Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(18)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36706446

RESUMO

We propose a new class of non-uniform superlattice magnetic tunnel junctions (Nu-SLTJs) with the linear, Gaussian, Lorentzian, and Pöschl-Teller width and height based profiles manifesting a sizable enhancement in the TMR (≈104- 106%) with a significant suppression in the switching bias (≈9 folds) owing to the physics of broad-band spin filtering. By exploring the negative differential resistance region in the current-voltage characteristics of the various Nu-SLTJs, we predict the Nu-SLTJs offer fastest spin transfer torque switching in the order of a few hundred picoseconds. We self-consistently employ the atomistic non-equilibrium Green's function formalism coupled with the Landau-Lifshitz-Gilbert-Slonczewski equation to evaluate the device performance of the various Nu-SLTJs. We also present the design of minimal three-barrier Nu-SLTJs having significant TMR (≈104%) and large spin current for the ease of device fabrication. We hope that the class of Nu-SLTJs proposed in this work may lay the bedrock to embark on the exhilarating voyage of exploring various non-uniform superlattices for the next generation of spintronic devices.

2.
Nano Lett ; 21(6): 2580-2587, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33705154

RESUMO

Spin-transfer torque (STT) and spin-orbit torque (SOT) are spintronic phenomena allowing magnetization manipulation using electrical currents. Beyond their fundamental interest, they allow developing new classes of magnetic memories and logic devices, in particular based on domain wall (DW) motion. In this work, we report the study of STT-driven DW motion in ferrimagnetic manganese nickel nitride (Mn4-xNixN) films, in which magnetization and angular momentum compensation can be obtained by the fine adjustment of the Ni content. Large domain wall velocities, approaching 3000 m/s, are measured for Ni compositions close to the angular momentum compensation point. The reversal of the DW motion direction, observed when the compensation composition is crossed, is related to the change of direction of the angular momentum with respect to that of the spin polarization. This is confirmed by the results of ab initio band structure calculations.

3.
Nanotechnology ; 33(10)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34488199

RESUMO

The shift of a magnetization loop along the magnetic field axis for a ferromagnetic (FM)/anti-ferromagnetic (AFM) system when it is cooled through Néel temperature of AFM layer is called exchange anisotropy or exchange bias. Here, using micromagnetic simulations we propose that spin transfer torque (STT) mechanism would indeed be helpful in realizing the shift of the magnetization loop along magnetic field axis through domain wall (DW) resistance for an infinitely long FM nanowire without having AFM layer, which we call as spin transfer torque bias (STTB). Essentially, STTB is realized on both positive and negative magnetic field axes by varying the angle between spin polarized current and Zeeman field from 0° to 180° respectively and the origin is attributed to helical motion of the DW. However, we do not see STTB at 90° due to coherent rotation of domain. We also ascertain that STTB is also a function of magnetic anisotropy, current density, polarization strength and non-adiabatic STT term. Variation in STTB for different FM systems such as Fe2CoSi, Ni80Fe20and Fe is attributed to a change in DW width. We believe that present results would lead to a new dimension in the field of spintronics.

4.
Nanotechnology ; 33(9)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343977

RESUMO

We investigated the dynamical behaviors of an all-permalloy structured spin-torque nano-oscillator (STNO) composed of a nanostripe with in-plane magneto-anisotropy and a free magnetized nanopillar in the absence of a non-magnetic spacer via a micro-magnetic simulation. It is found the newly-devised STNO exhibits two stable precession modes of magnetization in the nanopillar: out-of-plane precession mode and in-plane precession mode under varying applied DC current densities. The switching between the two modes is generated in a certain current density, depending on geometries of the nanopillar as well as the nanostripe. Given a special nanopillar geometry, both modes demonstrate stable oscillation properties in a certain range of current densities. Pulsed magnetic field can effectively realize transformation of the two modes under application of a proper current density. The realization of synchronous oscillations to significantly enhance the output power is verified in this new type of STNO by etching plenty of nanopillars on the nanostripe to build STNOs array.

5.
Nano Lett ; 20(11): 7828-7834, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33084344

RESUMO

Spin currents can exert spin-transfer torques on magnetic systems even in the limit of vanishingly small net magnetization, as recently shown for antiferromagnets. Here, we experimentally show that a spin-transfer torque is operative in a macroscopic ensemble of weakly interacting, randomly magnetized Co nanomagnets. We employ element- and time-resolved X-ray ferromagnetic resonance (XFMR) spectroscopy to directly detect subnanosecond dynamics of the Co nanomagnets, excited into precession with cone angle ≳0.003° by an oscillating spin current. XFMR measurements reveal that as the net moment of the ensemble decreases, the strength of the spin-transfer torque increases relative to those of magnetic field torques. Our findings point to spin-transfer torque as an effective way to manipulate the state of nanomagnet ensembles at subnanosecond time scales.

6.
Nano Lett ; 19(12): 8716-8723, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31664840

RESUMO

Spintronics, which is the basis of a low-power, beyond-CMOS technology for computational and memory devices, remains up to now entirely based on critical materials such as Co, heavy metals and rare-earths. Here, we show that Mn4N, a rare-earth free ferrimagnet made of abundant elements, is an exciting candidate for the development of sustainable spintronics devices. Mn4N thin films grown epitaxially on SrTiO3 substrates possess remarkable properties, such as a perpendicular magnetization, a very high extraordinary Hall angle (2%) and smooth domain walls at the millimeter scale. Moreover, domain walls can be moved at record speeds by spin-polarized currents, in absence of spin-orbit torques. This can be explained by the large efficiency of the adiabatic spin transfer torque, due to the conjunction of a reduced magnetization and a large spin polarization. Finally, we show that the application of gate voltages through the SrTiO3 substrates allows modulating the Mn4N coercive field with a large efficiency.

7.
Sensors (Basel) ; 20(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878139

RESUMO

Spin-based devices can reduce energy leakage and thus increase energy efficiency. They have been seen as an approach to overcoming the constraints of CMOS downscaling, specifically, the Magnetic Tunnel Junction (MTJ) which has been the focus of much research in recent years. Its nonvolatility, scalability and low power consumption are highly attractive when applied in several components. This paper aims at providing a survey of a selection of MTJ applications such as memory and analog to digital converter, among others.

8.
Nano Lett ; 17(1): 8-14, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28073261

RESUMO

Magnetic insulators, such as yttrium iron garnet (Y3Fe5O12), are ideal materials for ultralow power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized Y3Fe5O12/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in Y3Fe5O12/Pt nanowires by spin-torque ferromagnetic resonance. The nanowires defined via electron-beam lithography are fabricated by conventional room temperature sputtering deposition on Gd3Ga5O12 substrates and lift-off. We observe field-like and antidamping-like torques acting on the magnetization precession, which are due to simultaneous excitation by Oersted fields and spin-Hall torques. The Y3Fe5O12/Pt nanowires are thoroughly examined over a wide frequency and power range. We observe a large change in the resonance field at high microwave powers, which is attributed to a decreasing effective magnetization due to microwave absorption. These heating effects are much more pronounced in the investigated nanostructures than in comparable micron-sized samples. By comparing different nanowire widths, the importance of geometrical confinements for magnetization dynamics becomes evident: quantized spin-wave modes across the width of the wires are observed in the spectra. Our results are the first stepping stones toward the realization of integrated magnonic logic devices based on insulators, where nanomagnets play an essential role.


Assuntos
Ferro/química , Imãs/química , Nanofios/química , Óxidos/química , Ítrio/química , Cinética , Micro-Ondas , Tamanho da Partícula , Platina/química , Torque
9.
Nano Lett ; 15(2): 835-41, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25584482

RESUMO

We demonstrate a highly efficient and simple scheme for injecting domain walls into magnetic nanowires. The spin transfer torque from nanosecond long, unipolar, current pulses that cross a 90° magnetization boundary together with the fringing magnetic fields inherently prevalent at the boundary, allow for the injection of single or a continual stream of domain walls. Remarkably, the currents needed for this "in-line" domain wall injection scheme are at least one hundred times smaller than conventional methods.

10.
Beilstein J Nanotechnol ; 15: 360-366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590428

RESUMO

We present a novel method combining anodic aluminum oxide template synthesis and nanolithography to selectively deposit vertically patterned magnetic nanowires on a Si substrate. With this approach we fabricated three-dimensional nanowire-based spin valve devices without the need of complex etching processes or additional spacer coating. Through this method, we successfully obtained NiCu/Cu multilayered nanowire arrays with a controlled sequence along the long axis of the nanowires. Both magnetic switching and excitation phenomena driven by spin-polarized currents were clearly demonstrated in our NiCu/Cu multilayered nanowires. Moreover, the critical currents for switching and excitation were observed to be modulated in an oscillatory manner by the magnetic field in the nanowire-based devices. We present a toy model to qualitatively explain these observations.

11.
Micromachines (Basel) ; 15(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38930666

RESUMO

Spintronics, utilizing both the charge and spin of electrons, benefits from the nonvolatility, low switching energy, and collective behavior of magnetization. These properties allow the development of magnetoresistive random access memories, with magnetic tunnel junctions (MTJs) playing a central role. Various spin logic concepts are also extensively explored. Among these, spin logic devices based on the motion of magnetic domain walls (DWs) enable the implementation of compact and energy-efficient logic circuits. In these devices, DW motion within a magnetic track enables spin information processing, while MTJs at the input and output serve as electrical writing and reading elements. DW logic holds promise for simplifying logic circuit complexity by performing multiple functions within a single device. Nevertheless, the demonstration of DW logic circuits with electrical writing and reading at the nanoscale is still needed to unveil their practical application potential. In this review, we discuss material advancements for high-speed DW motion, progress in DW logic devices, groundbreaking demonstrations of current-driven DW logic, and its potential for practical applications. Additionally, we discuss alternative approaches for current-free information propagation, along with challenges and prospects for the development of DW logic.

12.
ACS Appl Mater Interfaces ; 16(13): 17041-17050, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517684

RESUMO

The ultrafast manipulation of spin in ferromagnet-semiconductor (FM/SC) heterojunctions is a key issue for advancing spintronics, where magnetic damping and interfacial spin transport often define device efficiency. Leveraging selective optical excitation in semiconductors offers a unique approach to spin manipulation in FM/SC heterojunctions. Herein, we investigated the magnetic dynamics of a Co2FeAl/n-GaAs heterojunction using the time-resolved magneto-optical Kerr technique and observed the considerably enhanced magnetic damping of Co2FeAl when GaAs is photoexcited near its band edge. This enhancement is attributed to an enhanced spin-pumping effect facilitated by spin-dependent carrier tunneling and capture within the Co2FeAl layer. Moreover, circularly polarized light excites spin-polarized band-edge photocarriers, further impacting the magnetic damping of Co2FeAl through an additional optical spin-transfer torque on the magnetic moment of Co2FeAl. Our results provide a valuable reference for manipulating spin-pumping and interfacial spin transport in FM/SC heterojunctions, showcasing the advantage of optical control of semiconductor photocarriers for the ultrafast manipulation of magnetic dynamics and interfacial spin transfer.

13.
Nanomaterials (Basel) ; 14(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39057879

RESUMO

In the future, DW memory will replace conventional storage memories with high storage capacity and fast read/write speeds. The only failure in DW memory arises from DW thermal fluctuations at pinning sites. This work examines, through calculations, the parameters that might help control DW thermal stability at the pinning sites. It is proposed to design a new scheme using a stepped area of a certain depth (d) and length (λ). The study reveals that DW thermal stability is highly dependent on the geometry of the pinning area (d and λ), magnetic properties such as saturation magnetization (Ms) and magnetic anisotropy energy (Ku), and the dimensions of the nanowires. For certain values of d and λ, DWs remain stable at temperatures over 500 K, which is beneficial for memory applications. Higher DW thermal stability is also achieved by decreasing nanowire thickness to less than 10 nm, making DW memories stable below 800 K. Finally, our results help to construct DW memory nanodevices with nanodimensions less than a 40 nm width and less than a 10 nm thickness with high DW thermal stability.

14.
Nanomaterials (Basel) ; 14(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39330674

RESUMO

In this study, we investigate the thermal pinning and depinning behaviors of vortex domain walls (VDWs) in constricted magnetic nanowires, with a focus on potential applications in storage memory nanodevices. Using micromagnetic simulations and spin transfer torque, we examine the impacts of device temperature on VDW transformation into a transverse domain wall (TDW), mobility, and thermal strength pinning at the constricted area. We explore how thermal fluctuations influence the stability and mobility of domain walls within stepped nanowires. The thermal structural stability of VDWs and their pinning were investigated considering the effects of the stepped area depth (d) and its length (λ). Our findings indicate that the thermal stability of VDWs in magnetic stepped nanowires increases with decreasing the depth of the stepped area (d) and increasing nanowire thickness (th). For th ≥ 50 nm, the stability is maintained at temperatures ≥ 1200 K. In the stepped area, VDW thermal pinning strength increases with increasing d and decreasing λ. For values of d ≥ 100 nm, VDWs depin from the stepped area at temperatures ≥ 1000 K. Our results reveal that thermal effects significantly influence the pinning strength at constricted sites, impacting the overall performance and reliability of magnetic memory devices. These insights are crucial for optimizing the design and functionality of next-generation nanodevices. The stepped design offers numerous advantages, including simple fabrication using a single electron beam lithography exposure step on the resist. Additionally, adjusting λ and d allows for precise control over the pinning strength by modifying the dimensions of the stepped areas.

15.
Materials (Basel) ; 16(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37895709

RESUMO

This article performs computer simulations of the change in magnetization in the ferromagnetic film when polarized electric current passes through it. The model examines multilayer structures from ferromagnetic and nonmagnetic films. A sandwich system comprises two ferromagnetic layers separated by a nonmagnetic gasket. Ferromagnetic films have different magnetic susceptibility. The first ferromagnetic film is magnetically hard and acts as a fixed layer. The second ferromagnetic film is magnetically soft, with a switched direction of magnetization. The current direction is perpendicular to the film plane (CPP geometry). Spin transfer is carried out by electrons that polarize in the first ferromagnetic film and transmit spin to the second ferromagnetic film. We use the Ising model to describe the magnetic properties of the system and the Metropolis algorithm to form the thermodynamic states of the spin system. Simulations are performed at temperatures below the Curie points for both materials. The result of computer simulation is the dependence of magnetization in the magnetically soft film on the current strength in the system. Calculations show that there is a critical value of the current at which the magnetization sign of the controlled film changes. The magnetization versus current plot is stepwise. The change in the magnetization sign is due to an increase in the polarization of the electron gas. The plot of electron gas polarization versus current is also stepwise.

16.
Nanomaterials (Basel) ; 13(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36678090

RESUMO

The writing performance of the easy-cone magnetic tunnel junction (MTJ) and perpendicularly magnetized MTJ (pMTJ) under various temperatures was investigated based on the macrospin model. When the temperature is changed from 273 K to 373 K, the switching current density of the pMTJ changes by 56%, whereas this value is only 8% in the easy-cone MTJ. Similarly, the temperature-induced variation of the switching delay is more significant in the pMTJ. This indicates that the easy-cone MTJ has a more stable writing performance under temperature variations, resulting in a wider operating temperature range. In addition, these two types of MTJs exhibit opposite temperature dependence in the current overdrive and write error rate. In the easy cone MTJ, these two performance metrics will reduce as temperature is increased. The results shown in this work demonstrate that the easy-cone MTJ is more suitable to work at high temperatures compared with the pMTJ. Our work provides a guidance for the design of STT-MRAM that is required to operate at high temperatures.

17.
Micromachines (Basel) ; 14(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36837958

RESUMO

With its unique computer paradigm, the Ising annealing machine has become an emerging research direction. The Ising annealing system is highly effective at addressing combinatorial optimization (CO) problems that are difficult for conventional computers to tackle. However, Ising spins, which comprise the Ising system, are difficult to implement in high-performance physical circuits. We propose a novel type of Ising spin based on an electrically-controlled magnetic tunnel junction (MTJ). Electrical operation imparts true randomness, great stability, precise control, compact size, and easy integration to the MTJ-based spin. In addition, simulations demonstrate that the frequency of electrically-controlled stochastic Ising spin (E-spin) is 50 times that of the thermal disturbance MTJ-based spin (p-bit). To develop a large-scale Ising annealing system, up to 64 E-spins are implemented. Our Ising annealing system demonstrates factorization of integers up to 264 with a temporal complexity of around O(n). The proposed E-spin shows superiority in constructing large-scale Ising annealing systems and solving CO problems.

18.
J Phys Condens Matter ; 35(31)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37094577

RESUMO

We study the thermal gradient (TG) induced domain wall (DW) dynamics in a uniaxial nanowire in the framework of the Stochastic-Landau-Lifshitz-Gilbert equation. TG drives the DW in a certain direction, and DW (linear and rotational) velocities increase with TG linearly, which can be explained by the magnonic angular momentum transfer to the DW. Interestingly, from Gilbert damping dependence of DW dynamics for fixed TG, we find that the DW velocity is significantly smaller even for lower damping, and DW velocity increases with damping (for a certain range of damping) and reaches a maximal value for critical damping which is contrary to our usual desire. This can be attributed to the formation of standing spin wave (SSW) modes (from the superposition of the spin waves and their reflection) together with travelling spin wave (TSW) modes. SSW does not carry any net energy/momentum to the DW, while TSW does. Dampingαcompels the spin current polarization to align with the local spin, which reduces the magnon propagation length and thusαhinders to generate SSWs, and contrarily the number of TSWs increases, which leads to the increment of DW speed with damping. For a similar reason, we observe that DW velocity increases with nanowire length and becomes saturated to maximal value for a certain length. Therefore, these findings may enhance the fundamental understanding as well as provide a way of utilizing the Joule heat in the spintronics (e.g. racetrack memory) devices.

19.
J Phys Condens Matter ; 51(1)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36301718

RESUMO

We derive a unified theory of spin and charge degrees of freedom in a ferromagnet. The spin-transfer torque and spin electromotive force are examined from the coarse-grained perspective of collective coordinates. The resulting equations of motion reflect a balance of conservative, gyroscopic (Berry-phase), and dissipative forces. We then expand the space of collective coordinates by adding the electric charge. The adiabatic spin-transfer torque and spin electromotive force (emf) turn out to be a gyroscopic force; their nonadiabatic counterparts are a dissipative force.

20.
J Phys Condens Matter ; 51(2)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36270504

RESUMO

Dynamic simulations of spin-transfer and spin-orbit torques are increasingly important for a wide range of spintronic devices including magnetic random access memory, spin-torque nano-oscillators and electrical switching of antiferromagnets. Here we present a computationally efficient method for the implementation of spin-transfer and spin-orbit torques within the Landau-Lifshitz-Gilbert equation used in micromagnetic and atomistic simulations. We consolidate and simplify the varying terminology of different kinds of torques into a physical action and physical origin that clearly shows the common action of spin torques while separating their different physical origins. Our formalism introduces the spin torque as an effective magnetic field, greatly simplifying the numerical implementation and aiding the interpretation of results. The strength of the effective spin torque field unifies the action of the spin torque and subsumes the details of experimental effects such as interface resistance and spin Hall angle into a simple transferable number between numerical simulations. We present a series of numerical tests demonstrating the mechanics of generalised spin torques in a range of spintronic devices. This revised approach to modelling spin-torque effects in numerical simulations enables faster simulations and a more direct way of interpreting the results, and thus it is also suitable to be used in direct comparisons with experimental measurements or in a modelling tool that takes experimental values as input.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa