and salivary dysfunction. Clinical studies have mostly focused on taste and smell alterations, while changes in oral somatosensory perception are largely understudied. The study aimed to investigate oral somatosensory (tactile, texture, chemesthetic, and thermal) responses and salivary functions of HNC patients in comparison to healthy controls. METHODS: A cross-sectional study was conducted using psychophysical tests in HNC patients (n = 30) and in age- and gender-matched control subjects (n = 30). The tests included measurements of point-pressure tactile sensitivity, whole-mouth chemesthetic stimulation, food texture discrimination, and temperature discrimination. Salivary functions, including hydration, saliva consistency, pH, volume, and buffering capacity, were also evaluated. RESULTS: HNC patients demonstrated significantly lower chemesthetic sensitivity (for medium and high concentrations, p < 0.05), thermal sensitivity (p = 0.038), and salivary functions (p = 0.001). There were indications of lower tactile sensitivity in the patient group (p = 0.101). Patients were also less sensitive to differences in food roughness (p = 0.003) and firmness (p = 0.025). CONCLUSION: This study provided evidence that sensory alterations in HNC patients extend beyond their taste and smell. The measurements demonstrated lower somatosensory responses, in part associated with their reduced salivary function. Oral somatosensory alterations and salivary dysfunction may consequently impart the eating experience of HNC patients. Thus, further investigations on food adjustments for this patient group seem warranted.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Estudos Transversais , Neoplasias de Cabeça e Pescoço/complicações , Boca , Saliva , Percepção Gustatória
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa