Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 125(2): 277-290, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31051030

RESUMO

BACKGROUND AND AIMS: Over the last decade, the importance of plant biomechanical properties in shaping wave dissipation efficiency of marsh vegetation has gained growing attention. Here we provide the first analyses of how biomechanical stem properties vary with seasons and along environmental gradients in coastal and estuarine marshes, which is essential to enable accurate assessments of flood defence value of marsh vegetation. METHODS: We quantified both spatial and seasonal variation in stem flexibility and breakability for a variety of common marsh vegetation (Spartina anglica, Scirpus maritimus, Phragmites australis, Elymus athericus, Suaeda maritima, Aster tripolium, Saliconia procumbens) distributed along both salinity and inundation gradients. KEY RESULTS: Increasing salinity tends to induce a shift from species with tall shoots, high flexural stiffness (stem resistance to bending; N mm2) towards species with shorter and more flexible stems. The same trend was found with increasing inundation stress (i.e. decreasing elevation) from the higher part of the low marsh towards the pioneer zone. Stem breakability (the force required to break or fold a stem, N) followed the same pattern of stem stiffness due to the positive relationship between flexural strength (material resistance to flexure, N mm-2) and Young's bending modulus (material resistance to bending; N mm-2). Shifts in stem stiffness and breakability at the community level were found to relate positively to the variation in canopy height between species, highlighting the concurrence of changes in morphological and biomechanical traits under environmental changes. Compared to the differences between species, within-species variability between sampling locations and between seasons is generally minor. CONCLUSIONS: Our findings imply that environmental changes may significantly modify wave attenuation capacity of coastal vegetation by inducing species shifts. This emphasizes the need to understand the response of community composition to climate change and human disturbances, when using nature-based flood protection by coastal vegetation as an adaptive response to global change.


Assuntos
Salinidade , Áreas Alagadas , Inundações , Humanos , Poaceae , Estações do Ano
2.
Plants (Basel) ; 9(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471114

RESUMO

Self-supporting plants and climbers exhibit differences in their structural and biomechanical properties. We hypothesized that such fundamental differences originate at the level of the material properties. In this study, we compared three non-woody members of the Solanales exhibiting different growth habits: (1) a self-supporting plant (potato, Solanum tuberosum), (2) a trailing plant (sweet potato, Ipomoea batatas), and (3) a twining climber (morning glory, Ipomoea tricolor). The mechanical properties investigated by materials analyses were combined with structural, biochemical, and immunohistochemical analyses. Generally, the plants exhibited large morphological differences, but possessed relatively similar anatomy and cell wall composition. The cell walls were primarily composed of hemicelluloses (~60%), with α-cellulose and pectins constituting ~25% and 5%-8%, respectively. Immunohistochemistry of specific cell wall components suggested only minor variation in the occurrence and localization between the species, although some differences in hemicellulose distribution were observed. According to tensile and flexural tests, potato stems were the stiffest by a significant amount and the morning glory stems were the most compliant and showed differences in two- and three-orders of magnitude; the differences between their effective Young's (Elastic) modulus values (geometry-independent parameter), on the other hand, were substantially lower (at the same order of magnitude) and sometimes not even significantly different. Therefore, although variability exists in the internal anatomy and cell wall composition between the different species, the largest differences were seen in the morphology, which appears to be the primary determinant of biomechanical function. Although this does not exclude the possibility of different mechanisms in other plant groups, there is apparently less constraint to modifying stem morphology than anatomy and cell wall composition within the Solanales.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa