RESUMO
BACKGROUND: Pulmonary arterial hypertension (PAH) is a complex disease characterized by progressive right ventricular (RV) failure leading to significant morbidity and mortality. Investigating metabolic features and pathways associated with RV dilation, mortality, and measures of disease severity can provide insight into molecular mechanisms, identify subphenotypes, and suggest potential therapeutic targets. METHODS: We collected data from a prospective cohort of PAH participants and performed untargeted metabolomic profiling on 1045 metabolites from circulating blood. Analyses were intended to identify metabolomic differences across a range of common metrics in PAH (eg, dilated versus nondilated RV). Partial least squares discriminant analysis was first applied to assess the distinguishability of relevant outcomes. Significantly altered metabolites were then identified using linear regression, and Cox regression models (as appropriate for the specific outcome) with adjustments for age, sex, body mass index, and PAH cause. Models exploring RV maladaptation were further adjusted for pulmonary vascular resistance. Pathway enrichment analysis was performed to identify significantly dysregulated processes. RESULTS: A total of 117 participants with PAH were included. Partial least squares discriminant analysis showed cluster differentiation between participants with dilated versus nondilated RVs, survivors versus nonsurvivors, and across a range of NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels, REVEAL 2.0 composite scores, and 6-minute-walk distances. Polyamine and histidine pathways were associated with differences in RV dilation, mortality, NT-proBNP, REVEAL score, and 6-minute walk distance. Acylcarnitine pathways were associated with NT-proBNP, REVEAL score, and 6-minute walk distance. Sphingomyelin pathways were associated with RV dilation and NT-proBNP after adjustment for pulmonary vascular resistance. CONCLUSIONS: Distinct plasma metabolomic profiles are associated with RV dilation, mortality, and measures of disease severity in PAH. Polyamine, histidine, and sphingomyelin metabolic pathways represent promising candidates for identifying patients at high risk for poor outcomes and investigation into their roles as markers or mediators of disease progression and RV adaptation.
Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/diagnóstico , Estudos Prospectivos , Histidina , Esfingomielinas , Insuficiência Cardíaca/complicações , Peptídeo Natriurético Encefálico , Fragmentos de PeptídeosRESUMO
BACKGROUND: Infant formulas are typically manufactured using skimmed milk, whey proteins, and vegetable oils, which excludes milk fat globule membranes (MFGM). MFGM contains polar lipids, including sphingomyelin (SM). OBJECTIVE: The objective of this study was comparison of infant plasma SM and acylcarnitine species between infants who are breastfed or receiving infant formulas with different fat sources. METHODS: In this explorative study, we focused on SM and acylcarnitine species concentrations measured in plasma samples from the TIGGA study (ACTRN12608000047392), where infants were randomly assigned to receive either a cow milk-based infant formula (CIF) with vegetable oils only or a goat milk-based infant formula (GIF) with a goat milk fat (including MFGM) and vegetable oil mixture to the age ≥4 mo. Breastfed infants were followed as a reference group. Using tandem mass spectrometry, SM species in the study formulas and SM and acylcarnitine species in plasma samples collected at the age of 4 mo were analyzed. RESULTS: Total SM concentrations (â¼42 µmol/L) and patterns of SM species were similar in both formulas. The total plasma SM concentrations were not different between the formula groups but were 15 % (CIF) and 21% (GIF) lower in the formula groups than in the breastfed group. Between the formula groups, differences in SM species were statistically significant but small. Total carnitine and major (acyl) carnitine species were not different between the groups. CONCLUSIONS: The higher total SM concentration in breastfed than in formula-fed infants might be related to a higher SM content in human milk, differences in cholesterol metabolism, dietary fatty acid intake, or other factors not yet identified. SM and acylcarnitine species composition in plasma is not closely related to the formula fatty acid composition. This trial was registered at Australian New Zealand Clinical Trials Registry as ACTRN12608000047392.
Assuntos
Carnitina , Cabras , Fórmulas Infantis , Leite Humano , Leite , Esfingomielinas , Humanos , Fórmulas Infantis/química , Animais , Carnitina/sangue , Carnitina/análogos & derivados , Leite Humano/química , Lactente , Esfingomielinas/sangue , Leite/química , Feminino , Masculino , Bovinos , Aleitamento Materno , Ésteres/sangue , Recém-Nascido , Óleos de Plantas/químicaRESUMO
BACKGROUND: Sphingomyelin (SM) and cholesterol are 2 key lipid partners on cell membranes and on lipoproteins. Many studies have indicated the influence of cholesterol on SM metabolism. This study examined the influence of SM biosynthesis on cholesterol metabolism. METHODS: Inducible global Sms1 KO (knockout)/global Sms2 KO mice were prepared to evaluate the effect of whole-body SM biosynthesis deficiency on lipoprotein metabolism. Tissue cholesterol, SM, ceramide, and glucosylceramide levels were measured. Triglyceride production rate and LDL (low-density lipoprotein) catabolism were measured. Lipid rafts were isolated and LDL receptor mass and function were evaluated. Also, the effects of exogenous sphingolipids on hepatocytes were investigated. RESULTS: We found that total SMS (SM synthase) depletion significantly reduced plasma SM levels. Also, the total deficiency significantly induced plasma cholesterol, apoB (apolipoprotein B), and apoE (apolipoprotein E) levels. Importantly, total SMS deficiency, but not SMS2 deficiency, dramatically decreased LDL receptors in the liver and attenuated LDL uptake through the receptor. Further, we found that total SMS deficiency greatly reduced LDL receptors in the lipid rafts, which contained significantly lower SM and significantly higher glucosylceramide, as well as cholesterol. Furthermore, we treated primary hepatocytes and Huh7 cells (a human hepatoma cell line) with SM, ceramide, or glucosylceramide, and we found that only SM could upregulate LDL receptor levels in a dose-dependent fashion. CONCLUSIONS: Whole-body SM biosynthesis plays an important role in LDL cholesterol catabolism. The total SMS deficiency, but not SMS2 deficiency, reduces LDL uptake and causes LDL cholesterol accumulation in the circulation. Given the fact that serum SM level is a risk factor for cardiovascular diseases, inhibiting SMS2 but not SMS1 should be the desirable approach.
Assuntos
Glucosilceramidas , Esfingomielinas , Camundongos , Humanos , Animais , LDL-Colesterol , Ceramidas/metabolismo , Colesterol/metabolismo , Receptores de LDL , Apolipoproteínas , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismoRESUMO
BACKGROUND: White matter hyperintensities (WMH), identified on T2-weighted magnetic resonance images of the human brain as areas of enhanced brightness, are a major risk factor of stroke, dementia, and death. There are no large-scale studies testing associations between WMH and circulating metabolites. METHODS: We studied up to 9290 individuals (50.7% female, average age 61 years) from 15 populations of 8 community-based cohorts. WMH volume was quantified from T2-weighted or fluid-attenuated inversion recovery images or as hypointensities on T1-weighted images. Circulating metabolomic measures were assessed with mass spectrometry and nuclear magnetic resonance spectroscopy. Associations between WMH and metabolomic measures were tested by fitting linear regression models in the pooled sample and in sex-stratified and statin treatment-stratified subsamples. Our basic models were adjusted for age, sex, age×sex, and technical covariates, and our fully adjusted models were also adjusted for statin treatment, hypertension, type 2 diabetes, smoking, body mass index, and estimated glomerular filtration rate. Population-specific results were meta-analyzed using the fixed-effect inverse variance-weighted method. Associations with false discovery rate (FDR)-adjusted P values (PFDR)<0.05 were considered significant. RESULTS: In the meta-analysis of results from the basic models, we identified 30 metabolomic measures associated with WMH (PFDR<0.05), 7 of which remained significant in the fully adjusted models. The most significant association was with higher level of hydroxyphenylpyruvate in men (PFDR.full.adj=1.40×10-7) and in both the pooled sample (PFDR.full.adj=1.66×10-4) and statin-untreated (PFDR.full.adj=1.65×10-6) subsample. In men, hydroxyphenylpyruvate explained 3% to 14% of variance in WMH. In men and the pooled sample, WMH were also associated with lower levels of lysophosphatidylcholines and hydroxysphingomyelins and a larger diameter of low-density lipoprotein particles, likely arising from higher triglyceride to total lipids and lower cholesteryl ester to total lipids ratios within these particles. In women, the only significant association was with higher level of glucuronate (PFDR=0.047). CONCLUSIONS: Circulating metabolomic measures, including multiple lipid measures (eg, lysophosphatidylcholines, hydroxysphingomyelins, low-density lipoprotein size and composition) and nonlipid metabolites (eg, hydroxyphenylpyruvate, glucuronate), associate with WMH in a general population of middle-aged and older adults. Some metabolomic measures show marked sex specificities and explain a sizable proportion of WMH variance.
Assuntos
Diabetes Mellitus Tipo 2 , Substância Branca , Idoso , Encéfalo/patologia , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Metaboloma , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagemRESUMO
Sphingolipids are key molecules in inflammation and defense against pathogens. Their role in dectin-1/TLR2-mediated responses is, however, poorly understood. This study investigated the sphingolipidome in the peritoneal fluid, peritoneal cells, plasma, and spleens of mice after intraperitoneal injection of 0.1 mg zymosan/mouse or PBS as a control. Samples were collected at 2, 4, 8, and 16 h post-injection, using a total of 36 mice. Flow cytometry analysis of peritoneal cells and measurement of IL-6, IL-1ß, and TNF-α levels in the peritoneal lavages confirmed zymosan-induced peritonitis. The concentrations of sphingoid bases, dihydroceramides, ceramides, dihydrosphingomyelins, sphingomyelins, monohexosylceramides, and lactosylceramides were increased after zymosan administration, and the effects varied with the time and the matrix measured. The greatest changes occurred in peritoneal cells, followed by peritoneal fluid, at 8 h and 4 h post-injection, respectively. Analysis of the sphingolipidome suggests that zymosan increased the de novo synthesis of sphingolipids without change in the C14-C18:C20-C26 ceramide ratio. At 16 h post-injection, glycosylceramides remained higher in treated than in control mice. A minor effect of zymosan was observed in plasma, whereas sphinganine, dihydrosphingomyelins, and monohexosylceramides were significantly increased in the spleen 16 h post-injection. The consequences of the observed changes in the sphingolipidome remain to be established.
Assuntos
Peritonite , Animais , Camundongos , Ceramidas , Inflamação , Peritonite/induzido quimicamente , Esfingolipídeos , Zimosan/toxicidadeRESUMO
BACKGROUND: Plasma ceramides and sphingomyelins have been independently linked to diabetes risk, glucose and insulin levels, and the risk of several cardiovascular (CVD) outcomes. However, whether individual ceramide and sphingomyelin species contribute to CVD risk among people with type 2 diabetes is uncertain. Our goal was to evaluate associations of 4 ceramide and 4 sphingomyelin species with incident CVD in a longitudinal population-based study among American Indians with diabetes. METHODS: This analysis included participants with prevalent type 2 diabetes from two cohorts: a prospective cohort of 597 participants in the Strong Heart Family Study (116 incident CVD cases; mean age: 49 years; average length of follow-up: 14 years), and a nested case-control sample of 267 participants in the Strong Heart Study (78 cases of CVD and 189 controls; mean age: 61 years; average time until incident CVD in cases: 3.8 years). The average onset of diabetes was 7 years prior to sphingolipid measurement. Sphingolipid species were measured using liquid chromatography and mass spectrometry. Cox regression and logistic regression were used to assess associations of sphingolipid species with incident CVD; results were combined across cohorts using inverse-variance weighted meta-analysis. RESULTS: There were 194 cases of incident CVD in the two cohorts. In meta-analysis of the 2 cohort results, higher plasma levels of Cer-16 (ceramide with acylated palmitic acid) were associated with higher CVD risk (HR per two-fold higher Cer-16: 1.85; 95% CI 1.05-3.25), and higher plasma levels of sphingomyelin species with a very long chain saturated fatty acid were associated with lower CVD risk (HR per two-fold higher SM-22: 0.48; 95% CI 0.26-0.87), although none of the associations met our pre-specified threshold for statistical significance of p = 0.006. CONCLUSIONS: While replication of the findings from the SHS in other populations is warranted, our findings add to a growing body of research suggesting that ceramides, in particular Cer-16, not only are associated with higher diabetes risk, but may also be associated with higher CVD risk after diabetes onset. We also find support for the hypothesis that sphingomyelins with a very long chain saturated fatty acid are associated with lower CVD risk among adults with type 2 diabetes.
Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Adulto , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Ceramidas/química , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Ácidos Graxos , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Esfingolipídeos , EsfingomielinasRESUMO
BACKGROUND: Although dietary DHA alleviates Toll-like receptor (TLR)-associated chronic inflammation in fish, the underlying mechanism is not well understood. OBJECTIVES: This study aimed to explore the role of Tlr22 in the innate immunity of large yellow croaker and investigate the anti-inflammatory effects of DHA on Tlr22-triggered inflammation. METHODS: Head kidney-derived macrophages of croaker and HEK293T cells were or were not pretreated with 100 µM DHA for 10 h prior to polyinosinic-polycytidylic acid (poly I:C) stimulation. We executed qRT-PCR, immunoblotting, and lipidomic analysis to examine the impact of DHA on Tlr22-triggered inflammation and membrane lipid composition. In vivo, croakers (12.03 ± 0.05 g) were fed diets containing 0.2% [control (Ctrl)], 0.8%, and 1.6% DHA for 8 wk before injection with poly I:C. Inflammatory genes expression and rafts-related lipids and protein expression were measured in the head kidney. Data were analyzed by ANOVA or Student t test. RESULTS: The activation of Tlr22 by poly I:C induced inflammation, and DHA diminished Tlr22-targeted inflammatory gene expression by 56-73% (P ≤ 0.05). DHA reduced membrane sphingomyelin (SM) and SFA-containing phosphatidylcholine (SFA-PC) contents, as well as lipid raft marker caveolin 1 amounts. Furthermore, lipid raft disruption suppressed Tlr22-induced Nf-κb and interferon h activation and p65 nuclear translocation. In vivo, expression of Tlr22 target inflammatory genes was 32-64% lower in the 1.6% DHA group than in the Ctrl group upon poly I:C injection (P ≤ 0.05). Also, the 1.6% DHA group showed a reduction in membrane SM and SFA-PC contents, accompanied by a decrease in caveolin 1 amounts, compared with the Ctrl group. CONCLUSIONS: The activation of Tlr22 signaling depends on lipid rafts, and DHA ameliorates the Tlr22-triggered inflammation in both head kidney and head kidney-derived macrophages of croaker partially by altering membrane SMs and SFA-PCs that are required for lipid raft organization.
Assuntos
Ácidos Docosa-Hexaenoicos , Perciformes , Animais , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Microdomínios da Membrana/metabolismo , Fosfatidilcolinas/metabolismo , Poli I/metabolismo , Poli I/farmacologia , Esfingomielinas/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismoRESUMO
Background: Obesity coexists with variable features of metabolic syndrome, which is associated with dysregulated metabolic pathways. We assessed potential associations between serum metabolites and features of metabolic syndrome in Arabic subjects with obesity. Methods: We analyzed a dataset of 39 subjects with obesity only (OBO, n = 18) age-matched to subjects with obesity and metabolic syndrome (OBM, n = 21). We measured 1069 serum metabolites and correlated them to clinical features. Results: A total of 83 metabolites, mostly lipids, were significantly different (p < 0.05) between the two groups. Among lipids, 22 sphingomyelins were decreased in OBM compared to OBO. Among non-lipids, quinolinate, kynurenine, and tryptophan were also decreased in OBM compared to OBO. Sphingomyelin is negatively correlated with glucose, HbA1C, insulin, and triglycerides but positively correlated with HDL, LDL, and cholesterol. Differentially enriched pathways include lysine degradation, amino sugar and nucleotide sugar metabolism, arginine and proline metabolism, fructose and mannose metabolism, and galactose metabolism. Conclusions: Metabolites and pathways associated with chronic inflammation are differentially expressed in subjects with obesity and metabolic syndrome compared to subjects with obesity but without the clinical features of metabolic syndrome.
Assuntos
Resistência à Insulina , Síndrome Metabólica , Humanos , Redes e Vias Metabólicas , Obesidade/complicações , TriglicerídeosRESUMO
Nonalcoholic fatty liver disease (NAFLD) is a common metabolic dysfunction leading to hepatic steatosis. However, NAFLD's global impact on the liver lipidome is poorly understood. Using high-resolution shotgun mass spectrometry, we quantified the molar abundance of 316 species from 22 major lipid classes in liver biopsies of 365 patients, including nonsteatotic patients with normal or excessive weight, patients diagnosed with NAFL (nonalcoholic fatty liver) or NASH (nonalcoholic steatohepatitis), and patients bearing common mutations of NAFLD-related protein factors. We confirmed the progressive accumulation of di- and triacylglycerols and cholesteryl esters in the liver of NAFL and NASH patients, while the bulk composition of glycerophospho- and sphingolipids remained unchanged. Further stratification by biclustering analysis identified sphingomyelin species comprising n24:2 fatty acid moieties as membrane lipid markers of NAFLD. Normalized relative abundance of sphingomyelins SM 43:3;2 and SM 43:1;2 containing n24:2 and n24:0 fatty acid moieties, respectively, showed opposite trends during NAFLD progression and distinguished NAFL and NASH lipidomes from the lipidome of nonsteatotic livers. Together with several glycerophospholipids containing a C22:6 fatty acid moiety, these lipids serve as markers of early and advanced stages of NAFL.
Assuntos
Lipidômica , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Recent studies suggest that the type of saturated fatty acid bound to sphingolipids influences the biological activity of those sphingolipids. However, it is unknown whether associations of sphingolipids with diabetes may differ by the identity of bound lipid species. Here, we investigated associations of 15 ceramide (Cer) and SM species (i.e., all sphingolipids, measured with coefficient of variation less than 20%) with incident type 2 diabetes in the Cardiovascular Health Study (n = 3,645), a large cohort study of cardiovascular disease among elderly adults who were followed from 1989 to 2015. Diabetes incidence was defined as fasting glucose ≥126 mg/dl or nonfasting glucose ≥200 mg/dl; reported use of insulin or oral hypoglycemic medication; or documentation of diabetes diagnosis through the Centers for Medicare and Medicaid Services records. Associations of each sphingolipid with incident diabetes were assessed using a Cox proportional hazards regression model. We found that higher circulating levels of Cer with acylated palmitic acid (Cer-16), stearic acid containing Cer (Cer-18), arachidic acid containing Cer (Cer-20), and behenic acid containing Cer (Cer-22) were each associated with a higher risk of diabetes. The hazard ratios for incident diabetes per 1 SD higher log levels of each Cer species were as follows: 1.21 (95% CI: 1.09-1.34) for Cer-16, 1.23 (95% CI: 1.10-1.37) for Cer-18, 1.14 (95% CI: 1.02-1.26) for Cer-20, and 1.18 (95% CI: 1.06-1.32) for Cer-22. In conclusion, higher levels of Cer-16, Cer-18, Cer-20, and Cer-22 were associated with a higher risk of diabetes.
Assuntos
Ceramidas/sangue , Diabetes Mellitus Tipo 2/sangue , Ácidos Graxos/sangue , Idoso , Feminino , Humanos , MasculinoRESUMO
Stratum corneum lipids are responsible for the skin's barrier function. They are the final product of epidermis lipid biosynthesis. During this process, lipids evolve from simple to complex structures in three main levels respectively (stratum basal level, stratum granulosum level, and stratum corneum level). Our aim was to simultaneously analyze and characterize the structure of total epidermis lipids. A powerful analytical method (normal-phase liquid chromatography coupled with high-resolution mass spectrometry (NPLC/HR-MSn)) was developed in order to separate, in a single run, lipid classes with a wide polarity range. Chromatographic conditions were particularly designed to analyze lipids of intermediate polarity such as ceramides. Rich information was obtained about the molecular structure of keratinocyte differentiation biomarkers such as ceramides, glucosylceramides, and sphingomyelins and the microstructures of reconstructed human epidermis lipids using HR-MSn. A new subclass of ceramides, 1-O-Acyl Omega-linoleoyloxy ceramides [1-O-E (EO) Cer] has been highlighted. This class is double esterified on the 1-O-position of sphingoid base with long to very long chain acyl residues (1-O-E) and on the position of ω-hydroxyl group of fatty acid with the linolenic acid (EO). Considering its chemical structure and hydrophobicity, this subclass can contribute to the skin barrier. In addition, we detected a new epidermis sphingomyelins. Our lipidomic approach offers a direct access to epidermis biomarkers.
Assuntos
Ceramidas/análise , Cromatografia Líquida/métodos , Epiderme/química , Lipídeos/análise , Espectrometria de Massas/métodos , HumanosRESUMO
Alterations in complex lipids may be involved in pathophysiology of schizophrenia spectrum disorders. Previously, we demonstrated importance of detecting lipid metabolism dysregulation by acylcarnitine (ACs) profile analysis in patients with first-episode psychosis (FEP). The aim of this study was to adopt lipidomics to identify serum glycerophospholipids (GPLs) and sphingomyelins (SMs) for describing FEP status before and after 7-month antipsychotic treatment. Using mass spectrometry and liquid chromatography technique, we profiled 105 individual lipids [14 lysophosphatidylcholines (LysoPCs), 76 phosphatidylcholines (PCs) and 15 SMs] in serum samples from 53 antipsychotic-naïve FEP patients, 44 of them were studied longitudinally and from 37 control subjects (CSs). Among the identified and quantified metabolites one LysoPC was elevated, and contrary the levels of 16 PCs as well as the level of one SM were significantly (p ≤ 0.0005) reduced in antipsychotic-naïve FEP patients compared to CSs. Comparison of serum lipids profiles of FEP patients before and after 7-month antipsychotic treatment revealed that 11 GPLs (2 LysoPCs, 9 PCs), and 2 SMs were found to be significantly changed (p ≤ 0.0005) in which GPLs were up-regulated, and SMs were down-regulated. However, no significant differences were noted when treated patient's serum lipid profiles were compared with CSs. Our findings suggest that complex lipid profile abnormalities are specifically associated with FEP and these discrepancies reflect two different disease-related pathways. Our findings provide insight into lipidomic information that may be used for monitoring FEP status and impact of the treatment in the early stage of the schizophrenia spectrum disorder.
Assuntos
Antipsicóticos/farmacologia , Glicerofosfolipídeos/sangue , Lipidômica , Transtornos Psicóticos/sangue , Transtornos Psicóticos/tratamento farmacológico , Esquizofrenia/sangue , Esquizofrenia/tratamento farmacológico , Esfingomielinas/sangue , Adolescente , Adulto , Cromatografia Líquida , Feminino , Humanos , Estudos Longitudinais , Masculino , Espectrometria de Massas , Adulto JovemRESUMO
Background: Chronic venous disease (CVD) is a prevalent lower limb venous pathology that especially affects women, who also show an increased risk of this disease during pregnancy. Studies have shown significant structural changes in the placentas of women with CVD and several markers of tissue damage have been also described. Patients and Methods: To try to understand the different placental pathologies, research efforts have focused on examining metabolomic profiles as indicators of the repercussions of these vascular disorders. This study examines changes produced in the metabolomic profiles of chorionic villi in the placentas of women with CVD. In a study population of 12 pregnant women, 6 with and 6 without CVD, we compared through mass spectroscopy coupled to ultra-high performance liquid chromatography (UHPLC-MS), 240 metabolites in chorionic villus samples. Results: This study is the first to detect in the placental villi of pregnant women with CVD, modifications in lysophosphatidylcholines and amino acids along with diminished levels of other lipids such as triglycerides, sphingomyelins, and non-esterified omega 9 fatty acids, suggesting a role of these abnormalities in the pathogenesis of CVD. Conclusions: Our findings are a starting point for future studies designed to examine the impacts of CVD on maternal and fetal well-being.
Assuntos
Vilosidades Coriônicas/patologia , Lisofosfatidilcolinas/análise , Complicações Cardiovasculares na Gravidez/patologia , Insuficiência Venosa/patologia , Adulto , Estudos de Casos e Controles , Doença Crônica , Feminino , Voluntários Saudáveis , Humanos , Lipidômica , Lisofosfatidilcolinas/metabolismo , GravidezRESUMO
During inflammation, activated leukocytes release cytotoxic mediators that compromise blood-brain barrier (BBB) function. Under inflammatory conditions, myeloperoxidase (MPO) is critically involved in inflicting BBB damage. We used genetic and pharmacological approaches to investigate whether MPO induces aberrant lipid homeostasis at the BBB in a murine endotoxemia model. To corroborate findings in a human system we studied the impact of sera from sepsis and non-sepsis patients on brain endothelial cells (hCMEC/D3). In response to endotoxin, the fatty acid, ceramide, and sphingomyelin content of isolated mouse brain capillaries dropped and barrier dysfunction occurred. In mice, genetic deficiency or pharmacological inhibition of MPO abolished these alterations. Studies in metabolic cages revealed increased physical activity and less pronounced sickness behavior of MPO-/- compared to wild-type mice in response to sepsis. In hCMEC/D3 cells, exogenous tumor necrosis factor α (TNFα) potently regulated gene expression of pro-inflammatory cytokines and a set of genes involved in sphingolipid (SL) homeostasis. Notably, treatment of hCMEC/D3 cells with sera from septic patients reduced cellular ceramide concentrations and induced barrier and mitochondrial dysfunction. In summary, our in vivo and in vitro data revealed that inflammatory mediators including MPO, TNFα induce dysfunctional SL homeostasis in brain endothelial cells. Genetic and pharmacological inhibition of MPO attenuated endotoxin-induced alterations in SL homeostasis in vivo, highlighting the potential role of MPO as drug target to treat inflammation-induced brain dysfunction.
Assuntos
Encéfalo/irrigação sanguínea , Células Endoteliais/metabolismo , Peroxidase/metabolismo , Sepse/metabolismo , Esfingolipídeos/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Capilares/metabolismo , Capilares/patologia , Linhagem Celular , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/patologia , Homeostase , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Sepse/patologiaRESUMO
Metabolic syndrome (MetS) affects an increasing number of older adults worldwide. Cross-cultural comparisons can provide insight into how factors, including genetic, environmental, and lifestyle, may influence MetS prevalence. Metabolomics, which measures the biochemical products of cell processes, can be used to enhance a mechanistic understanding of how biological factors influence metabolic outcomes. In this study we examined associations between serum metabolite concentrations, representing a range of biochemical pathways and metabolic syndrome in two older adult cohorts: The Tsuruoka Metabolomics Cohort Study (TMCS) from Japan (n = 104) and the Baltimore Longitudinal Study of Aging (BLSA) from the United States (n = 146). We used logistic regression to model associations between MetS and metabolite concentrations. We found that metabolites from the phosphatidylcholines-acyl-alkyl, sphingomyelin, and hexose classes were significantly associated with MetS and risk factor outcomes in both cohorts. In BLSA, metabolites across all classes were uniquely associated with all outcomes. In TMCS, metabolites from the amino acid, biogenic amines, and free fatty acid classes were uniquely associated with MetS, and metabolites from the sphingomyelin class were uniquely associated with elevated triglycerides. The metabolites and metabolite classes we identified may be relevant for future studies exploring disease mechanisms and identifying novel precision therapy targets for individualized medicine.
Assuntos
Síndrome Metabólica/sangue , Síndrome Metabólica/metabolismo , Metaboloma , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Estudos de Coortes , Feminino , Humanos , Japão/epidemiologia , Estudos Longitudinais , Masculino , Síndrome Metabólica/epidemiologia , Metabolômica , Fatores de Risco , Estados Unidos/epidemiologiaRESUMO
Free radical driven lipid peroxidation is a chain reaction which can lead to oxidative degradation of biological membranes. Propagation vs. termination rates of peroxidation in biological membranes are determined by a variety of factors including fatty acyl chain composition, presence of antioxidants, as well as biophysical properties of mono- or bilayers. Sphingomyelins (SMs), a class of sphingophospholipids, were previously described to inhibit lipid oxidation most probably via the formation of H-bond network within membranes. To address the "antioxidant" potential of SMs, we performed LC-MS/MS analysis of model SM/glycerophosphatidylcholine (PC) liposomes with different SM fraction after induction of radical driven lipid peroxidation. Increasing SM fraction led to a strong suppression of lipid peroxidation. Electrochemical oxidation of non-liposomal SMs eliminated the observed effect, indicating the importance of membrane structure for inhibition of peroxidation propagation. High resolution MS analysis of lipid peroxidation products (LPPs) observed in in vitro oxidized SM/PC liposomes allowed to identify and relatively quantify SM- and PC-derived LPPs. Moreover, mapping quantified LPPs to the known pathways of lipid peroxidation allowed to demonstrate significant decrease in mono-hydroxy(epoxy) LPPs relative to mono-keto derivatives in SM-rich liposomes. The results presented here illustrate an important property of SMs in biological membranes, acting as "biophysical antioxidant". Furthermore, a ratio between mono-keto/mono-hydroxy(epoxy) oxidized species can be used as a marker of lipid peroxidation propagation in the presence of different antioxidants.
Assuntos
Cromatografia Líquida , Peroxidação de Lipídeos/efeitos dos fármacos , Esfingomielinas/química , Esfingomielinas/farmacologia , Espectrometria de Massas em Tandem , Antioxidantes/química , Antioxidantes/farmacologia , Eletroquímica , Radicais Livres/química , Lipossomos/química , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacosRESUMO
Quantitatively and rapidly analyzing lipids is necessary to elucidate their biological functions. Herein, we developed a quantitative method for various lipid classes using supercritical fluid chromatography (SFC) coupled with a charged aerosol detector (CAD), providing high-throughput data analysis to detect a large number of molecules in each lipid class as one peak. Applying the CAD was useful for analyzing lipid molecules in the same lipid class with a constant response under the same mobile phase composition. First, we optimized the washing method for the diethylamine column, achieving baseline separation of lipid classes while maintaining good peak shapes. In addition, the CAD conditions (organic solvent evaporation and numerical correction of the CAD data) were optimized to improve the signal-to-noise ratio. We used an internal standard (ceramide phosphoethanolamine d17:1-12:0), which did not coelute with the lipid classes and showed high extraction efficiency. Based on a quantitative analysis of HepG2 cells, the concentration of lipid classes detected by CAD was adequate compared with that obtained by triple-quadrupole MS (QqQMS) in a previous study because the deviations of the concentrations were 0.6- to 2.3-fold. These results also supported the quantitative performance of SFC-QqQMS developed in our previous report.
Assuntos
Cromatografia com Fluido Supercrítico , Lipídeos/análise , Espectrometria de Massas , Aerossóis , Células Hep G2 , HumanosRESUMO
BACKGROUND: Plasma metabolites are associated with cognitive and physical function in the elderly. Because cerebral small vessel disease (SVD) and neurodegeneration are common causes of cognitive and physical function decline, the primary objective of this study was to investigate the associations of six plasma metabolites (two plasma phosphatidylcholines [PCs]: PC aa C36:5 and PC aa 36:6 and four sphingomyelins [SMs]: SM C26:0, SM [OH] C22:1, SM [OH] C22:2, SM [OH] C24:1) with magnetic resonance imaging (MRI) features of cerebral SVD and neurodegeneration in older adults. METHODS: This study included 238 older adults in the Atherosclerosis Risk in Communities study at the fifth exam. Multiple linear regression was used to assess the association of each metabolite (log-transformed) in separate models with MRI measures except lacunar infarcts, for which binary logistic regression was used. RESULTS: Higher concentrations of plasma PC aa C36:5 had adverse associations with MRI features of cerebral SVD (odds ratio of 1.69 [95% confidence interval: 1.01, 2.83] with lacunar infarct, and beta of 0.16 log [cm3] [0.02, 0.30] with log [White Matter Hyperintensities (WMH) volume]) while higher concentrations of 3 plasma SM (OH)s were associated with higher total brain volume (beta of 12.0 cm3 [5.5, 18.6], 11.8 cm3 [5.0, 18.6], and 7.3 cm3 [1.2, 13.5] for SM [OH] C22:1, SM [OH] C22:2, and SM [OH] C24:1, respectively). CONCLUSIONS: This study identified associations between certain plasma metabolites and brain MRI measures of SVD and neurodegeneration in older adults, particularly higher SM (OH) concentrations with higher total brain volume.
Assuntos
Aterosclerose/sangue , Encéfalo/diagnóstico por imagem , Doenças Neurodegenerativas/sangue , Fosfatidilcolinas/sangue , Esfingomielinas/sangue , Idoso , Idoso de 80 Anos ou mais , Aterosclerose/diagnóstico por imagem , Feminino , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Doenças Neurodegenerativas/diagnóstico por imagem , Estudos Prospectivos , Medição de RiscoRESUMO
Recent studies on Andean children indicate a prevalence of dyslipidemia and hypertension compared to dwellers at lower altitudes, suggesting that despite similar food intake and daily activities, they undergo different metabolic adaptations. In the present study, the sphingolipid pattern was investigated in serum of 7 underweight (UW), 30 normal weight (NW), 13 overweight (OW), and 9 obese (O) Andean children by liquid chromatography-mass spectrometry (LC-MS). Results indicate that levels of Ceramides (Cers) and sphingomyelins (SMs) correlate positively with biochemical parameters (except for Cers and Vitamin D, which correlate negatively), whereas sphingosine-1-phosphate (S1P) correlates negatively. Correlation results and LC-MS data identify the axis high density lipoprotein-cholesterol (HDL-C), Cers, and S1P as related to hypoxia adaptation. Specifically UW children are characterized by increased levels of S1P compared to O and lower levels of Cers compared to NW children. Furthermore, O children show lower levels of S1P and similar levels of Cers and SMs as NW. In conclusion, our results indicate that S1P is the primary target of hypoxia adaptation in Andean children, and its levels are associated with hypoxia tolerance. Furthermore, S1P can act as marker of increased risk of metabolic syndrome and cardiac dysfunction in young Andeans living at altitude.
Assuntos
Altitude , Esfingolipídeos/sangue , Antropometria , Peso Corporal/fisiologia , Ceramidas/sangue , Criança , Cromatografia Líquida , Feminino , Humanos , Lisofosfolipídeos/sangue , Masculino , Espectrometria de Massas , Esfingomielinas/sangue , Esfingosina/análogos & derivados , Esfingosina/sangueRESUMO
Rat spermatogenic cells contain sphingomyelins (SMs) and ceramides (Cers) with very long-chain PUFAs (VLCPUFAs) in nonhydroxylated (n-V) and 2-hydroxylated (h-V) forms. How these atypical species distribute among membrane fractions during differentiation was investigated here using a detergent-free procedure to isolate a small light raft-like low-density fraction and a large heavy fraction, mostly derived from the plasma membrane of spermatocytes, round spermatids, and late spermatids. The light fraction contained cholesterol, glycerophospholipids (GPLs), and SM with the same saturated fatty acids in all three stages. In the heavy fraction, as PUFA increased in the GPL and VLCPUFA in SM from spermatocytes to spermatids, the concentration of cholesterol was also augmented. The heavy fraction had mostly n-V SM in spermatocytes, but accumulated h-V SM and h-V Cer in spermatids. A fraction containing intracellular membranes had less SM and more Cer than the latter, but in both fractions SM and Cer species with h-V increased over species with n-V with differentiation. This accretion of h-V was consistent with the differentiation-dependent expression of fatty acid 2-hydroxylase (Fa2h), as it increased significantly from spermatocytes to spermatids. The non-raft region of the plasma membrane is thus the main target of the dynamic lipid synthesis and remodeling that is involved in germ cell differentiation.