Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(40): e2304879120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37769258

RESUMO

Many insects are dependent on microbial mutualists, which are often harbored in specialized symbiotic organs. Upon metamorphosis, insect organs are drastically reorganized. What mechanism regulates the remodeling of the symbiotic organ upon metamorphosis? How does it affect the microbial symbiont therein? Here, we addressed these fundamental issues of symbiosis by experimentally manipulating insect metamorphosis. The stinkbug Plautia stali possesses a midgut symbiotic organ wherein an essential bacterial symbiont resides. By RNAi of master regulator genes for metamorphosis, Kr-h1 over nymphal traits and E93 over adult traits, we generated precocious adults and supernumerary nymphs of P. stali, thereby disentangling the effects of metamorphosis, growth level, developmental stage, and other factors on the symbiotic system. Upon metamorphosis, the symbiotic organ of P. stali was transformed from nymph type to adult type. The supernumerary nymphs and the precocious adults, respectively, developed nymph-type and adult-type symbiotic organs not only morphologically but also transcriptomically, uncovering that metamorphic remodeling of the symbiotic organ is under the control of the MEKRE93 pathway. Transcriptomic, cytological, and biochemical analyses unveiled that the structural and transcriptomic remodeling of the symbiotic organ toward adult emergence underpins its functional extension to food digestion in addition to the original role of symbiont retention for essential nutrient production. Notably, we found that the symbiotic bacteria in the adult-type symbiotic organ up-regulated genes for production of sulfur-containing essential amino acids, methionine and cysteine, that are rich in eggs and sperm, uncovering adult-specific symbiont functioning for host reproduction and highlighting intricate host-symbiont interactions associated with insect metamorphosis.


Assuntos
Heterópteros , Simbiose , Masculino , Animais , Simbiose/fisiologia , Sêmen , Sistema Digestório/microbiologia , Insetos , Heterópteros/fisiologia , Bactérias/genética , Metamorfose Biológica
2.
BMC Genomics ; 25(1): 327, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565997

RESUMO

Food security is important for the ever-growing global population. Soybean, Glycine max (L.) Merr., is cultivated worldwide providing a key source of food, protein and oil. Hence, it is imperative to maintain or to increase its yield under different conditions including challenges caused by abiotic and biotic stresses. In recent years, the soybean pod-sucking stinkbug Riptortus pedestris has emerged as an important agricultural insect pest in East, South and Southeast Asia. Here, we present a genomics resource for R. pedestris including its genome assembly, messenger RNA (mRNA) and microRNA (miRNA) transcriptomes at different developmental stages and from different organs. As insect hormone biosynthesis genes (genes involved in metamorphosis) and their regulators such as miRNAs are potential targets for pest control, we analyzed the sesquiterpenoid (juvenile) and ecdysteroid (molting) hormone biosynthesis pathway genes including their miRNAs and relevant neuropeptides. Temporal gene expression changes of these insect hormone biosynthesis pathways were observed at different developmental stages. Similarly, a diet-specific response in gene expression was also observed in both head and salivary glands. Furthermore, we observed that microRNAs (bantam, miR-14, miR-316, and miR-263) of R. pedestris fed with different types of soybeans were differentially expressed in the salivary glands indicating a diet-specific response. Interestingly, the opposite arms of miR-281 (-5p and -3p), a miRNA involved in regulating development, were predicted to target Hmgs genes of R. pedestris and soybean, respectively. These observations among others highlight stinkbug's responses as a function of its interaction with soybean. In brief, the results of this study not only present salient findings that could be of potential use in pest management and mitigation but also provide an invaluable resource for R. pedestris as an insect model to facilitate studies on plant-pest interactions.


Assuntos
Heterópteros , Hormônios de Inseto , MicroRNAs , Animais , Glycine max/genética , Heterópteros/genética , Transcriptoma , MicroRNAs/genética , Perfilação da Expressão Gênica
3.
Microb Ecol ; 86(2): 1307-1318, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36178538

RESUMO

Many insects possess symbiotic bacteria in their bodies, and microbial symbionts play pivotal metabolic roles for their hosts. Members of the heteropteran superfamilies Coreoidea and Lygaeoidea stinkbugs harbor symbionts of the genus Caballeronia in their intestinal tracts. Compared with symbiotic associations in Coreoidea, those in Lygaeoidea insects are still less understood. Here, we investigated a symbiotic relationship involving the mulberry seed bug Paradieuches dissimilis (Lygaeoidea: Rhyparochromidae) using histological observations, cultivation of the symbiont, 16S rRNA gene amplicon sequencing, and infection testing of cultured symbionts. Histological observations and cultivation revealed that P. dissimilis harbors Caballeronia symbionts in the crypts of its posterior midgut. 16S rRNA gene amplicon sequencing of field-collected P. dissimilis confirmed that the genus Caballeronia is dominant in the midgut of natural populations of P. dissimilis. In addition, PCR diagnostics showed that the eggs were free of symbiotic bacteria, and hatchlings horizontally acquired the symbionts from ambient soil. Infection and rearing experiments revealed that symbiont-free aposymbiotic individuals had abnormal body color, small body size, and, strikingly, a low survival rate, wherein no individuals reached adulthood, indicating an obligate cooperative mutualism between the mulberry seed bug and Caballeronia symbionts.


Assuntos
Burkholderiaceae , Heterópteros , Morus , Humanos , Animais , Adulto , Simbiose , RNA Ribossômico 16S/genética , Filogenia , Heterópteros/genética , Heterópteros/microbiologia , Insetos , Bactérias
4.
Proc Natl Acad Sci U S A ; 116(45): 22673-22682, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636183

RESUMO

Despite the omnipresence of specific host-symbiont associations with acquisition of the microbial symbiont from the environment, little is known about how the specificity of the interaction evolved and is maintained. The bean bug Riptortus pedestris acquires a specific bacterial symbiont of the genus Burkholderia from environmental soil and harbors it in midgut crypts. The genus Burkholderia consists of over 100 species, showing ecologically diverse lifestyles, and including serious human pathogens, plant pathogens, and nodule-forming plant mutualists, as well as insect mutualists. Through infection tests of 34 Burkholderia species and 18 taxonomically diverse bacterial species, we demonstrate here that nonsymbiotic Burkholderia and even its outgroup Pandoraea could stably colonize the gut symbiotic organ and provide beneficial effects to the bean bug when inoculated on aposymbiotic hosts. However, coinoculation revealed that the native symbiont always outcompeted the nonnative bacteria inside the gut symbiotic organ, explaining the predominance of the native Burkholderia symbiont in natural bean bug populations. Hence, the abilities for colonization and cooperation, usually thought of as specific traits of mutualists, are not unique to the native Burkholderia symbiont but, to the contrary, competitiveness inside the gut is a derived trait of the native symbiont lineage only and was thus critical in the evolution of the insect gut symbiont.


Assuntos
Burkholderia/fisiologia , Heterópteros/microbiologia , Interações Hospedeiro-Patógeno , Intestinos/microbiologia , Simbiose , Animais , Modelos Biológicos
5.
Zoolog Sci ; 38(3): 213-222, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34057345

RESUMO

Many plant-sucking stinkbugs possess a specialized symbiotic organ with numerous crypts in a posterior region of the midgut. In stinkbugs of the superfamily Pentatomoidea, specific γ-proteobacteria are hosted in the crypt cavities, which are vertically transmitted through host generations and essential for normal growth and survival of the host insects. Here we report the discovery of an exceptional gut symbiotic association in the saw-toothed stinkbug, Megymenum gracilicorne (Hemiptera: Pentatomoidea: Dinidoridae), in which specific γ-proteobacterial symbionts are not transmitted vertically but acquired environmentally. Histological inspection identified a very thin and long midgut symbiotic organ with two rows of tiny crypts whose cavities harbor rod-shaped bacterial cells. Molecular phylogenetic analyses of bacterial 16S rRNA gene sequences from the symbiotic organs of field-collected insects revealed that (i) M. gracilicorne is stably associated with Pantoea-allied γ-proteobacteria within the midgut crypts, (ii) the symbiotic bacteria exhibit a considerable level of diversity across host individuals and populations, (iii) the major symbiotic bacteria represent an environmental bacterial lineage that was reported to be capable of symbiosis with the stinkbug Plautia stali, and (iv) the minor symbiotic bacteria also represent several bacterial lineages that were reported as cultivable symbionts of P. stali and other stinkbugs. The symbiotic bacteria were shown to be generally cultivable. Microbial inspection of ovipositing adult females and their eggs and nymphs uncovered the absence of stable vertical transmission of the symbiotic bacteria. Rearing experiments showed that symbiont-supplemented newborn nymphs exhibit improved survival, suggesting the beneficial nature of the symbiotic association.


Assuntos
Bactérias/isolamento & purificação , Hemípteros/microbiologia , Simbiose , Animais , Bactérias/classificação , Bactérias/genética , Clonagem Molecular , DNA Bacteriano/genética , Microbiologia Ambiental , Reação em Cadeia da Polimerase , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
6.
J Insect Sci ; 21(5)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618901

RESUMO

A method for rearing the southern green stinkbug, (Nezara viridula L.) (Heteroptera: Pentatomidae), using a modified lygus semi-solid artificial diet was developed. First to second-instar nymph were reared in a density of 631.5 ± 125.05 eggs per Petri-dish (4 cm deep × 15 cm diam). Second instar to adult were reared in a density of 535.0 ± 112.46 s instar nymphs per rearing cage (43 × 28 × 9 cm). Mating and oviposition occurred in popup rearing cages (30 × 30 cm), each holding 60-90 mixed sex adults of similar age. Adults emerged 35.88 ± 2.13 d after oviposition and survived for an average of 43.09 ± 9.53 d. On average, adults laid 223.95 ± 69.88 eggs in their lifetime, for a total production of 8,099 ± 1,277 fertile eggs/oviposition cage. Egg fertility was 77.93% ± 16.28. Egg masses held in petri-dishes had a total hatchability of 79.38% ± 20.03. Mortality of early nymphs in petri-dishes was 0.64% ± 0.12 for the first instar and 1.37% ± 0.45 for second instar. Late nymphal mortality in rearing cages was 1.41% ± 0.10, 3.47% ± 1.27, and 4.72% ± 1.29 for the third, fourth, and fifth instars, respectively. Survivorship from nymphs to adults was 88.48% ± 2.76. Using artificial diet for rearing N. viridula could reduce cost by avoiding time-consuming issues with daily feeding fresh natural hosts and insect manipulation. It could increase reliability and simplicity of bug production, which should facilitate mass rearing of its biological control agents.


Assuntos
Ração Animal , Heterópteros/crescimento & desenvolvimento , Animais , Agentes de Controle Biológico , Fertilidade , Heterópteros/fisiologia , Laboratórios , Mortalidade , Oviposição , Reprodução
7.
Proc Natl Acad Sci U S A ; 112(37): E5179-88, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324935

RESUMO

Symbiosis has significantly contributed to organismal adaptation and diversification. For establishment and maintenance of such host-symbiont associations, host organisms must have evolved mechanisms for selective incorporation, accommodation, and maintenance of their specific microbial partners. Here we report the discovery of a previously unrecognized type of animal organ for symbiont sorting. In the bean bug Riptortus pedestris, the posterior midgut is morphologically differentiated for harboring specific symbiotic bacteria of a beneficial nature. The sorting organ lies in the middle of the intestine as a constricted region, which partitions the midgut into an anterior nonsymbiotic region and a posterior symbiotic region. Oral administration of GFP-labeled Burkholderia symbionts to nymphal stinkbugs showed that the symbionts pass through the constricted region and colonize the posterior midgut. However, administration of food colorings revealed that food fluid enters neither the constricted region nor the posterior midgut, indicating selective symbiont passage at the constricted region and functional isolation of the posterior midgut for symbiosis. Coadministration of the GFP-labeled symbiont and red fluorescent protein-labeled Escherichia coli unveiled selective passage of the symbiont and blockage of E. coli at the constricted region, demonstrating the organ's ability to discriminate the specific bacterial symbiont from nonsymbiotic bacteria. Transposon mutagenesis and screening revealed that symbiont mutants in flagella-related genes fail to pass through the constricted region, highlighting that both host's control and symbiont's motility are involved in the sorting process. The blocking of food flow at the constricted region is conserved among diverse stinkbug groups, suggesting the evolutionary origin of the intestinal organ in their common ancestor.


Assuntos
Burkholderia/fisiologia , Heterópteros/microbiologia , Intestinos/microbiologia , Simbiose/genética , Administração Oral , Animais , Corantes/química , Sistema Digestório/microbiologia , Escherichia coli/metabolismo , Evolução Molecular , Flagelos/fisiologia , Trato Gastrointestinal/microbiologia , Proteínas de Fluorescência Verde/metabolismo , Insetos , Proteínas Luminescentes/metabolismo , Microscopia Eletrônica de Transmissão , Mutagênese , Mutação , Filogenia , Plasmídeos/metabolismo , Proteína Vermelha Fluorescente
8.
Mol Ecol ; 23(6): 1445-1456, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24103110

RESUMO

Many insects possess endosymbiotic bacteria inside their body, wherein intimate interactions occur between the partners. While recent technological advancements have deepened our understanding of metabolic and evolutionary features of the symbiont genomes, molecular mechanisms underpinning the intimate interactions remain difficult to approach because the insect symbionts are generally uncultivable. The bean bug Riptortus pedestris is associated with the betaproteobacterial Burkholderia symbiont in a posterior region of the midgut, which develops numerous crypts harbouring the symbiont extracellularly. Distinct from other insect symbiotic systems, R. pedestris acquires the Burkholderia symbiont not by vertical transmission but from the environment every generation. By making use of the cultivability and the genetic tractability of the symbiont, we constructed a transgenic Burkholderia strain labelled with green fluorescent protein (GFP), which enabled detailed observation of spatiotemporal dynamics and the colonization process of the symbiont in freshly prepared specimens. The symbiont live imaging revealed that, at the second instar, colonization of the symbiotic midgut M4 region started around 6 h after inoculation (hai). By 24 hai, the symbiont cells appeared in the main tract and also in several crypts of the M4. By 48 hai, most of the crypts were colonized by the symbiont cells. By 72 hai, all the crypts were filled up with the symbiont cells and the symbiont localization pattern continued during the subsequent nymphal development. Quantitative PCR of the symbiont confirmed the infection dynamics quantitatively. These results highlight the stinkbug-Burkholderia gut symbiosis as an unprecedented model for comprehensive understanding of molecular mechanisms underpinning insect symbiosis.


Assuntos
Burkholderia/crescimento & desenvolvimento , Sistema Digestório/microbiologia , Heterópteros/microbiologia , Simbiose , Animais , Burkholderia/genética , Fabaceae , Feminino , Aptidão Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Heterópteros/fisiologia , Microscopia de Fluorescência , Ninfa/microbiologia , Organismos Geneticamente Modificados
9.
Plants (Basel) ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674469

RESUMO

Sesame, an oilseed plant with multiple applications, is susceptible to infestations by the stink bug Nezara viridula (Linnaeus, 1758) (Hemiptera: Pentatomidae). This pest suctions the seeds of this plant and injects toxins into them. Possible sources of resistance on sesame cultivars are important to manage this bug. The objective of this study was to evaluate the biological aspects of N. viridula fed on three sesame cultivars aiming to select possible resistance sources for integrated pest management (IPM) programs of this stinkbug. The experimental design used randomized blocks with three treatments and four replications, each with newly emerged N. viridula nymphs fed with sesame capsules of the cultivars BRS Anahí (T1), BRS Morena (T2) and BRS Seda (T3). Two to three green sesame capsules were supplied every two days per group of ten N. viridula nymphs as one replication until the beginning of the adult stage. Adults of this stinkbug were fed in the same manner as its nymphs but with mature sesame capsules until the end of the observations. Survival during each of the five instars and of the nymph stage of N. viridula with green sesame capsules was similar between cultivars, but the duration of the nymph stage was shorter with green capsules of the BRS Morena than with those of the BRS Anahí. The oviposition period, number of egg masses and eggs per female, and the percentage of nymphs hatched were higher with mature capsules of the sesame cultivar BRS Anahí and lower with the others. Nymphs did not hatch from eggs deposited by females fed mature seed capsules of the sesame cultivar BRS Morena, which may indicate a source of resistance against this stinkbug in this cultivar. The worldwide importance of N. viridula to sesame cultivation makes these results useful for breeding programs of this plant aiming to develop genotypes resistant to this bug. In addition, the BRS Morena is a cultivar already commercially available and can be recommended in places where there is a history of incidence of N. viridula, aiming to manage the populations of this pest.

10.
Braz J Microbiol ; 55(2): 1913-1921, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615311

RESUMO

Wasps are important parasitoids of stinkbugs and frequently exposed to various types of microorganisms through environmental contact and fecal-oral transmission route. Many parasitize stinkbug eggs and are commercially used in the field to control insect population. The parasitoid T. podisi is known for its high parasitism capacity and ability to target multiple species of stinkbugs. In this study we asked whether T. podisi exposed to eggs infected by a multispecies asymptomatic stinkbug virus, the Halyomorpha halys virus (HhV) would get infected. HhV is a geographically distributed multispecies iflavirus previously found to infect four stinkbug hosts, including three Brazilian species, Chinavia ubica, Euschistus heros and Diceraeus melacanthus, and T. posidi can parasitize all of them. As results, RT-PCR screening revealed positive samples for the HhV genome in two out of four tested pools of T. podisi, whereas the antigenome, indicative of replicative activity, was not detected. The wasps were raised in E. heros eggs that presented both the genome and the antigenome forms of the HhV genome. Subsequent RNA-deep sequencing of HhV positive T. podisi RNA pools yielded a complete genome of HhV with high coverage. Phylogenetic analysis positioned the isolate HhV-Tp (isolate Telenomus podisi) alongside with the stinkbug HhV. Analysis of transcriptomes from several hymenopteran species revealed HhV-Tp reads in four species. However, the transmission mechanism and the ecological significance of HhV remain elusive, warranting further studies to illuminate both the transmission process and its capacity for environmental propagation using T. podisi as a potential vector.


Assuntos
Vespas , Animais , Vespas/virologia , Filogenia , Brasil , Heterópteros/virologia , Heterópteros/parasitologia , Óvulo/virologia , Himenópteros/virologia , Genoma Viral
11.
mBio ; : e0134224, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082826

RESUMO

Diverse insects are intimately associated with specific symbiotic bacteria, where host and symbiont are integrated into an almost inseparable biological entity. These symbiotic bacteria usually exhibit host specificity, uncultivability, reduced genome size, and other peculiar traits relevant to their symbiotic lifestyle. How host-symbiont specificity is established at the very beginning of symbiosis is of interest but poorly understood. To gain insight into the evolutionary issue, we adopted an experimental approach using the recently developed evolutionary model of symbiosis between the stinkbug Plautia stali and Escherichia coli. Based on the laboratory evolution of P. stali-E. coli mutualism, we selected ΔcyaA mutant of E. coli as an artificial symbiont of P. stali that has established mutualism by a single mutation. In addition, we selected a natural cultivable symbiont of P. stali of relatively recent evolutionary origin. These artificial and natural symbiotic bacteria of P. stali were experimentally inoculated to symbiont-deprived newborn nymphs of diverse stinkbug species. Strikingly, the mutualistic E. coli was unable to establish infection and support growth and survival of all the stinkbug species except for P. stali, uncovering that host specificity can be established at a very early stage of symbiotic evolution. Meanwhile, the natural symbiont was able to establish infection and support growth and survival of several stinkbug species in addition to P. stali, unveiling that a broader host range of the symbiont has evolved in nature. Based on these findings, we discuss what factors are relevant to the establishment of host specificity in the evolution of symbiosis.IMPORTANCEHow does host-symbiont specificity emerge at the very beginning of symbiosis? This question is difficult to address because it is generally difficult to directly observe the onset of symbiosis. However, recent development of experimental evolutionary approaches to symbiosis has brought about a breakthrough. Here we tackled this evolutionary issue using a symbiotic Escherichia coli created in laboratory and a natural Pantoea symbiont, which are both mutualistic to the stinkbug Plautia stali. We experimentally replaced essential symbiotic bacteria of diverse stinkbugs with the artificial and natural symbionts of P. stali and evaluated whether the symbiotic bacteria, which evolved for a specific host, can establish infection and support the growth and survival of heterospecific hosts. Strikingly, the artificial symbiont showed strict host specificity to P. stali, whereas the natural symbiont was capable of symbiosis with diverse stinkbugs, which provide insight into how host-symbiont specificity can be established at early evolutionary stages of symbiosis.

12.
Chemosphere ; 355: 141784, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537714

RESUMO

The improper use of synthetic pesticides has caused adverse effects on global ecosystems and human health. As a part of sustainable pest management strategy, natural predators, along with nano-pesticides, have made significant contributions to ecological agriculture. The cooperative application of both approaches may overcome their limitations, substantially reducing pesticide application while controlling insect pests efficiently. Herein, the current study introduced a cationic star polymer (SPc) to prepare two types of nano-pesticides, which were co-applied with predatory stinkbugs Picromerus lewisi to achieve perfect cooperative pest control. The SPc exhibited nearly no toxicity against predatory stinkbugs at the working concentration, but it led to the death of predatory stinkbugs at extremely high concentration with the lethal concentration 50 (LC50) value of 13.57 mg/mL through oral feeding method. RNA-seq analysis revealed that the oral feeding of SPc could induce obvious stress responses, leading to stronger phagocytosis, exocytosis, and energy synthesis to ultimately result in the death of predatory stinkbugs. Then, the broflanilide and chlorobenzuron were employed to prepare the self-assembled nano-pesticides via hydrogen bond and Van der Waals force, and the complexation with SPc broke the self-aggregated structures of pesticides and reduced their particle sizes down to nanoscale. The bioactivities of prepared nano-pesticides were significantly improved toward common cutworm Spodoptera litura with the corrected mortality increase by approximately 30%. Importantly, predatory stinkbugs exhibited a strong predation selectivity for alive common cutworms to reduce the exposure risk of nano-pesticides, and the nano-pesticides showed negligible toxicity against predators. Thus, the nano-pesticides and predatory stinkbugs could be applied simultaneously for efficient and sustainable pest management. The current study provides an excellent precedent for perfect cooperative pest control via nano-pesticide and natural predator.


Assuntos
Praguicidas , Animais , Humanos , Praguicidas/toxicidade , Ecossistema , Comportamento Predatório , Controle Biológico de Vetores/métodos , Agricultura/métodos , Controle de Pragas
13.
Curr Zool ; 69(2): 173-180, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37091996

RESUMO

Larvae of some leaf beetles carry masses of feces covering parts or all of the body, which is called a "fecal shield". In general, the shield is thought to be a defense structure against natural enemies. However, some studies have suggested that defense effectiveness varies depending on the natural enemy. In this study, we used a fecal retention leaf beetle Ophrida xanthospilota (Coleoptera: Chrysomelidae), and 2 local generalist predators (an ant, Camponotus japonicus (Hymenoptera: Formicidae) and a stinkbug, Arma custos [Hemiptera: Pentatomidae]) as a system to test the hypothesis that the fecal shield of O. xanthospilota plays different roles in predation behavior of different predators and can provide multiple chemical communication signals in predator-prey interactions. Prey bioassays showed that the fecal shield of O. xanthospilota larvae repelled the ant C. japonicus while attracting the stinkbug A. custos. The results also strongly demonstrated that hexane extracts of the fecal shield significantly repelled C. japonicus, while dichloromethane (DCM) extracts did not inhibit ant predation. Interestingly, DCM extracts attracted A. custos, but hexane extracts did not. Therefore, we suggest that the fecal shield is a double-edged sword for the larvae of O. xanthospilota. Our results also indicated that the risk-benefit tradeoff of an insect should be estimated at a community level involving multiple enemies (predators and parasites) and herbivores, rather than in a single prey-predator pair.

14.
J Econ Entomol ; 116(3): 771-778, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37165837

RESUMO

The governments of Australia and New Zealand require a phytosanitary treatment to control adult brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), as overwintering aggregations have been intercepted in the importation pathway of various nonhorticultural consignments, including vehicles. The commercialized fumigant, eFUME, a 16.7% by mass dilution of ethyl formate in carbon dioxide, resulted in complete control of ca. 1,000 field-collected, naturally diapausing adult H. halys in each of 3 independent trials at 10 ±â€…0.5 °C (x¯ ± 2s) when ethyl formate levels in enclosure headspace were maintained steady-state at ca. 14.5 mg/liter for 4 h to yield Ct exposures ranging from 57.9 to 63.1 mg/liter h. Consistent with previous findings where greenhouse reared H. halys were controlled using laboratory formulations of this ethyl formate-carbon dioxide mixture, these confirmatory methods and results further inform technical and operational features of commercial practice.


Assuntos
Dióxido de Carbono , Heterópteros , Animais , Austrália , Nova Zelândia
15.
mBio ; 14(2): e0052223, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37017516

RESUMO

Microbial mutualists are pivotal for insect adaptation, which often entails the evolution of elaborate organs for symbiosis. Addressing what mechanisms underpin the development of such organs is of evolutionary interest. Here, we investigated the stinkbug Plautia stali, whose posterior midgut is transformed into a specialized symbiotic organ. Despite being a simple tube in newborns, it developed numerous crypts in four rows, whose inner cavity hosts a specific bacterial symbiont, during the 1st to 2nd nymphal instar stages. Visualization of dividing cells revealed that active cell proliferation was coincident with the crypt formation, although spatial patterns of the proliferating cells did not reflect the crypt arrangement. Visualization of visceral muscles in the midgut, consisting of circular muscles and longitudinal muscles, uncovered that, strikingly, circular muscles exhibited a characteristic arrangement running between the crypts specifically in the symbiotic organ. Even in the early 1st instar stage, when no crypts were seen, two rows of epithelial areas delineated by bifurcated circular muscles were identified. In the 2nd instar stage, crossing muscle fibers appeared and connected the adjacent circular muscles, whereby the midgut epithelium was divided into four rows of crypt-to-be areas. The crypt formation proceeded even in aposymbiotic nymphs, revealing the autonomous nature of the crypt development. We propose a mechanistic model of crypt formation wherein the spatial arrangement of muscle fibers and the proliferation of epithelial cells underpin the formation of crypts as midgut evaginations. IMPORTANCE Diverse organisms are associated with microbial mutualists, in which specialized host organs often develop for retaining the microbial partners. In light of the origin of evolutionary novelties, it is important to understand what mechanisms underpin the elaborate morphogenesis of such symbiotic organs, which must have been shaped through interactions with the microbial symbionts. Using the stinkbug Plautia stali as a model, we demonstrated that visceral muscular patterning and proliferation of intestinal epithelial cells during the early nymphal stages are involved in the formation of numerous symbiont-harboring crypts arranged in four rows in the posterior midgut to constitute the symbiotic organ. Strikingly, the crypt formation occurred normally even in symbiont-free nymphs, revealing that the crypt development proceeds autonomously. These findings suggest that the crypt formation is deeply implemented into the normal development of P. stali, which must reflect the considerably ancient evolutionary origin of the midgut symbiotic organ in stinkbugs.


Assuntos
Heterópteros , Simbiose , Recém-Nascido , Animais , Humanos , Simbiose/fisiologia , Intestinos/microbiologia , Bactérias , Insetos , Heterópteros/microbiologia , Heterópteros/fisiologia
16.
Front Microbiol ; 13: 1044771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353457

RESUMO

Many insects are associated with facultative symbiotic bacteria, and their infection prevalence provides an important clue to understand the biological impact of such microbial associates. Here we surveyed diverse stinkbugs representing 13 families, 69 genera, 97 species and 468 individuals for Spiroplasma infection. Diagnostic PCR detection revealed that 4 families (30.8%), 7 genera (10.1%), 11 species (11.3%) and 21 individuals (4.5%) were Spiroplasma positive. All the 21 stinkbug samples with Spiroplasma infection were subjected to PCR amplification and sequencing of Spiroplasma's 16S rRNA gene. Molecular phylogenetic analysis uncovered that the stinkbug-associated Spiroplasma symbionts were placed in three distinct clades in the Spiroplasmataceae, highlighting multiple evolutionary origins of the stinkbug-Spiroplasma associations. The Spiroplasma phylogeny did not reflect the host stinkbug phylogeny, indicating the absence of host-symbiont co-speciation. On the other hand, the Spiroplasma symbionts associated with the same stinkbug family tended to be related to each other, suggesting the possibility of certain levels of host-symbiont specificity and/or ecological symbiont sharing. Amplicon sequencing analysis targeting bacterial 16S rRNA gene, FISH visualization of the symbiotic bacteria, and rearing experiments of the host stinkbugs uncovered that the Spiroplasma symbionts are generally much less abundant in comparison with the primary gut symbiotic bacteria, localized to various tissues and organs at relatively low densities, and vertically transmitted to the offspring. On the basis of these results, we conclude that the Spiroplasma symbionts are, in general, facultative bacterial associates of low infection prevalence that are not essential but rather commensalistic for the host stinkbugs, like the Spiroplasma symbionts of fruit flies and aphids, although their impact on the host phenotypes should be evaluated in future studies.

17.
Microbes Environ ; 37(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965097

RESUMO

Many stinkbugs in the superfamily Coreoidea (Hemiptera: Heteroptera) develop crypts in the posterior midgut, harboring Caballeronia (Burkholderia) symbionts. These symbionts form a monophyletic group in Burkholderia sensu lato, called the "stinkbug-associated beneficial and environmental (SBE)" group, recently reclassified as the new genus Caballeronia. SBE symbionts are separated into the subclades SBE-α and SBE-ß. Previous studies suggested a regional effect on the symbiont infection pattern; Japanese and American bug species are more likely to be associated with SBE-α, while European bug species are almost exclusively associated with SBE-ß. However, since only a few insect species have been investigated, it remains unclear whether region-specific infection is general. We herein investigated Caballeronia gut symbionts in diverse Japanese, European, and North American populations of a cosmopolitan species, the Western conifer seed bug Leptoglossus occidentalis (Coreoidea: Coreidae). A mole-cular phylogenetic ana-lysis of the 16S rRNA gene demonstrated that SBE-ß was the most dominant in all populations. Notably, SBE-α was rarely detected in any region, while a third clade, the "Coreoidea clade" occupied one fourth of the tested populations. Although aposymbiotic bugs showed high mortality, SBE-α- and SBE-ß-inoculated insects both showed high survival rates; however, a competition assay demonstrated that SBE-ß outcompeted SBE-α in the midgut crypts of L. occidentalis. These results strongly suggest that symbiont specificity in the Leptoglossus-Caballeronia symbiotic association is influenced by the host rather than geography, while the geographic distribution of symbionts may be more important in other bugs.


Assuntos
Burkholderia , Heterópteros , Traqueófitas , Animais , Burkholderia/genética , Filogenia , RNA Ribossômico 16S/genética , Traqueófitas/genética
18.
Zootaxa ; 4958(1): zootaxa.4958.1.35, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33903482

RESUMO

The pentatomid genus Placocoris Mayr is removed from Pentatominae and placed in Discocephalinae: Ochlerini based on the trichobothrial arrangement. Within the Ochlerini Placocoris shares characteristics with a clade composed of Adoxoplatys and allies including the rostrum arising anteriorad, abdomen with tubercle at middle base received by a notch in the metasternum, bucculae confluent posteriorly, pronotum flat, and a double row of spines on the femora. It appears to share the same host plants with Neoadoxoplatys, species of bamboo. It is further concluded that the genus Chrysodarecus Breddin is a junior synonym of Placocoris Mayr.


Assuntos
Heterópteros , Animais , Heterópteros/classificação
19.
J Econ Entomol ; 113(5): 2540-2545, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32696054

RESUMO

Three strains of fungi belonging to the genus Metarhizium Sorokin (ARSEF 4556, ARSEF 3297, native strain) were assayed against adults and nymphs of the Neotropical brown stinkbug Euschistus heros (F.) and the green-belly stinkbug Dichelops furcatus (F.). The most virulent strain, ARSEF 4556, caused over 90% mortality. The average survival time of the second and fifth instar nymphs and adults following immersion in 1 × 108 conidia ml-1 was 4.8, 5.7, and 5.2 d, respectively. The second instar nymphs were more susceptible than the adults. The LC50 values and median survival times for second instar and adult E. heros were 1.6 × 107 and 3.1 × 107 conidia ml-1 and 6 and 8 d, respectively. Eggs of E. heros and the closely related stinkbug, D. furcatus, were highly susceptible to ARSEF 4556 with the mean mortality of eggs immersed in 1 × 108 conidia ml-1 being 77.4% and 89.7%, respectively. The strain 3297 showed also good aptitudes for stinkbugs control with mortalities higher than 80% against nymphs and adults and eggs mortalities of 75.5% for E. heros and 79.6% for D. furcatus. This study has shown that it is possible to have a two-pronged control strategy, targeting adults and to reduce oviposition and targeting egg clusters to prevent emergence and dispersal of nymphs. Besides early instars of nymphs have been shown to be more susceptible to the fungal strains than late instars and adults.


Assuntos
Hemípteros , Heterópteros , Hypocreales , Metarhizium , Animais , Feminino , Controle Biológico de Vetores , Virulência
20.
Front Microbiol ; 11: 840, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435239

RESUMO

Diverse animals, including insects, harbor microbial symbionts within their gut, body cavity, or cells. The subsocial parastrachiid stinkbug Parastrachia japonensis is well-known for its peculiar ecological and behavioral traits, including its prolonged non-feeding diapause period and maternal care of eggs/nymphs in an underground nest. P. japonensis harbors a specific bacterial symbiont within the gut cavity extracellularly, which is vertically inherited through maternal excretion of symbiont-containing white mucus. Thus far, biological roles of the symbiont in the host lifecycle has been little understood. Here we sequenced the genome of the uncultivable gut symbiont "Candidatus Benitsuchiphilus tojoi." The symbiont has an 804 kb circular chromosome encoding 606 proteins and a 14.5 kb plasmid encoding 13 proteins. Phylogenetic analysis indicated that the bacterium is closely related to other obligate insect symbionts belonging to the Gammaproteobacteria, including Buchnera of aphids and Blochmannia of ants, and the most closely related to Ishikawaella, an extracellular gut symbiont of plataspid stinkbugs. These data suggested that the symbiont genome has evolved like highly reduced gamma-proteobacterial symbiont genomes reported from a variety of insects. The presence of genes involved in biosynthesis pathways for amino acids, vitamins, and cofactors in the genome implicated the symbiont as a nutritional mutualist, supplementing essential nutrients to the host. Interestingly, the symbiont's plasmid encoded genes for thiamine and carotenoid synthesis pathways, suggesting the possibility of additional functions of the symbiont for protecting the host against oxidative stress and DNA damage. Finally, possible involvement of the symbiont in uric acid metabolism during diapause is discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa