Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Arch Biochem Biophys ; 761: 110149, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39271096

RESUMO

BACKGROUND: The pathogenesis exploration and timely intervention of hepatocellular carcinoma (HCC) are crucial due to its global impact on human health. As a general tumor biomarker, stanniocalcin 2 (STC2), its role in HCC remains unclear. We aimed to analyze the effect and mechanism of STC2 on HCC. METHODS: STC2 expressions in HCC tissues and cell lines were measured. si-STC2 and oe-STC2 transfections were utilized to analyze how STC2 affected cell functions. Functional enrichment analysis of STC2 was performed by Gene Set Enrichment Analysis (GSEA). The regulatory mechanism of STC2 on HCC was investigated using 2-DG, 3-MA, IGF-1, Rap, and LY294002. The impact of STC2 on HCC progression in vivo was evaluated by the tumor formation experiment. RESULTS: Higher levels of STC2 expression were observed in HCC tissues and cell lines. Besides, STC2 knockdown reduced proliferation, migration, and invasion, while inducing cell apoptosis. Further analysis indicated a positive correlation between STC2 and glycolysis. STC2 knockdown inhibited glycolysis progression and down-regulated the expressions of PKM2, GLUT1, and HK2 in HCC cells. However, treatment with glycolysis inhibitor (2-DG) prevented oe-STC2 from promoting the growth of HCC cells. Additionally, STC2 knockdown up-regulated the levels of LC3II/LC3I and Beclin1 and reduced the phosphorylation of PI3K, AKT, and mTOR. Treatment with 3-MA, IGF-1, Rap, and LY294002 altered the function of STC2 on proliferation and glycolysis in HCC cells. Tumor formation experiment results revealed that STC2 knockdown inhibited HCC progression. CONCLUSIONS: STC2 knockdown inhibited cell proliferation and glycolysis in HCC through the PI3K/Akt/mTOR pathway-mediated autophagy induction.

2.
Neuroendocrinology ; : 1-17, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043147

RESUMO

INTRODUCTION: Insulin-like growth factor (IGF)1 and IGF2 have neuroprotective effects, but less is known regarding how other members of the IGF system, including IGF binding proteins (IGFBPs) and the regulatory proteinase pappalysin-1 (PAPP-A) and its endogenous inhibitor stanniocalcin-2 (STC2) participate in this process. Here, we analyzed whether these members of the IGF system are modified in neurons and astrocytes in response to palmitic acid (PA), a fatty acid that induces cell stress when increased centrally. METHODS: Primary hypothalamic astrocyte cultures from male and female PND2 rats and the pro-opiomelanocortin (POMC) neuronal cell line, mHypoA-POMC/GFP-2, were treated with PA, IGF1 or both. To analyze the role of STC2 in astrocytes, siRNA assays were employed. RESULTS: In astrocytes of both sexes, PA rapidly increased cell stress factors followed by increased Pappa and Stc2 mRNA levels and then a decrease in Igf1, Igf2, and Igfbp2 expression and cell number. Exogenous IGF1 did not revert these effects. In mHypoA-POMC/GFP-2 neurons, PA reduced cell number and Pomc and Igf1 mRNA levels, and increased Igfbp2 and Stc2, again with no effect of exogenous IGF1. PA increased STC2 expression, but no effects of decreasing its levels by interference assays or exogenous STC2 treatment in astrocytes were found. CONCLUSIONS: The response of the IGF system to PA was cell and sex specific, but no protective effects of the IGFs were found. However, the modifications in hypothalamic PAPP-A and STC2 indicate that further studies are required to determine their role in the response to fatty acids and possibly in metabolic control.

3.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 740-752, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38477044

RESUMO

Dysregulation of microRNA (miRNA) expression in cancer is a significant factor contributing to the progression of chemoresistance. The objective of this study is to explore the underlying mechanisms by which miR-34b-3p regulates chemoresistance in cervical cancer (CC). Previous findings have demonstrated low expression levels of miR-34b-3p in both CC chemoresistant cells and tissues. In this study, we initially characterize the behavior of SiHa/DDP cells which are CC cells resistant to the chemotherapeutic drug cisplatin (DDP). Subsequently, miR-34b-3p mimics are transfected into SiHa/DDP cells. It is observed that overexpression of miR-34b-3p substantially inhibits the proliferation, migration, and invasion abilities of SiHa/DDP cells and also enhances their sensitivity to DDP-induced cell death. Quantitative RT-PCR and western blot analysis further reveal elevated expression levels of STC2 and FN1 in SiHa/DDP cells, contrary to the expression pattern of miR-34b-3p. Moreover, STC2 and FN1 contribute to DDP resistance, proliferation, migration, invasion, and decreased apoptosis in CC cells. Through dual-luciferase assay analysis, we confirm that STC2 and FN1 are direct targets of miR-34b-3p in CC. Finally, rescue experiments demonstrate that overexpression of either STC2 or FN1 can partially reverse the inhibitory effects of miR-34b-3p overexpression on chemoresistance, proliferation, migration and invasion in CC cells. In conclusion, our findings support the role of miR-34b-3p as a tumor suppressor in CC. This study indicates that targeting the miR-34b-3p/STC2 or FN1 axis has potential therapeutic implications for overcoming chemoresistance in CC patients.


Assuntos
Proliferação de Células , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Fibronectinas , MicroRNAs , Neoplasias do Colo do Útero , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/tratamento farmacológico , Feminino , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Fibronectinas/metabolismo , Fibronectinas/genética , Movimento Celular/genética , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteínas
4.
Chin J Physiol ; 66(2): 111-117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082998

RESUMO

Stanniocalcin 2 (STC2) is identified as a glycosylated peptide hormone and estrogen-responsive gene in cancer cells. STC2 participates in angiogenesis, cell development, cytoprotection, and calcium and phosphate regulation during the development of cancer. The role of STC2 in endometrial cancer (EC) remains unclear. The data from the bioinformatic and immunohistochemical analysis showed that STC2 was upregulated in the EC tissues. The EC cells were treated with 17ß-estradiol (E2), and 0.1 µmol/L E2 increased the expression of STC2 in the EC cells. E2 also increased cell viability, promoted proliferation, and inhibited apoptosis of EC. However, the knockdown of STC2 decreased cell viability, reduced proliferation, and promoted apoptosis of E2-stimulated EC. Moreover, silencing of STC2 attenuated E2-induced downregulation of phosphorylated-AMP-activated protein kinase (AMPK) in the EC cells. The loss of STC2 reduced E2-stimulated tumor growth EC in vivo. In conclusion, STC2 deficiency suppressed E2-stimulated proliferation and tumor growth of EC through the activation of AMPK signaling.


Assuntos
Neoplasias do Endométrio , Glicoproteínas , Peptídeos e Proteínas de Sinalização Intercelular , Hormônios Peptídicos , Feminino , Humanos , Proteínas Quinases Ativadas por AMP , Linhagem Celular Tumoral , Neoplasias do Endométrio/metabolismo , Estrogênios/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Glicoproteínas/metabolismo
5.
Pak J Med Sci ; 39(4): 1119-1123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492297

RESUMO

Objective: Stanniocalcin-2 (STC2), a secreted glycoprotein that is involved in the regulation of angiogenesis, was proposed as one of the mechanisms of neovascularization in hemangioma (HA). We aimed to investigate the effect of STC2 on proliferation and angiogenesis in hemangioma-derived endothelial cells. Methods: The hemangioma samples from HA patients with the median age of six months were surgically collected in the Affiliated Hospital of Weifang Medical University from October 2019 to June 2021, and divided into normal skin tissues (n=10), involuting-phase HAs (n=10) and proliferating-phase HAs (n=10) according to the Mulliken classification. The expression of STC2 was detected in involuting-phase HAs and proliferating-phase HAs. Hemangioma endothelial cells (HemEC) were transfected with small interfering RNA (siRNA) specific for STC2, and cell survival and tube formation were analyzed. Results: STC2 expression in proliferating-phase HAs was markedly higher than in the normal skin tissues and involving-phase HAs. Similarly, STC2 expression was higher in HemEC compared to the control human umbilical vein endothelial cells (HUVEC). Knockdown of STC2 slowed the proliferation of HemEC and decreased the expression of proliferating cell nuclear antigen (PCNA) in HemEC. Moreover, knockdown of STC2 in HemEC inhibited vascular endothelial cell angiogenesis and regulated the expression and phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2). Mechanistically, STC2 knockdown attenuated the activation of Akt/eNOS signaling, which was abolished by insulin growth factor-1 (IGF-1), the activator of Akt signaling, accompanying by increased proliferation and tube formation of HemEC. Conclusion: Inhibition of STC2 suppresses HemEC proliferation and angiogenesis by VEGFR2/Akt/eNOS pathway, which warrants further development of STC2-based strategies for HA treatment.

6.
Exp Cell Res ; 393(2): 112092, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32445747

RESUMO

Stanniocalcin 2 (STC2), a glycoprotein that regulates calcium and phosphate homeostasis during mineral metabolism, appears to display multiple roles in tumorigenesis and cancer progression. This study aimed to access the prognostic value of STC2 in oral squamous cell carcinoma (OSCC) and its implications in oral tumorigenesis. STC2 expression was examined in 2 independent cohorts of OSCC tissues by immunohistochemistry. A loss-of-function strategy using shRNA targeting STC2 was employed to investigate STC2 in vitro effects on proliferation, apoptosis, migration, invasion, epithelial-mesenchymal transition (EMT) and possible activation of signaling pathways. Moreover, STC2 effects were assessed in vivo in a xenograft mouse cancer model. High expression of STC2 was significantly associated with poor disease-specific survival (HR: 2.67, 95% CI: 1.37-5.21, p = 0.001) and high rate of recurrence with a hazard ratio of 2.80 (95% CI: 1.07-5.71, p = 0.03). In vitro downregulation of STC2 expression in OSCC cells attenuated proliferation, migration and invasiveness while increased apoptotic rates. In addition, the STC2 downregulation controlled EMT phenotype of OSCC cells, with regulation on E-cadherin, vimentin, Snail1, Twist and Zeb2. The reactivation of STC2 was observed in the STC2 knockdown cells in the in vivo xenograft model, and no influence on tumor growth was observed. Modulation of STC2 expression levels did not alter consistently the phosphorylation status of CREB, ERK, JNK, p38, p70 S6K, STAT3, STAT5A/B and AKT. Our findings suggest that STC2 overexpression is an independent marker of OSCC outcome and may contribute to tumor progression via regulation of proliferation, survival and invasiveness of OSCC cells.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Bucais/metabolismo , Recidiva Local de Neoplasia/metabolismo , Adulto , Idoso , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/patologia , Recidiva Local de Neoplasia/genética
7.
J Cell Mol Med ; 24(21): 12736-12749, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939933

RESUMO

Transfer RNA-derived small RNAs (tsRNAs), a novel type of non-coding RNA derivative, are able to regulate a wide range of biological processes. What role these tsRNAs play in the regulation of human bone marrow mesenchymal stem cell (hMSCs) adipogenic differentiation remains uncertain. We induced the adipogenic differentiation of human bone marrow mesenchymal cells (hMSCs) and then performed small RNA transcriptomic sequencing, leading us to identify tsRNA-06018 as a target of interest based upon resultant the tsRNA expression profiles. When tsRNA-06018 was knocked down, this led to the inhibition of adipogenesis and a decrease in adipogenic marker expression. When STC2 was overexpressed, this impaired the adipogenic differentiation of these cells. We further used luciferase reporter assays to confirm that tsRNA-06018 directly binds the 3'-untranslated region (3'-UTR) of STC2. In addition, we determined that both knocking down tsRNA-06018 and overexpressing STC2 increased extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation within cells. We also assessed that the adipogenic differentiation of hMSCs in which tsRNA-06018 was knocked down was further enhanced upon the addition of the ERK1/2 inhibitor U0126 as compared tsRNA-06018 knockdown alone. Taken together, using small RNA sequencing we profiled tsRNAs in hMSCs during the process of adipogenesis, leading us to identify tsRNA-06018 as a novel regulator of this differentiation process. This tsRNA was able to regulate adipogenic differentiation by targeting STC2 via the ERK1/2 signalling pathway.


Assuntos
Adipogenia/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , RNA de Transferência/genética , Análise de Sequência de RNA , Regiões 3' não Traduzidas/genética , Adipogenia/efeitos dos fármacos , Sequência de Bases , Butadienos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Modelos Biológicos , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos
8.
Biochem Biophys Res Commun ; 524(1): 163-168, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31982135

RESUMO

Stanniocalcin-2 (STC2) is a glycoprotein that has been found to play key roles in the regulation of cancer, diabetes mellitus, and osteogenesis. Herein we sought to extend these past studies by examining the importance of STC2 in the context of human mesenchymal stem cell (hMSC) adipogenic differentiation and exploring the mechanisms underlying such importance. We found that STC2 expression was significantly reduced on day 7 of hMSC adipogenesis. When we deliberately overexpressed STC2 in these cells, this resulted in significantly decreased expression of both peroxisome proliferator-activated receptor γ (PPARγ) and Fatty Acid Binding Protein-4 (FABP4) together with increased extracellular-signal regulated kinase 1/2 (ERK1/2) phosphorylation and markedly reduced lipid droplet formation within cells. Treatment of cells using the ERK inhibitor U0126 disrupted this ERK1/2 phosphorylation and restored the adipogenic differentiation of these hMSCs. When we instead knocked down STC2 expression, the opposite phenotypes were observed. Together these findings thus reveal that STC2 modulates ERK1/2 signaling in hMSCs so as to suppress their adipogenic differentiation.


Assuntos
Adipogenia , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Sistema de Sinalização das MAP Quinases , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/enzimologia , Butadienos/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Lentivirus/metabolismo , Nitrilas/farmacologia , Fosforilação
9.
Int J Cancer ; 145(6): 1609-1624, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31162839

RESUMO

Constitutive activation of the epidermal growth factor receptor (EGFR) signaling pathway is implicated in the initiation and progression of lung cancer. EGFR tyrosine kinase inhibitor (TKI)-targeted therapy has become the standard treatment for nonsmall cell lung cancer (NSCLC) patients. However, acquired resistance to these agents remains a major obstacle for managing NSCLC. Here, we investigated a novel strategy to overcome EGFR TKI resistance by targeting the stanniocalcin 2 (STC2)-JUN-AXL pathway. We revealed that STC2 was expressed at significantly higher levels in EGFR TKI-resistant cells. Further, clinical analysis showed that STC2 expression was increased after the development of EGFR TKI resistance and that higher levels were correlated with shorter progression-free survival in EGFR TKI-treated lung cancer patients. Moreover, STC2 overexpression in EGFR TKI-sensitive cells resulted in EGFR TKI resistance. Conversely, genetic silencing of STC2 rendered EGFR TKI-resistant cells more sensitive to EGFR TKIs. Mechanically, STC2 enhanced AXL promoter activity by increasing the phosphorylation of c-Jun, which is an indispensable transcription factor that transactivates AXL. STC2 promoted activation of the JUN-AXL-extracellular signal-regulated kinase (ERK) signaling axis in lung cancer cells. Pharmacological or genetic inhibition of AXL-ERK activity inhibited STC2-mediated EGFR TKI resistance. We also demonstrated that PE2988 cells, a C797S-independent osimertinib-resistant primary cancer cell line from a lung cancer patient, responded to combined AXL inhibitor and osimertinib treatment. In conclusion, our research indicates that STC2 overexpression is important for acquired resistance to EGFR TKIs and that STC2-JUN-AXL-ERK signaling might be a potential therapeutic target to overcome resistance to EGFR TKIs.


Assuntos
Adenocarcinoma/metabolismo , Inibidores Enzimáticos/farmacologia , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Xenoenxertos , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Receptor Tirosina Quinase Axl
10.
BMC Gastroenterol ; 19(1): 83, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31159802

RESUMO

BACKGROUND: Patients with inflammatory bowel disease (IBD) present with reduced serum insulin-like growth factor I (IGF-I). Anti-inflammatory treatment with prednisolone or infliximab ameliorates symptoms and increases circulating IGF-I, but prednisolone induces catabolism, whereas infliximab may promote protein synthesis. Recently, stanniocalcin-2 (STC2) was discovered as a novel inhibitor of the enzyme pregnancy-associated plasma protein-A (PAPP-A), which modulates IGF-I activity. PAPP-A can cleave IGF binding protein-4 (IGFBP-4), upon which IGF-I is liberated. We hypothesized that prednisolone and infliximab exert different effects on levels of STC2, PAPP-A, and IGFBP-4, thereby explaining the distinct metabolic effects of prednisolone and infliximab. METHODS: Thirty-eight patients with active IBD treated with either prednisolone (n = 17) or infliximab (n = 21) were examined before and after 7 days of treatment. Circulating levels of IGF-I, IGF-II, IGFBP-3, PAPP-A, and STC2 were measured by immunoassays. Intact IGFBP-4 and two IGFBP-4 fragments were determined by a novel immunoassay. Bioactive IGF was assessed by cell-based IGF receptor activation assay. Concentrations of IGFBP-4, PAPP-A, and STC2 on day 0 and 7 were compared to healthy control subjects. RESULTS: Following seven days of prednisolone treatment, total and bioactive IGF-I were increased (p < 0.001 and p < 0.05, respectively). Upon infliximab treatment, total IGF-I levels were augmented (p < 0.05), yet IGF bioactivity remained unaltered. Intact IGFBP-4 and the two IGFBP-4 fragments generated upon cleavage by PAPP-A were all decreased following treatment with either prednisolone or infliximab (all p < 0.05). PAPP-A levels were only increased by infliximab (p = 0.005), whereas the inhibitor STC2 did not respond to any of the treatments. CONCLUSION: IGF-I and IGFBP-4 concentrations were markedly altered in patients with IBD and near-normalized with disease remission following treatment with prednisolone or infliximab. Thus, IGFBP-4 may modulate IGF bioavailability in IBD. The effect of immunosuppression did not appear to extend beyond the regulation of IGF and IGFBP-4, as neither PAPP-A nor STC2 were discernibly affected. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00955123 . Date of registration: August 7, 2009 (retrospectively registered).


Assuntos
Glicoproteínas/sangue , Doenças Inflamatórias Intestinais/tratamento farmacológico , Infliximab/farmacocinética , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Prednisolona/farmacocinética , Proteína Plasmática A Associada à Gravidez/efeitos dos fármacos , Adulto , Disponibilidade Biológica , Feminino , Humanos , Terapia de Imunossupressão , Quimioterapia de Indução , Doenças Inflamatórias Intestinais/sangue , Masculino
11.
Can J Physiol Pharmacol ; 97(10): 916-923, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31100207

RESUMO

Stanniocalcin-1 and -2 belong to a family of molecules that exhibit both paracrine and autocrine effects in mammalian cells. Human stanniocalcin-1 (hSTC-1) is expressed in a wide range of tissues, including white adipose tissue. In fed rats, hSTC-1 increases carbon flux from glucose to lipids in retroperitoneal white adipose tissue. Human stanniocalcin-2 (hSTC-2) is expressed in almost all tissues and regulates various biological processes. The aim of this work was to study the action of hSTC-1 and hSTC-2 in the lipid and glucose metabolism of epididymal white adipose tissue (eWAT) in rats in different nutritional states. This study shows for the first time an opposite effect of hSTC-1 and hSTC-2 on glyceride-glycerol generation from glucose in eWAT of fed rats. hSTC-1 stimulated the storage of triacylglycerol in eWAT in the postprandial period, increasing glucose uptake and glyceride-glycerol generation from 14C-glucose. hSTC-2 decreased triacylglycerol synthesis, reducing glyceride-glycerol generation from 14C-glucose, direct phosphorylation of glycerol, and fatty acid synthesis from 14C-glucose in eWAT of fed rats. However, both hormones increased glucose uptake in fed and fasting states. These findings provide evidence for a direct role of hSTC-1 and hSTC-2 in the regulation of lipid and glucose metabolism in eWAT of rats.


Assuntos
Tecido Adiposo Branco/metabolismo , Glucose/metabolismo , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metabolismo dos Lipídeos , Animais , Epididimo/metabolismo , Jejum/fisiologia , Masculino , Período Pós-Prandial/fisiologia , Ratos , Ratos Wistar , Triglicerídeos/biossíntese
12.
Cardiovasc Diabetol ; 17(1): 63, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712555

RESUMO

OBJECTIVE: The aim of the present study was to evaluate the prognostic value of the Stanniocalcin-2/PAPP-A/IGFBP-4 axis in patients with ST-segment elevation myocardial infarction (STEMI). METHODS: Observational cohort study performed in 1085 consecutive STEMI patients treated with early reperfusion between February 2011 and August 2014. Stanniocalcin-2, PAPP-A, and IGFBP-4 were measured using state-of-the art immunoassays. The primary outcome was the composite endpoint of all-cause mortality and readmission due to heart failure (HF). RESULTS: Median follow-up was 3.3 years (IQR 1.0-3.7), during which 176 patients (16.2%) presented a composite endpoint. Multivariable cox regression analysis revealed that Stanniocalcin-2 (HR 2.06; 95% CI 1.13-3.75; p = 0.018), IGFBP-4 (HR 1.73; 95% CI 1.14-2.64; p = 0.010), Killip-Kimball class III-IV (HR 1.40; 95% CI 1.13-1.74; p = 0.002), NT-ProBNP (HR 1.21; 95% CI 1.07-1.37; p = 0.002), age (HR 1.06; 95% CI 1.04-1.08; p < 0.001) and left ventricular ejection fraction (HR 0.97; 95% CI 0.95-0.98; p < 0.001) were independent predictors of the composite endpoint. A model containing Stanniocalcin-2 and IGFBP-4 on top of clinical variables significantly improved C-index discrimination (p = 0.036). Stanniocalcin-2 was also identified as independent predictor of all-cause mortality (HR 2.23; 95% CI 1.16-4.29; p = 0.017) and readmission due to HF (HR 3.42; 95% CI 1.22-9.60; p = 0.020). CONCLUSIONS: In STEMI patients, Stanniocalcin-2 and IGFBP-4 emerged as independent predictors of all-cause death and readmission due to HF. The Stanniocalcin-2/PAPP-A/IGFBP-4 axis exhibits a significant role in STEMI risk stratification.


Assuntos
Glicoproteínas/sangue , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Proteína Plasmática A Associada à Gravidez/análise , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Causas de Morte , Feminino , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Readmissão do Paciente , Intervenção Coronária Percutânea , Valor Preditivo dos Testes , Estudos Prospectivos , Fatores de Risco , Infarto do Miocárdio com Supradesnível do Segmento ST/mortalidade , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Fatores de Tempo , Resultado do Tratamento , Função Ventricular Esquerda
13.
Biochim Biophys Acta ; 1854(6): 668-76, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25463045

RESUMO

The homodimeric glycoprotein, stanniocalcin 2 (STC2) is previously known to be involved in the regulation of calcium and phosphate transport in the kidney and also reported to play multiple roles in several cancers. However, its function and clinical significance in lung cancer have never been reported and still remain uncertain. Here, we investigated the possibility of STC2 as a lung cancer biomarker and identified its potential role in lung cancer cell growth, metastasis and progression. Proteomic analysis of secretome of primary cultured lung cancer cells revealed higher expression of STC2 in cancers compared to that of adjacent normal cells. RT-PCR and Western blot analyses showed higher mRNA and protein expressions of STC2 in lung cancer tissues compared to the adjacent normal tissues. Knockdown of STC2 in H460 lung cancer cells slowed down cell growth progression and colony formation. Further analysis revealed suppression of migration, invasion and delayed G0/G1 cell cycle progression in the STC2 knockdown cells. STC2 knockdown also attenuated the H202-induced oxidative stress on H460 cell viability with a subsequent increase in intracellular ROS levels, which suggest a protective role of STC2 in redox regulatory system of lung cancer. These findings suggest that STC2 can be a potential lung cancer biomarker and plays a positive role in lung cancer metastasis and progression. This article is part of a Special Issue entitled: Medical Proteomics.


Assuntos
Biomarcadores Tumorais/metabolismo , Movimento Celular , Fase G1 , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Pulmonares/metabolismo , Estresse Oxidativo , Fase de Repouso do Ciclo Celular , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Oxidantes/farmacologia , Proteômica
14.
Can J Physiol Pharmacol ; 94(9): 929-35, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27245421

RESUMO

Multidrug resistance (MDR) limits the anticancer effects of chemotherapy in patients with metastatic colorectal cancer (CRC). Oxaliplatin is a common component of combinational therapeutic regimens administered to patients with metastatic CRC; however, it is also used as a constituent of adjuvant therapy for patients at a risk of recurrent disease. In the present study, we investigated the role of stanniocalcin 2 (STC2) in chemoresistance. STC2 knockdown sensitized chemoresistant CRC cells to oxaliplatin. Moreover, the expression of exogenous STC2 in chemonaïve CRC cells induced oxaliplatin resistance. We confirmed that STC2 upregulated P-glycoprotein (P-gp) expression in CRC cells. Furthermore, shRNA against phosphoinositide 3-kinase (PI3K) or Akt inhibited the action of STC2 on P-gp upregulation and MDR in CRC. To our knowledge, this is the first report to demonstrate the induction of oxaliplatin resistance in CRC cells in response to STC2 stimulation of P-gp via the PI3K/Akt signaling pathway.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glicoproteínas/metabolismo , Glicoproteínas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Compostos Organoplatínicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glicoproteínas/antagonistas & inibidores , Humanos , Oxaliplatina , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Regulação para Cima
15.
Biochem Biophys Res Commun ; 466(3): 362-8, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26361149

RESUMO

Cervical cancer is one of the most common carcinomas in the female reproductive system. Treatment of cervical cancer involves surgical removal and chemotherapy. Resistance to platinum-based chemotherapy drugs including cisplatin has increasingly become an important problem in the treatment of cervical cancer patients. We found in this study that stanniocalcin 2 (STC2) expression was upregulated in both cervical cancer tissues and cell lines. The levels of STC2 expression in cervical cancer cell lines were positively correlated with the rate of cell proliferation. Furthermore, in cisplatin resistant cervical cancer cells, the levels of STC2 expression were significantly elevated. Modulation of STC2 expression by siRNA or overexpression in cisplatin resistant cells resulted in altered cell survival, apoptosis, and cisplatin resistance. Finally, we found that there was significant difference in the activity of the MAPK signaling pathway between cisplatin sensitive and resistant cervical cancer cells, and that STC2 could regulate the activity of the MAPK signaling pathway.


Assuntos
Cisplatino/química , Resistencia a Medicamentos Antineoplásicos , Glicoproteínas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Neoplasias do Colo do Útero/metabolismo , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular , Feminino , Células HeLa/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Neoplasias do Colo do Útero/genética
16.
Int J Cancer ; 135(2): 295-307, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24375080

RESUMO

Tumor angiogenesis plays a critical role in colorectal cancer progression. Recent randomized clinical trials have revealed the additive effect of bevacizumab, a humanized monoclonal antibody against vascular endothelial growth factor (VEGF)-A, to conventional chemotherapy in the improved survival of patients with metastatic colorectal cancer. However, a number of preclinical reports indicate the development of resistance to anti-angiogenic therapy. In this study, we addressed the effects of anti-VEGF antibodies on the growth and malignant behavior of colorectal cancer cells. TK-4, a solid tumor strain derived from a colon cancer patient, was subcutaneously or orthotopically implanted into nude mice. Short-term administration of anti-VEGF antibodies inhibited the growth of cecal tumors at day 14 by suppressing mitosis, but prolonged treatment resulted in the recovery of cellular proliferation and suppression of apoptosis at day 35. Intratumoral hypoxia induced by anti-VEGF antibody treatment resulted in activation of hypoxia inducible factor-1α protein and an increased number of aldehyde dehydrogenase 1-positive tumor cells. In microarray analysis, stanniocalcin 2 (STC2) was the most highly upregulated gene in anti-VEGF antibody-treated tumors. In vitro analyses showed that the growth and migration of SW480 colon cancer cells under hypoxic conditions were significantly inhibited by knockdown of STC2. In vivo serial transplantation of TK-4 revealed that long-term administration of anti-VEGF antibodies increased the tumorigenicity of colon cancers and accelerated tumor growth when transplanted into secondary recipient mice. Our data provide a potential molecular explanation for the limited clinical effectiveness of anti-VEGF antibodies.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias do Colo/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Bevacizumab , Western Blotting , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Progressão da Doença , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Animals (Basel) ; 14(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338026

RESUMO

Stanniocalcin 2 (STC2) is a secreted glycoprotein involved in multiple biological processes. To systemically study the biological role of STC2 in chickens, phylogenetic tree analysis and conservation analysis were conducted. Association analysis between variations in the STC2 gene and the economic traits of Gushi-Anka F2 was conducted. The tissue expression patterns of STC2 expression in different chicken tissues and liver at different stages were detected. The biological role of STC2 in chicken liver was investigated through overexpression and interfering methods in the LMH cell line. Correlation analyses between STC2 expression and lipid components were conducted. (1) The phylogenetic tree displayed that chicken STC2 is most closely related with Japanese quail and most distantly related with Xenopus tropicalis. STC2 has the same identical conserved motifs as other species. (2) rs9949205 (T > C) found in STC2 intron was highly significantly correlated with chicken body weight at 0, 2, 4, 6, 8, 10 and 12 weeks (p < 0.01). Extremely significant correlations of rs9949205 with semi-evisceration weight (SEW), evisceration weight (EW), breast muscle weight (BMW), leg muscle weight (LMW), liver weight and abdominal fat weight (AFW) were revealed (p < 0.01). Significant associations between rs9949205 and abdominal fat percentage, liver weight rate, breast muscle weight rate and leg muscle weight rate were also found (p < 0.05). Individuals with TT or TC genotypes had significantly lower abdominal fat percentage and liver weight rate compared to those with the CC genotype, while their body weight and other carcass traits were higher. (3) STC2 showed a high expression level in chicken liver tissue, which significantly increased with the progression of age (p < 0.05). STC2 was observed to inhibit the content of lipid droplets, triglycerides (TG) and cholesterol (TC), as well the expression level of genes related to lipid metabolism in LMH cells. (4) Correlation analysis showed that the STC2 gene was significantly correlated with 176 lipids in the breast muscle (p < 0.05) and mainly enriched in omega-3 and omega-6 unsaturated fatty acids. In conclusion, the STC2 gene in chicken might potentially play a crucial role in chicken growth and development, as well as liver lipid metabolism and muscle lipid deposition. This study provides a scientific foundation for further investigation into the regulatory mechanism of the STC2 gene on lipid metabolism and deposition in chicken liver.

18.
Stem Cells Dev ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39028018

RESUMO

Neural stem/progenitor cells (NSPCs) persist in the mammalian subventricular zone (SVZ) throughout life, responding to various pathophysiological stimuli and playing a crucial role in central nervous system repair. Although numerous studies have elucidated the role of stanniocalcin 2 (STC2) in regulating cell differentiation processes, its specific function in NSPCs differentiation remains poorly understood. Clarifying the role of STC2 in NSPCs is essential for devising novel strategies to enhance the intrinsic potential for brain regeneration postinjury. Our study revealed the expression of STC2 in NSPCs derived from the SVZ of the C57BL/6N mouse. In cultured SVZ-derived NSPCs, STC2 treatment significantly increased the number of Tuj1 and DCX-positive cells. Furthermore, STC2 injection into the lateral ventricle promoted the neuronal differentiation of NSPCs and migration to the olfactory bulb. Conversely, the STC2 knockdown produced the opposite effect. Further investigation showed that STC2 treatment enhanced AKT phosphorylation in cultured NSPCs, whereas STC2 inhibition hindered AKT activation. Notably, the neuronal differentiation induced by STC2 was blocked by the AKT inhibitor GSK690693, whereas the AKT activator SC79 reversed the impact of STC2 knockdown on neuronal differentiation. Our findings indicate that enhancing STC2 expression in SVZ-derived NSPCs facilitates neuronal differentiation, with AKT regulation potentially serving as a key intracellular target of STC2 signaling.

19.
Res Sq ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464261

RESUMO

Solid tumours often endure nutrient insufficiency during progression. How tumour cells adapt to temporal and spatial nutrient insufficiency remains unclear. We previously identified STC2 as one of the most upregulated genes in cells exposed to nutrient insufficiency by transcriptome screening, indicating the potential of STC2 in cellular adaptation to nutrient insufficiency. However, the molecular mechanisms underlying STC2 induction by nutrient insufficiency and subsequent adaptation remain elusive. Here, we report that STC2 protein is dramatically increased and secreted into the culture media by Gln-/Glc-deprivation. STC2 promoter contains cis-elements that are activated by ATF4 and p65/RelA, two transcription factors activated by a variety of cellular stress. Biologically, STC2 induction and secretion promote cell survival but attenuate cell proliferation during nutrient insufficiency, thus switching the priority of cancer cells from proliferation to survival. Loss of STC2 impairs tumour growth by inducing both apoptosis and necrosis in mouse xenografts. Mechanistically, under nutrient insufficient conditions, cells have increased levels of reactive oxygen species (ROS), and lack of STC2 further elevates ROS levels that lead to increased apoptosis. RNA-Seq analyses reveal STC2 induction suppresses the expression of monoamine oxidase B (MAOB), a mitochondrial membrane enzyme that produces ROS. Moreover, a negative correlation between STC2 and MAOB levels is also identified in human tumour samples. Importantly, the administration of recombinant STC2 to the culture media effectively suppresses MAOB expression as well as apoptosis, suggesting STC2 functions in an autocrine/paracrine manner. Taken together, our findings indicate that nutrient insufficiency induces STC2 expression, which in turn governs the adaptation of cancer cells to nutrient insufficiency through the maintenance of redox homeostasis, highlighting the potential of STC2 as a therapeutic target for cancer treatment.

20.
Endocr Connect ; 12(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607154

RESUMO

Objective: Physiologically, pregnancy-associated plasma protein-A (PAPP-A) serves to liberate bound IGF1 by enzymatic cleavage of IGF-binding proteins (IGFBPs), IGFBP4 in particular. Clinically, PAPP-A has been linked to cardiovascular disease (CVD). Stanniocalcin-2 (STC2) is a natural inhibitor of PAPP-A enzymatic activity, but its association with CVD is unsettled. Therefore, we examined associations between the STC2-PAPP-A-IGFBP4-IGF1 axis and all-cause mortality and CVD in patients with type 2 diabetes (T2D). Design: We followed 1284 participants with T2D from the ADDITION trial for 5 years. Methods: Circulating concentrations of STC2, PAPP-A, total and intact IGFBP4 and IGF1 and -2 were measured at inclusion. End-points were all-cause mortality and a composite CVD event: death from CVD, myocardial infarction, stroke, revascularisation or amputation. Survival analysis was performed by Cox proportional hazards model. Results: During follow-up, 179 subjects presented with an event. After multivariable adjustment, higher levels of STC2, PAPP-A, as well as intact and total IGFBP4, were associated with all-cause mortality; STC2: hazard ratio (HR) = 1.84 (1.09-3.12) (95% CI); P = 0.023, PAPP-A: HR = 2.81 (1.98-3.98); P < 0.001, intact IGFBP4: HR = 1.43 (1.11-1.85); P = 0.006 and total IGFBP4: HR = 3.06 (1.91-4.91); P < 0.001. Higher PAPP-A levels were also associated with CVD events: HR = 1.74 (1.16-2.62); P = 0.008, whereas lower IGF1 levels were associated with all-cause mortality: HR = 0.51 (0.34-0.76); P = 0.001. Conclusions: This study supports that PAPP-A promotes CVD and increases mortality. However, STC2 is also associated with mortality. Given that STC2 inhibits the enzymatic effects of PAPP-A, we speculate that STC2 either serves to counteract harmful PAPP-A actions or possesses effects independently of the PAPP-A-IGF1 axis. Significance statement: PAPP-A has pro-atherosclerotic effects and exerts these most likely through IGF1. IGF1 is regulated by the STC2-PAPP-A-IGFBP4-IGF1 axis, where STC2, an irreversible inhibitor of PAPP-A, has been shown to reduce the development of atherosclerotic lesions in mice. We examined the association of this axis to mortality and CVD in T2D. We demonstrated an association between PAPP-A and CVD. All components of the STC2-PAPP-A-IGFBP4-IGF1 axis were associated with mortality and it is novel that STC2 was associated with mortality in T2D. Our study supports that inhibition of PAPP-A may be a new approach to reducing mortality and CVD. Whether modification of STC2 could serve as potential intervention warrants further investigation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa