Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 43(11): 1617-1625, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132308

RESUMO

Gene and nucleic acid-based medication is an ultimate strategy in the field of personalized medicine. A gene or short interference RNA (siRNA) molecule needs to be delivered to the appropriate organelle (i.e., nucleus and cytoplasm, respectively). We recently focused on improving the intrinsic activity of my original material (ssPalm) in terms of endosomal/lysosomal membrane destabilization activity by chemically modifying the tertiary amine structure. In parallel, I have been expanding the range of applications of ssPalms. The first application is a DNA or RNA vaccine. My crucial finding is that the vitamin E-scaffold ssPalm (ssPalmE) is highly immune-stimulative when combined with DNA. Thereafter, I redesigned the hydrophobic scaffold structure, and found that an oleic acid-scaffold ssPalm (ssPalmO) can confer anti-inflammatory characteristics. Based on this result, I further upgraded the ssPalmO, by inserting a newly designed linker with self-degradable properties.


Assuntos
DNA/administração & dosagem , Portadores de Fármacos/química , Lipídeos/química , RNA Interferente Pequeno/administração & dosagem , Vitamina E/química , Animais , Modelos Animais de Doenças , Desenvolvimento de Medicamentos , Técnicas de Transferência de Genes , Terapia Genética/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas , Medicina de Precisão/métodos
2.
Nanomedicine ; 14(8): 2587-2597, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30170077

RESUMO

Cytoplasmic DNA triggers cellular immunity via activating the stimulator of interferon genes pathway. Since DNA is degradable and membrane impermeable, delivery system would permit cytoplasmic delivery by destabilizing the endosomal membrane for the use as an adjuvant. Herein, we report on the development of a plasmid DNA (pDNA)-encapsulating lipid nanoparticle (LNP). The structural components include an SS-cleavable and pH-activated lipid-like material that mounts vitamin E as a hydrophobic scaffold, and dual sensing motifs that are responsive to the intracellular environment (ssPalmE). The pDNA-encapsulating LNP (ssPalmE-LNP) induced a high interferon-ß production in Raw 264.7 cells. The subcutaneous injection of ssPalmE-LNP strongly enhanced antigen-specific cytotoxic T cell activity. The ssPalmE-LNP treatment efficiently induced antitumor effects against E.G7-OVA tumor and B16-F10 melanoma metastasis. Furthermore, when combined with an anti-programmed death 1 antibody, an extensive therapeutic antitumor effect was observed. Therefore, the ssPalmE-LNP is a promising carrier of adjuvants for cancer immunotherapy.


Assuntos
Anticorpos Monoclonais/farmacologia , DNA/química , Imunoterapia , Lipídeos/química , Melanoma Experimental/tratamento farmacológico , Nanopartículas/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Vitamina E/administração & dosagem , Adjuvantes Imunológicos , Animais , Anticorpos Monoclonais/administração & dosagem , Células Cultivadas , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/administração & dosagem , Lipossomos/química , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Vitamina E/química
3.
Pharmaceutics ; 14(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36015185

RESUMO

The blood-brain barrier (BBB), which is comprised of brain capillary endothelial cells, plays a pivotal role in the transport of drugs from the blood to the brain. Therefore, an analysis of proteins in the endothelial cells, such as transporters and tight junction proteins, which contribute to BBB function, is important for the development of therapeutics for the treatment of brain diseases. However, gene transfection into the vascular endothelial cells of the BBB is fraught with difficulties, even in vitro. We report herein on the development of lipid nanoparticles (LNPs), in which mRNA is encapsulated in a nano-sized capsule composed of a pH-activated and reductive environment-responsive lipid-like material (ssPalm). We evaluated the efficiency of mRNA delivery into non-polarized human brain capillary endothelial cells, hCMEC/D3 cells. The ssPalm LNPs permitted marker genes (GFP) to be transferred into nearly 100% of the cells, with low toxicity in higher concentration. A proteomic analysis indicated that the ssPalm-LNP had less effect on global cell signaling pathways than a Lipofectamine MessengerMAX/GFP-encoding mRNA complex (LFN), a commercially available transfection reagent, even at higher mRNA concentrations.

4.
Cancers (Basel) ; 12(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291555

RESUMO

Despite the promising anticancer effects of immune checkpoint inhibitors, their low objective response rate remains to be resolved; thus, combination therapies have been investigated. We investigated the combination of an anti-programmed cell death 1 (aPD-1) monoclonal antibody with the knockdown of vascular endothelial factor receptor 2 (VEGFR2) on tumor endothelial cells to overcome resistance to immune checkpoint inhibitors and improve the objective response rate. The successful delivery of small interfering RNA to tumor endothelial cells was achieved by RGD peptide-modified lipid nanoparticles composed of a novel, pH-sensitive, and biodegradable ssPalmO-Phe. RGD-modified lipid nanoparticles efficiently induced the knockdown of VEGFR2 in tumor endothelial cells (TECs), which induced vascular normalization. The combination of a PD-1 monoclonal antibody with Vegfr2 knockdown enhanced CD8+ T cell infiltration into tumors and successfully suppressed tumor growth and improved response rate compared with monotherapy. Our combination approach provides a promising strategy to improve therapeutic outcomes in immune checkpoint inhibitor-resistant cancers.

5.
Macromol Biosci ; 17(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27797146

RESUMO

Nanomedicines promise to extend drug therapy from small molecular compounds to proteins/nucleic acids/genes. Multifunctional envelope-type nanodevices (MENDs) have been developed for delivering such molecules to the site of action. The YSK-MEND contains new types of pH-responsive cationic lipids to efficiently deliver siRNA to hepatocytes via receptor-mediated endocytosis and use in treating hepatitis C and B in model mice. The RGD ligand is introduced to target tumor endothelial cells (TEC) and RGD-MEND is able to send siRNA to TEC to regulate the function of tumor microenvironments. The MITO-Porter is also developed to target mitochondria via membrane fusion. Antisense oligo RNA in the MITO-Porter permits the knock down of mitochondrial function. Finally, the ssPalms is designed based on a new concept of pH-dependent protonation in endosomes and cleavage of SS bonds in the reducing conditions in cytosol. These new technologies promise to stimulate the use of Nanomedicines in the future.


Assuntos
Sistemas de Liberação de Medicamentos , Espaço Intracelular/metabolismo , Invenções , Nanomedicina/métodos , Farmacocinética , Animais , Humanos , Distribuição Tecidual
6.
Int J Pharm ; 509(1-2): 118-122, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27231121

RESUMO

Taking advantage of the enhanced permeation and retention (EPR) effect is a promising approach for delivering macromolecules or nanoparticles to tumors. Recent studies revealed that this strategy is also applicable for targeting other pathological lesions (i.e. inflammatory disease). In the present study, we report the optimal size of a nanoparticle for allowing the higher accumulation of a particle in an inflammatory lesion using a dextran sulfate sodium (DSS)-induced colitis model. As a nanoparticle platform, we utilized a SS-cleavable and pH-activated lipid-like material (ssPalm), that can be used to produce particles in a variety of sizes ranging from 50nm to 180nm while using the same lipid composition. In healthy mice, particle accumulation remained low regardless of size. In contrast, the accumulation in inflammatory colon tissue was enhanced depending on the progress of the inflammation. In this situation, the apparent uptake clearance accumulation of a mid-sized particle (113nm on average) was higher than that for smaller and larger (54nm and 183nm in average, respectively) ones. Therefore, controlling particle size is an important parameter for the extensive targeting of inflammatory lesion.


Assuntos
Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Nanopartículas/administração & dosagem , Animais , Colo/efeitos dos fármacos , Modelos Animais de Doenças , Lipídeos/química , Camundongos , Tamanho da Partícula
7.
Expert Opin Drug Deliv ; 13(7): 1015-27, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26878086

RESUMO

INTRODUCTION: The development of gene and nucleic acid-based medication is one of the ultimate strategies in the research field of personalized medicine. For the desired function of a gene or siRNA, these molecules need to be delivered to the appropriate organelle (i.e. nucleus and cytoplasm, respectively). AREAS COVERED: The topics covered herein are rational design in order to control the pharmacokinetics, intracellular trafficking and release (decondensation or decapsulation) of the intended material. Since the endosome and cytoplasm are acidic (endosome) and reducing (cytoplasm) environments, respectively, a large variety of the materials have been developed that induce destabilization of endosome via its protonation, or are spontaneously collapsed in the cytoplasm. Finally, we propose materials (SS-cleavable and pH-activated lipid-like materials: ssPalm) that mount these sensing motifs, i.e., a positive charging unit in response to the acid environment (tertiary amines) and a cleavage unit (disulfide bonding) that is responsive to an reducing environment, respectively. EXPERT OPINION: Currently, the main target of the nanocarrier-mediated siRNA delivery systems is liver. The targeting of non-hepatic tissue is the next challenge. In this case, the design of neutral particle with well-organized intracellular trafficking, as well as an identification of the promising ligand is needed.


Assuntos
Nanoestruturas , RNA Interferente Pequeno/genética , Endossomos , Humanos , Lipídeos , Nanopartículas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa