Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 803
Filtrar
1.
Mol Cell ; 82(3): 629-644.e4, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063132

RESUMO

The envelope of Gram-negative bacteria is a vital barrier that must balance protection and nutrient uptake. Small RNAs are crucial regulators of the envelope composition and function. Here, using RIL-seq to capture the Hfq-mediated RNA-RNA interactome in Salmonella enterica, we discover envelope-related riboregulators, including OppX. We show that OppX acts as an RNA sponge of MicF sRNA, a prototypical porin repressor. OppX originates from the 5' UTR of oppABCDF, encoding the major inner-membrane oligopeptide transporter, and sequesters MicF's seed region to derepress the synthesis of the porin OmpF. Intriguingly, OppX operates as a true sponge, storing MicF in an inactive complex without affecting its levels or stability. Conservation of the opp-OppX-MicF-ompF axis in related bacteria suggests that it serves an important mechanism, adjusting envelope porosity to specific transport capacity. These data also highlight the resource value of this Salmonella RNA interactome, which will aid in unraveling RNA-centric regulation in enteric pathogens.


Assuntos
Regiões 5' não Traduzidas , Membrana Celular/genética , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , RNA Bacteriano/genética , Salmonella enterica/genética , Transporte Biológico , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , Interações Hospedeiro-Patógeno , Permeabilidade , Porinas/genética , Porinas/metabolismo , RNA Bacteriano/metabolismo , RNA-Seq , Salmonella enterica/metabolismo , Salmonella enterica/patogenicidade
2.
Proc Natl Acad Sci U S A ; 121(11): e2314383121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442178

RESUMO

Sponges (Porifera) contain many peptide-specialized metabolites with potent biological activities and significant roles in shaping marine ecology. It is well established that symbiotic bacteria produce bioactive "sponge" peptides, both on the ribosome (RiPPs) and nonribosomally. Here, we demonstrate that sponges themselves also produce many bioactive macrocyclic peptides, such as phakellistatins and related proline-rich macrocyclic peptides (PRMPs). Using the Stylissa carteri sponge transcriptome, methods were developed to find sequences encoding 46 distinct RiPP-type core peptides, of which ten encoded previously identified PRMP sequences. With this basis set, the genome and transcriptome of the sponge Axinella corrugata was interrogated to find 35 PRMP precursor peptides encoding 31 unique core peptide sequences. At least 11 of these produced cyclic peptides that were present in the sponge and could be characterized by mass spectrometry, including stylissamides A-D and seven previously undescribed compounds. Precursor peptides were encoded in the A. corrugata genome, confirming their animal origin. The peptides contained signal peptide sequences and highly repetitive recognition sequence-core peptide elements with up to 25 PRMP copies in a single precursor. In comparison to sponges without PRMPs, PRMP sponges are incredibly enriched in potentially secreted polypeptides, with >23,000 individual signal peptide encoding genes found in a single transcriptome. The similarities between PRMP biosynthetic genes and neuropeptides in terms of their biosynthetic logic suggest a fundamental biology linked to circular peptides, possibly indicating a widespread and underappreciated diversity of signaling peptide post-translational modifications across the animal kingdom.


Assuntos
Peptídeos Cíclicos , Peptídeos , Animais , Peptídeos/genética , Peptídeos Cíclicos/genética , Sequência de Aminoácidos , Bandagens , Sinais Direcionadores de Proteínas
3.
BMC Genomics ; 25(1): 674, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972970

RESUMO

BACKGROUND: Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. RESULTS: D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. CONCLUSION: Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply "fine-tuning" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host's traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.


Assuntos
Consórcios Microbianos , Poríferos , Simbiose , Transcriptoma , Simbiose/genética , Poríferos/microbiologia , Poríferos/genética , Animais , Consórcios Microbianos/genética , Perfilação da Expressão Gênica , Mar Mediterrâneo
4.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37288516

RESUMO

Mounting evidence suggests that animals and their associated bacteria interact via intricate molecular mechanisms, and it is hypothesized that disturbances to the microbiome influence animal development. Here, we show that the loss of a key photosymbiont (i.e., bleaching) upon shading correlates with a stark body-plan reorganization in the common aquarium cyanosponge Lendenfeldia chondrodes. The morphological changes observed in shaded sponges include the development of a thread-like morphology that contrasts with the flattened, foliose morphology of control specimens. The microanatomy of shaded sponges markedly differed from that of control sponges, with shaded specimens lacking a well-developed cortex and choanosome. Also, the palisade of polyvacuolar gland-like cells typical in control specimens was absent in shaded sponges. The morphological changes observed in shaded specimens are coupled with broad transcriptomic changes and include the modulation of signaling pathways involved in animal morphogenesis and immune response, such as the Wnt, transforming growth factor ß (TGF-ß), and TLR-ILR pathways. This study provides a genetic, physiological, and morphological assessment of the effect of microbiome changes on sponge postembryonic development and homeostasis. The correlated response of the sponge host to the collapse of the population of symbiotic cyanobacteria provides evidence for a coupling between the sponge transcriptomic state and the state of its microbiome. This coupling suggests that the ability of animals to interact with their microbiomes and respond to microbiome perturbations has deep evolutionary origins in this group.


Assuntos
Microbiota , Poríferos , Animais , Bactérias/genética , Evolução Biológica , Simbiose
5.
Environ Sci Technol ; 58(24): 10764-10775, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38843113

RESUMO

The abrasion of synthetic textile fibers is a significant factor in the generation of environmental microplastic fibers (MPFs). The extent to which polymer sponges designed specifically for surface cleaning have a tendency to release MPFs during normal use remains unknown. Here, the tribological behaviors of melamine cleaning sponges (also known as "magic erasers") with different strut densities against metal surfaces of different roughness were investigated using a reciprocating abrader. The MPFs formed by sponge wear under various conditions were characterized in terms of their morphology, composition, and quantity. They were mainly composed of poly(melamine-formaldehyde) polymer with linear or branched fiber morphologies (10-405 µm in length), which were formed through deformation and fracture of the struts within open cells of the sponges, facilitated by friction-induced polymer decomposition. The rate and capability of MPF production generally increased with increasing roughness of the metal surface and density of the struts, respectively. The sponge wear could release 6.5 million MPFs/g, which could suggest a global overall emission of 4.9 trillion MPFs due to sponge consumption. Our study reveals a hitherto unrecognized source of the environmental MPF contamination and highlights the need to evaluate exposure risks associated with these new forms of MPFs.


Assuntos
Microplásticos , Polímeros/química , Têxteis
6.
Biometals ; 37(1): 157-169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37725248

RESUMO

The ability of marine filter feeders to accumulate metals could help monitor the health of the marine environment. This study examined the concentration of metallic trace elements (MTE) in two marine sponges, Rhabdastrella globostellata and Hyrtios erectus, from three sampling zones of the semi-enclosed Bouraké Lagoon (New Caledonia, South West Pacific). MTE in sponge tissues, seawater, and surrounding sediments was measured using inductively coupled plasma with optical emission spectroscopy. The variability in sponge MTE concentrations between species and sampling zones was visually discriminated using a principal component analysis (PCA). Sponges showed Fe, Mn, Cr, Ni, and Zn concentrations 2 to 10 times higher than in the surrounding sediments and seawater. Hyrtios erectus accumulated 3 to 20 times more MTE than R. globostellata, except for Zn. Average bioconcentration factors in sponge tissues were (in decreasing order) Zn > Ni > Mn > Fe > Cr relate to sediments and Fe > Ni > Mn > Cr > Zn relate to seawater. The PCA confirmed higher MTE concentrations in H. erectus compared to R. globostellata. Our results confirm that marine sponges can accumulate MTE to some extent and could be used as a tool for assessing metals contamination in lagoon ecosystems, particularly in New Caledonia, where 40% of the lagoon is classified as a UNESCO World Heritage Site.


Assuntos
Metais Pesados , Poríferos , Oligoelementos , Poluentes Químicos da Água , Animais , Oligoelementos/análise , Ecossistema , Monitoramento Ambiental/métodos , Metais , Sedimentos Geológicos/análise , Sedimentos Geológicos/química
7.
Antonie Van Leeuwenhoek ; 117(1): 65, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602593

RESUMO

Dynamics of microbiomes through time are fundamental regarding survival and resilience of their hosts when facing environmental alterations. As for marine species with commercial applications, such as marine sponges, assessing the temporal change of prokaryotic communities allows us to better consider the adaptation of sponges to aquaculture designs. The present study aims to investigate the factors shaping the microbiome of the sponge Dactylospongia metachromia, in a context of aquaculture development in French Polynesia, Rangiroa, Tuamotu archipelago. A temporal approach targeting explants collected during farming trials revealed a relative high stability of the prokaryotic diversity, meanwhile a complementary biogeographical study confirmed a spatial specificity amongst samples at different longitudinal scales. Results from this additional spatial analysis confirmed that differences in prokaryotic communities might first be explained by environmental changes (mainly temperature and salinity), while no significant effect of the host phylogeny was observed. The core community of D. metachromia is thus characterized by a high spatiotemporal constancy, which is a good prospect for the sustainable exploitation of this species towards drug development. Indeed, a microbiome stability across locations and throughout the farming process, as evidenced by our results, should go against a negative influence of sponge translocation during in situ aquaculture.


Assuntos
Microbiota , Poríferos , Animais , Aquicultura , Agricultura , Polinésia
8.
Mar Drugs ; 22(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38786604

RESUMO

Marine sponges of the genus Spongia have proven to be unabated sources of novel secondary metabolites with remarkable scaffold diversities and significant bioactivities. The discovery of chemical substances from Spongia sponges has continued to increase over the last few years. The current work provides an up-to-date literature survey and comprehensive insight into the reported metabolites from the members of the genus Spongia, as well as their structural features, biological activities, and structure-activity relationships when available. In this review, 222 metabolites are discussed based on published data from the period from mid-2015 to the beginning of 2024. The compounds are categorized into sesquiterpenes, diterpenes, sesterterpenes, meroterpenes, linear furanoterpenes, steroids, alkaloids, and other miscellaneous substances. The biological effects of these chemical compositions on a vast array of pharmacological assays including cytotoxic, anti-inflammatory, antibacterial, neuroprotective, protein tyrosine phosphatase 1B (PTP1B)-inhibitory, and phytoregulating activities are also presented.


Assuntos
Poríferos , Poríferos/metabolismo , Poríferos/química , Animais , Humanos , Relação Estrutura-Atividade , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Metabolismo Secundário
9.
Mar Drugs ; 22(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38535473

RESUMO

The Verongida order comprises several sponge families, such as Aplysinellidae, Aplysinidae, Ianthellidae, and Pseudoceratinidae, reported for producing bromotyrosine-derived compounds. First identified in 1913, bromotyrosine derivatives have since captivated interest notably for their antitumor and antimicrobial properties. To date, over 360 bromotyrosine derivatives have been reported. Our review focuses specifically on bromotyrosine derivatives newly reported from 2004 to 2023, by summarizing current knowledge about their chemical diversity and their biological activities.


Assuntos
Bandagens , Poríferos , Tirosina/análogos & derivados , Humanos , Animais
10.
Mar Drugs ; 22(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38393026

RESUMO

Chondrosia reniformis is a collagen-rich marine sponge that is considered a sustainable and viable option for producing an alternative to mammalian-origin collagens. However, there is a lack of knowledge regarding the properties of collagen isolated from different sponge parts, namely the outer region, or cortex, (ectosome) and the inner region (choanosome), and how it affects the development of biomaterials. In this study, a brief histological analysis focusing on C. reniformis collagen spatial distribution and a comprehensive comparative analysis between collagen isolated from ectosome and choanosome are presented. The isolated collagen characterization was based on isolation yield, Fourier-transformed infrared spectroscopy (FTIR), circular dichroism (CD), SDS-PAGE, dot blot, and amino acid composition, as well as their cytocompatibility envisaging the development of future biomedical applications. An isolation yield of approximately 20% was similar for both sponge parts, as well as the FTIR, CD, and SDS-PAGE profiles, which demonstrated that both isolated collagens presented a high purity degree and preserved their triple helix and fibrillar conformation. Ectosome collagen had a higher OHpro content and possessed collagen type I and IV, while the choanosome was predominately constituted by collagen type IV. In vitro cytotoxicity assays using the L929 fibroblast cell line displayed a significant cytotoxic effect of choanosome collagen at 2 mg/mL, while ectosome collagen enhanced cell metabolism and proliferation, thus indicating the latter as being more suitable for the development of biomaterials. This research represents a unique comparative study of C. reniformis body parts, serving as a support for further establishing this marine sponge as a promising alternative collagen source for the future development of biomedical applications.


Assuntos
Micropartículas Derivadas de Células , Poríferos , Animais , Micropartículas Derivadas de Células/metabolismo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Poríferos/metabolismo , Colágeno/química , Colágeno Tipo I/metabolismo , Mamíferos/metabolismo
11.
Mar Drugs ; 22(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38921546

RESUMO

Neurodegenerative diseases involve neuroinflammation and a loss of neurons, leading to disability and death. Hence, the research into new therapies has been focused on the modulation of the inflammatory response mainly by microglia/macrophages. The extracts and metabolites of marine sponges have been presented as anti-inflammatory. This study evaluated the toxicity of an extract and purified compound from the Brazilian marine sponge Aplysina fulva as well as its neuroprotection against inflammatory damage associated with the modulation of microglia response. PC12 neuronal cells and neonatal rat microglia were treated with the methanolic extract of A. fulva (AF-MeOH, 0.1-200 µg/mL) or with its purified dimethyl ketal of 3,5-dibromoverongiaquinol (AF-H1, 0.1-100 µM). Cytotoxicity was determined by MTT tetrazolium, Trypan blue, and propidium iodide; microglia were also treated with the conditioned medium (CM) from PC12 cells in different conditions. The microglia phenotype was determined by the expression of Iba-1 and CD68. AF-MeOH and AF-H1 were not toxic to PC12 or the microglia. Inflammatory damage with Escherichia coli lipopolysaccharide (LPS, 5 µg/mL) was not observed in the PC12 cells treated with AF-MeOH (1-10 µg/mL) or AF-H1 (1-10 µM). Microglia subjected to the CM from PC12 cells treated with LPS and AF-MeOH or AF-H1 showed the control phenotype-like (multipolar, low-CD68), highlighting the anti-neuroinflammatory and neuroprotective effect of components of this marine sponge.


Assuntos
Microglia , Fármacos Neuroprotetores , Poríferos , Animais , Microglia/efeitos dos fármacos , Ratos , Poríferos/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Células PC12 , Brasil , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Hidrocarbonetos Bromados/farmacologia , Inflamação/tratamento farmacológico
12.
Mar Drugs ; 22(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535455

RESUMO

Extensive research has been conducted on the isolation and study of bioactive compounds derived from marine sources. Several natural products have demonstrated potential as inducers of apoptosis and are currently under investigation in clinical trials. These marine-derived compounds selectively interact with extrinsic and intrinsic apoptotic pathways using a variety of molecular mechanisms, resulting in cell shrinkage, chromatin condensation, cytoplasmic blebs, apoptotic bodies, and phagocytosis by adjacent parenchymal cells, neoplastic cells, or macrophages. Numerous marine-derived compounds are currently undergoing rigorous examination for their potential application in cancer therapy. This review examines a total of 21 marine-derived compounds, along with their synthetic derivatives, sourced from marine organisms such as sponges, corals, tunicates, mollusks, ascidians, algae, cyanobacteria, fungi, and actinobacteria. These compounds are currently undergoing preclinical and clinical trials to evaluate their potential as apoptosis inducers for the treatment of different types of cancer. This review further examined the compound's properties and mode of action, preclinical investigations, clinical trial studies on single or combination therapy, and the prospective development of marine-derived anticancer therapies.


Assuntos
Actinobacteria , Antozoários , Antineoplásicos , Neoplasias , Animais , Estudos Prospectivos , Ensaios Clínicos como Assunto
13.
Artigo em Inglês | MEDLINE | ID: mdl-38869621

RESUMO

Biosilica (BS) and spongin (SPG) from marine sponges are highlighted for their potential to promote bone regeneration. Moreover, 3D printing is introduced as a technology for producing bone grafts with optimized porous structures, allowing for better cell attachment, proliferation, and differentiation. Thus, this study aimed to characterize the BS and BS/SPG 3D printed scaffolds and to evaluate the biological effects in vitro. The scaffolds were printed using an ink containing 4 wt.% of sodium alginate. The physicochemical characteristics of BS and BS/SPG 3D printed scaffolds were analyzed by SEM, EDS, FTIR, porosity, evaluation of mass loss, and pH measurement. For in vitro analysis, the cellular viability of the MC3T3-E1 cell lineage was assessed using the AlamarBlue® assay and confocal microscopy, while genotoxicity and mineralization potential were evaluated through the micronucleus assay and Alizarin Red S, respectively. SEM analysis revealed spicules in BS, the fibrillar structure of SPG, and material degradation over the immersion period. FTIR indicated peaks corresponding to silicon oxide in BS samples and carbon oxide and amine in SPG samples. BS-SPG scaffolds exhibited higher porosity, while BS scaffolds displayed greater mass loss. pH measurements indicated a significant decrease induced by BS, which was mitigated by SPG over the experimental periods. In vitro studies demonstrated the biocompatibility and non-cytotoxicity of scaffold extracts. .Also, the scaffolds promoted cellular differentiation. The micronucleus test further confirmed the absence of genotoxicity. These findings suggest that 3D printed BS and BS/SPG scaffolds may possess desirable morphological and physicochemical properties, indicating in vitro biocompatibility.

14.
J Fish Biol ; 104(1): 304-309, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670721

RESUMO

Trawl surveys within and surrounding two northwestern Australian marine parks revealed banded sand catsharks Atelomycterus fasciatus (family Atelomycteridae) taking refuge within large sponges of the family Irciniidae (Demospongiae: Dictyoceratida) and the genus Agelas (Demospongiae: Agelasida: Agelasidae). Five sponges contained a total of 57 A. fasciatus, comprising both sexes and both immature and mature individuals ranging from 102 to 390 mm total length (TL). In the same surveys, only five A. fasciatus were captured unassociated with sponges, suggesting that sponges are an important microhabitat for A. fasciatus and may provide a daytime refuge from predators. A southerly range extension is also reported for this species.


Assuntos
Agelas , Tubarões , Animais , Austrália
15.
J Environ Sci Health B ; 59(2): 62-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38099739

RESUMO

Exposure to glyphosate produces various toxic effects, due to this, different methods have been evaluated for its elimination. The objective of this work was to formulate chitosan-based adsorbents and evaluate their efficiency in the removal of glyphosate in vitro. Four films were made by varying the weight ratio of silica/chitosan particles, and four sponges were made by varying the chitosan/chitosan ratio in a reticulated manner. Both adsorbents were characterized based on their porosity, water absorption, glyphosate removal, and reusability. It was found that increasing the porosity in both films and sponges resulted in an increase in the adsorption efficiency of glyphosate. The adsorption process exhibited a better fit in both adsorbents to the pseudo-second-order model. The adsorption of glyphosate to the films fit better with the Langmuir model, demonstrating that the process occurs in the form of a monolayer. In the case of sponges, the adsorption of glyphosate fit better with the Freundlich model, indicating that the process takes place in a multilayer form. Finally, when the reusability was evaluated, the adsorbents showed a loss of effectiveness. However, they still proved to be an efficient alternative for the removal of glyphosate in water, providing a cost-effective and environmentally friendly solution.


Assuntos
Quitosana , Poluentes Químicos da Água , Purificação da Água , Glifosato , Adsorção , Água , Cinética , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
16.
Funct Integr Genomics ; 23(2): 184, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243750

RESUMO

Circular RNAs (circRNAs) are regulatory elements that are involved in orchestrating gene expression and protein functions and are implicated in various biological processes including cancer. Notably, breast cancer has a significant mortality rate and is one of the most common malignancies in women. CircRNAs have been demonstrated to contribute to the pathogenesis of breast cancer including its initiation, progression, metastasis, and resistance to drugs. By acting as miRNA sponges, circRNAs can indirectly influence gene expression by disrupting miRNA regulation of their target genes, ultimately altering the course of cancer development and progression. Additionally, circRNAs can interact with proteins and modulate their functions including signaling pathways involved in the initiation and development of cancer. Recently, circRNAs can encode peptides that play a role in the pathophysiology of breast cancer and other diseases and their potential as diagnostic biomarkers and therapeutic targets for various cancers including breast cancer. CircRNAs possess biomarkers that differentiate, such as stability, specificity, and sensitivity, and can be detected in several biological specimens such as blood, saliva, and urine. Moreover, circRNAs play an important role in various cellular processes including cell proliferation, differentiation, and apoptosis, all of which are integral factors in the development and progression of cancer. This review synthesizes the functions of circRNAs in breast cancer, scrutinizing their contributions to the onset and evolution of the disease through their interactions with exosomes and cancer-related intracellular pathways. It also delves into the potential use of circRNA as a biomarker and therapeutic target against breast cancer. It discusses various databases and online tools that offer crucial circRNA information and regulatory networks. Lastly, the challenges and prospects of utilizing circRNAs in clinical settings associated with breast cancer are explored.


Assuntos
Neoplasias da Mama , Exossomos , MicroRNAs , Humanos , Feminino , RNA Circular/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , MicroRNAs/genética , Biomarcadores , Exossomos/genética
17.
Small ; 19(47): e2303234, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37501331

RESUMO

The interface adhesion plays a key role between rigid metal and elastomer in compressible and stretchable conductors. However, the poor interfacial adhesion hinders their wide applications. To strengthen the interface adhesion, herein, a combination strategy of structure interlocking and polymer bridging is designed by introducing a method of subsurface-initiated atom transfer radical polymerization (sSI-ATRP). This method can make polymer brush root in polydimethylsiloxane (PDMS) subsurface, on this basis, metals further grow from subsurface to surface of PDMS via electroless deposition. As a result, the adhesive strength (≈2.5 MPa) between metal layer and PDMS elastomer is 4 times higher than that made by common polymer modification. As a demonstration, pressure sensor is constructed by using as-prepared compressible 3D Cu sponge as a top electrode and paper-based interdigited metal electrode as a bottom electrode. The device sensitivity can reach up to 961.2 kPa-1 and the durability can arrive at 3 000 cycles without degradation. Thus, this proposed interface-enhancement strategy for rigid-soft materials can significantly promote the performance of piezoresistive pressure sensors based on 3D conductive sponge. In the future, it would also be expanded to the fabrication of stretchable conductors and extensively applied in other flexible and wearable electronics.

18.
Small ; 19(1): e2203331, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403214

RESUMO

Nanocrystalline ZnO sponges doped with 5 mol% EuO1.5 are obtained by heating metal-salt complex based precursor pastes at 200-900 °C for 3 min. X-ray diffraction, transmission electron microscopy, and extended X-ray absorption fine structure (EXAFS) show that phase separation into ZnO:Eu and c-Eu2 O3 takes place upon heating at 700 °C or higher. The unit cell of the clean oxide made at 600 °C shows only ≈0.4% volume increase versus undoped ZnO, and EXAFS shows a ZnO local structure that is little affected by the Eu-doping and an average Eu3+ ion coordination number of ≈5.2. Comparisons of 23 density functional theory-generated structures having differently sized Eu-oxide clusters embedded in ZnO identify three structures with four or eight Eu atoms as the most energetically favorable. These clusters exhibit the smallest volume increase compared to undoped ZnO and Eu coordination numbers of 5.2-5.5, all in excellent agreement with experimental data. ZnO defect states are crucial for efficient Eu3+ excitation, while c-Eu2 O3 phase separation results in loss of the characteristic Eu3+ photoluminescence. The formation of molecule-like Eu-oxide clusters, entrapped in ZnO, proposed here, may help in understanding the nature of the unexpected high doping levels of lanthanide ions in ZnO that occur virtually without significant change in ZnO unit cell dimensions.


Assuntos
Elementos da Série dos Lantanídeos , Óxido de Zinco , Óxido de Zinco/química , Európio/química , Difração de Raios X
19.
Proc Biol Sci ; 290(2005): 20230771, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37644836

RESUMO

Sponges pump water to filter feed and for diffusive oxygen uptake. In doing so, trace DNA fragments from a multitude of organisms living around them are trapped in their tissues. Here we show that the environmental DNA retrieved from archived marine sponge specimens can reconstruct the fish communities at the place of sampling and discriminate North Atlantic assemblages according to biogeographic region (from Western Greenland to Svalbard), depth habitat (80-1600 m), and even the level of protection in place. Given the cost associated with ocean biodiversity surveys, we argue that targeted and opportunistic sponge samples - as well as the specimens already stored in museums and other research collections - represent an invaluable trove of biodiversity information that can significantly extend the reach of ocean monitoring.


Assuntos
DNA Ambiental , Poríferos , Animais , DNA , Biodiversidade , Peixes/genética , Poríferos/genética
20.
Appl Environ Microbiol ; 89(6): e0026723, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37255441

RESUMO

The residential kitchen is often heavily colonized by microbes originating from different sources, including food and human contact. Although a few studies have reported the bacterial composition in cleaning utensils and surface samples there is limited knowledge of the bacterial diversity across different sample types, households, and countries. As part of a large European study, we have identified the microbiota of 302 samples from cleaning utensils (sponges and cloths), kitchen surfaces (sinks, cutting boards, countertops, tap handles, and a pooled sample of other handles) in 74 households across 5 countries (France, Hungary, Norway, Portugal, and Romania). In total, 31 bacterial phyla were identified, with Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteria being the most abundant. Despite large variations in households with respect to kitchen standards, kitchen practices, cleaning regimes, and diet and considerable differences in bacterial diversity between samples, eight bacterial genera/families commonly associated with environmental sources were identified in most samples and defined as a core microbiota: Acinetobacter, Pseudomonas, Enhydrobacter, Enterobacteriaceae, Psychrobacter, Chryseobacterium, Bacillus, and Staphylococcus. These genera/families were also among the bacteria with the highest relative abundance across all samples, in addition to Yersiniaceae, Kocuria, Pantoea, and Streptococcus. Taxa associated with potential pathogens and fecal indicators were low in abundance but broadly distributed throughout the households. The microbial composition of surface samples indicated that the microbial composition on kitchen surfaces is more characteristic for the particular country than the object type, while the microbiota of cleaning utensils was similar across countries but differed between types (sponge or cloth). IMPORTANCE There is limited knowledge of the characteristics, differences, and similarities of the bacterial composition in residential kitchens. Here, we report the microbiota of cleaning utensils (sponges and cloths) and five different surface samples in 74 households across five European countries. In addition to increasing the knowledge of the kitchen microbiota from many geographical areas, this study identified a core microbiota in European residential kitchens despite large variations in kitchen practices and kitchen design and standards across countries and households.


Assuntos
Microbiota , Micrococcaceae , Humanos , Bactérias/genética , Enterobacteriaceae , Europa (Continente) , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa