Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Ecotoxicol Environ Saf ; 278: 116406, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728941

RESUMO

Cadmium contamination inevitably affects the microbially mediated transformation of nitrogen in soils with wheat straw return. The responses of nitrogen functional microorganisms to cadmium in acidic and alkaline soils under wheat straw returned are still unclear. In this study, quantitative polymerase chain reaction (qPCR) and sequencing of nitrifying and denitrifying bacteria were performed to investigate the effects of wheat straw application on nitrogen conversion in different Cd-contaminated soils during an incubation experiment. Results showed that the presence of Cd decreased the abundance of hao gene catalyzing nitrification and norB gene catalyzing denitrification process, resulting the accumulation of NH4+-N and reduction of NO3--N in the acidic soils. Additionally, Cd-contamination stimulates the nitrification catalyzed by bacterial amoA gene and thus reduced the NH4+-N content in the alkaline soils. Meanwhile, Cd dominated the decrease of NO3--N content by promoting denitrification process catalyzed by nirS gene. Among all nitrifying and denitrifying microorganisms, Nitrosospira are tolerant to Cd stress under alkaline condition but sensitive to acidic condition, which dominantly harbored hao gene in the acidic soils and bacterial amoA gene in the alkaline soils. This study aimed to provide reasonable information for the rational adoption of wheat straw returning strategies to realize nitrogen regulation in Cd-contaminated farmland soil.


Assuntos
Cádmio , Desnitrificação , Nitrificação , Microbiologia do Solo , Poluentes do Solo , Triticum , Cádmio/análise , Cádmio/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Nitrogênio/metabolismo , Solo/química , Bactérias/metabolismo , Bactérias/genética , Ciclo do Nitrogênio
2.
J Environ Manage ; 353: 120084, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281421

RESUMO

Crop straw return is a widely used agricultural management practice. The addition of crop straw significantly alters the pool of dissolved organic matter (DOM) in agricultural soils and plays a pivotal role in the global carbon (C) cycle, which is sensitive to climate change. The DOM concentration and composition at different soil depths could regulate the turnover and further storage of organic C in terrestrial systems. However, it is still unclear how crop straw return influences the change in DOM composition in rice paddy soils. Therefore, a field experiment was conducted in which paddy soil was amended with crop straw for 10 years. Two crop straw-addition treatments [NPK with 50% crop straw (NPK+1/2S) and NPK with 100% crop straw (NPK + S)], a conventional mineral fertilization control (NPK) and a non-fertilized control were included. Topsoil (0-20 cm) and subsoil (20-40 cm) samples were collected to investigate the soil DOM concentration and compositional structure of the profile. Soil nutrients, iron (Fe) fraction, microbial biomass carbon (MBC), and concentration and optical properties (UV-Vis and fluorescence spectra) of soil DOM were determined. Here, we found that the DOM in the topsoil was more humified than that in the subsoil. The addition of crop straw further decreased the humidification degree of DOM in the subsoil. In crop straw-amended topsoil, microbial decomposition controlled the composition of DOM and induced the formation of aromatic DOM. In the straw-treated subsoil, selective adsorption by poorly crystalline Fe(oxyhydr)oxides and microbial decomposition controlled the composition of DOM. In particular, the formation of protein-like compounds could have played a significant role in the microbial degradation of DOM in the subsoil. Overall, this work conducted a case study within long-term agricultural management to understand the changes in DOM composition along the soil profile, which would be further helpful for evaluating C cycling in agricultural ecosystems.


Assuntos
Matéria Orgânica Dissolvida , Oryza , Ecossistema , Solo/química , Agricultura , Carbono
3.
J Environ Manage ; 344: 118390, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364492

RESUMO

Increasing evidence of the uncertainty of crop straw returning in heavy metal-contaminated soil is a significant concern. The present study investigated the influence of 1 and 2% maize straws (MS) amendment on As and Cd bioavailability in two different alkaline soils (A-industrial and B-irrigation) after 56 days of ageing. Adding MS to the two soils decreased the pH by 1.28 (A soil) and 1.13 (B soil) and increased the concentration of dissolved organic carbon (DOC) by 54.40 mg/kg (A soil) and 100.00 mg/kg (B soil) during the study period. After 56 days of ageing, the overall NaHCO3-As and DTPA-Cd increased by 40% and 33% (A) and 39% and 41% (B) soils, respectively. The MS additions increased the alteration of As and Cd exchangeable and residual fractions, whereas advanced solid-state 13C nuclear magnetic resonance (NMR) revealed that alkyl C and alkyl O-C-O in A soil and alkyl C, Methoxy C/N-alkyl, and alkyl O-C-O in B soil significantly contributed to the As and Cd mobilisation. Collectively, 16 S rRNA analyses revealed Acidobacteria, Firmicutes, Chloroflexi, Actinobacteria and Bacillus promoted the As and Cd mobilisation following the MS addition, while principle component analysis (PCA) demonstrated that bacterial proliferation significantly influenced MS decomposition, resulting in As and Cd mobilisation in the two soils. Overall, the study highlights the implications of applying MS to As- and Cd-contaminated alkaline soil and offers the framework for conditions to be considered during As- and Cd-remediation efforts, especially when MS is the sole remediation component.


Assuntos
Arsênio , Microbiota , Poluentes do Solo , Cádmio/química , Arsênio/análise , Zea mays/metabolismo , Poluentes do Solo/química , Solo/química
4.
J Environ Manage ; 340: 117965, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121003

RESUMO

Straw return can improve crop yield as well as soil organic carbon (SOC) but may raise the possibility of N2O and CH4 emissions. However, few studies have compared the effects of straw return on the yield, SOC, and N2O emissions of various crops. Which management strategies are the best for balancing yield, SOC, and emission reduction for various crops needs to be clarified. A meta-analysis containing 2269 datasets collected from 369 studies was conducted to investigate the influence of agricultural management strategies on yield increase, soil carbon sequestration, and emission reduction in various crops after the straw return. Analytical results indicated that, on average, straw return increased the yield of rice, wheat, and maize by 5.04%, 8.09%, and 8.71%, respectively. Straw return increased maize N2O emissions by 14.69% but did not significantly affect wheat N2O emissions. Interestingly, straw return reduced the rice N2O emissions by 11.43% but increased the CH4 emissions by 72.01%. The recommended nitrogen application amounts for balancing yield, SOC, and emission reduction varied among the three crops, while the recommended straw return amounts were more than 9000 kg/ha. The optimal tillage and straw return strategies for rice, wheat, and maize were plow tillage combined with incorporation, rotary tillage combined with incorporation, and no-tillage combined with mulching, respectively. A straw return duration of 5-10 years for rice and maize and ≤5 years for wheat was recommended. These findings provide optimal agricultural management strategies after straw return to balance the crop yield, SOC, and emission reduction for China's three major grain crops.


Assuntos
Oryza , Solo , Sequestro de Carbono , Carbono/análise , Agricultura/métodos , Produtos Agrícolas , Zea mays , Triticum/metabolismo , Grão Comestível/química , China , Óxido Nitroso/metabolismo
5.
J Environ Manage ; 347: 119045, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778069

RESUMO

In order to explore the alteration of N transformation and N2O emissions in acid soil with the co-application of straw and different types of nitrogen (N) fertilizers, an incubation experiment was carried out for 40 days. There are totally five treatments in the study: (a) without straw and N fertilizer (N0), (b) straw alone application (SN0), (c) straw with NH4Cl (SN1), (d) straw with NaNO3 (SN2), and (e) straw with NH4NO3 (SN3). N2O emissions, soil physicochemical properties, and abundance/activity of ammonia-oxidizing archaea (AOA) were measured. The results showed that the combined application of straw and N enhanced N2O emissions, particularly, SN2 and SN3 treatments. Moreover, the soil pH was lower in co-application treatments and the average decreasing rate was 9.69%. Specially, the pH was lowest in the SN1 treatment. The results of correlation analysis indicated a markedly negative relationship between pH and N2O, as well as a negative relationship between pH and net mineralization rate. These findings suggest that pH alteration can affect the N transformation process in soil and thus influence N2O emissions. In addition, the dominant AOA at the genus level in the SN2 treatment was Nitrosopumilus, and Candidatus nitrosocosmicus in the SN3 treatment. The reshaped AOA structure can serve as additional evidence of the changes in the N transformation process. In conclusion, as the return of straw, the cumulation of N2O from arable acid soil depends on the form of N fertilizer. It is also important to consider how N fertilizer is applied to reduce the possibility of N being lost in the soil as gas.


Assuntos
Fertilizantes , Solo , Solo/química , Fertilizantes/análise , Nitrogênio/análise , Óxido Nitroso/análise , Archaea , Agricultura
6.
J Environ Sci (China) ; 124: 281-290, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182137

RESUMO

As a common practice in agricultural system, straw return has been reported to release a large number of trace gases and attracted much attention. However, the role of straw return in toluene emission remains poorly understood. In this study we measured the emissions of toluene as well as other 50 volatile organic compounds (VOCs) from wheat straw return for 66 days under flooded and non-flooded conditions, respectively. The results showed that substantial toluene was released from the returned wheat straw particularly under flooded condition, and primarily derived from the secondary product. Toluene emissions from the returned wheat straw were 36.8 and 8.45 mg C/kg, sharing 28.0% and 8.6% of total VOCs released, and over 90% of toluene emissions occurred between days 24-56 and 0-17 under flooded and non-flooded conditions, respectively. The emission rates of toluene were relatively high but decreased sharply at the beginning 2 days, and then was steady until 24 days under the two moisture conditions. After the initial decrease these rose again to form one "peak emission window" between days 24-56 under flooded condition, while these were still very low and steady until the end under non-flooded condition. The toluene emission rates significantly positively correlated with microbial biomass C under flooded condition, but negatively associated with bacteria and fungus number, microbial biomass C, and CO2 flux under non-flooded condition, suggesting that microorganism might play an important role in toluene emissions from wheat straw return. A rough estimate indicated that straw return might be important for biogenic toluene.


Assuntos
Triticum , Compostos Orgânicos Voláteis , Agricultura/métodos , Dióxido de Carbono/análise , China , Solo , Tolueno
7.
J Environ Manage ; 312: 114921, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35334401

RESUMO

Loess Plateau is important for maize production in China. Therefore, a good understanding of soil phosphorus (P) behavior in the Loess region is crucial for optimizing fertilization in its agriculture systems. To date, research on factors influencing P adsorption/desorption has mainly focused on fertilization. Widespread application of straw return and increasing soil fauna in agricultural croplands inevitably affect soil P behavior either directly or indirectly in this area. However, less attention has been focused on these effects and their interactions. Here, a field plot experiment was performed based on a completely randomized design to investigate the response of P adsorption-desorption characteristics to the presence/absence of earthworms and straw return. Treatments included: (1) control without earthworms and straw (E0S0); (2) treatment with only earthworms (E1S0); (3) treatment with only straw (E0S1); (4) treatment with both earthworms and straw. The Langmuir model was superior to the Freundlich model in interpreting the P adsorption data and allowed better evaluation of the maximum P adsorption values. The maximal P adsorption, P adsorption affinity constant, and maximum buffer capacity in the earthworm and straw treatments were 2.4-8.3%, 8.3-13.9%, and 2.2-26.3% lower than those in E0S0. The readily desorbable P, standard P requirement, and degree of P saturation increased by 15.6-44.3%, 13.1-23.1%, and 4.4-16.5%, respectively, in earthworm and straw treatments. Additionally, earthworm inoculation and straw return treatments significantly increased total soil P, Olsen P, soil organic carbon, free Fe2O3, and CaCO3 contents and specific surface area of the soil. Redundancy analysis showed that soil organic carbon explained most (14.7%) of the total variation in P adsorption and desorption. These results show that combining earthworm inoculation with straw return can effectively reduce soil P adsorption capacity, increase its P desorption capacity, and thus, increase its available P content. These results provide a scientific basis for improving the utilization efficiency of soil P.


Assuntos
Oligoquetos , Solo , Adsorção , Agricultura , Animais , Carbono/análise , China , Fósforo
8.
Ecotoxicol Environ Saf ; 207: 111201, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905933

RESUMO

Interactions between organic matter (OM) and metals in soils are important natural mechanisms that can mitigate metal bioaccumulation in terrestrial environments. A primary source of OM in soils is straw return, accounting for more than 65% of OM input. Straw-OM has long been believed to reduce metal bioaccumulation, e.g., by immobilizing metals in soils. However, there is growing evidence that straw return could possibly enhance bioavailability and thus risks (i.e., food safety) of some metals in crops, including Cd, Hg, and As. Poor understanding of straw return-induced increases in metal bioavailability would add uncertainty in assessing or mitigating risks of metals in contaminated farming soils. Here, 863 pieces of literature (2000-2019) that reported the effects of straw return on metal bioavailability and bioaccumulation were reviewed. Mechanisms responsible for the increased metal mobility and bioavailability under straw return are summarized, including the effects of dissolution, complexation, and methylation. Effects of straw return on the physiology and the absorption of metals in plants is also discussed (i.e., physiological effect). These mechanisms are then used to explain the observed increases in the mobility, bioavailability, and bioaccumulation of Cd, Hg, and As under straw amendment. Information summarized in this study highlights the importance to re-consider the current straw return policy, particularly in metal-contaminated farmlands.


Assuntos
Metais/análise , Poluentes do Solo/análise , Agricultura , Disponibilidade Biológica , Cádmio/análise , Produtos Agrícolas , Poluição Ambiental , Metais Pesados/análise , Solo
9.
J Environ Manage ; 292: 112772, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34022644

RESUMO

Crop residue return is an effective, eco-friendly tillage method for decreasing reactive nitrogen (Nr) losses via surface runoff. However, the associated variation in Nr characteristics and its prospective mechanisms are not well understood. We systematically evaluated the response of Nr runoff loss and N variation in standing water to the abiotic and biotic parameters of soil in a paddy field after 6 years of straw return. Five experimental treatments of different fertilization strategies in combination with straw return were tested during the rice growth season. The results indicated that under equivalent fertilizer input, long-term straw return significantly reduced Nr runoff loss by 11.5% (P < 0.05), even though the loss increased with N fertilizer addition. We report that variations in abiotic soil properties (P < 0.05) and bacterial communities (P < 0.01) were both responsible for Nr loss differences between the rice growth stages and among the tested fertilizing patterns. Soil inorganic nitrogen (r = 0.18) had a significant positive influence on Nr runoff loss, but this effect was surpassed by the overall negative influence of soil organic carbon (r = -0.43), soil pH, (r = -0.40), and bacterial community composition (r = -0.14), which was especially apparent during the tillering stage. Our results emphasize the importance of jointly considering biotic and abiotic factors in soil and standing water when characterizing the effects of long-term straw return and N addition on Nr runoff loss, which will aid in mitigating N-based agricultural non-point pollution.


Assuntos
Nitrogênio , Oryza , Agricultura , Carbono , Fertilizantes , Nitrogênio/análise , Solo
10.
Bull Environ Contam Toxicol ; 106(1): 211-217, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32852567

RESUMO

Straw return, as an important agricultural management measure, is receiving growing attention. Hydroxyl radical (•OH) can be produced when subsurface soil interacts with oxygen, but the effects of straw incorporation on •OH formation have rarely been evaluated. In this study, we found that straw return had a significant effect on soil properties. Soil pH and redox potential (Eh) decreased while electronic conductivity (EC) showed an increment. Dissolved organic carbon content of soil initially increased and then decreased to the same level as the control by the end of the experiment of 120 days. Moreover, Fe(II) formation was promoted by straw return under anaerobic conditions. •OH was produced in the flooded paddy soil when exposed to oxygen, which correlated well with Fe(II) content. The effect of rape (Brassica campestris L.) straw on •OH formation rate was more evident as compared to wheat (Triticum aestivum L.) straw, suggesting a potentially more profound influence of rape straw return on pollutant transformation in paddy soils.


Assuntos
Oryza , Poluentes do Solo , Agricultura , Carbono , Radical Hidroxila , Solo , Poluentes do Solo/análise
11.
Glob Chang Biol ; 26(4): 2686-2701, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31991046

RESUMO

Soil organic carbon (SOC) is essential for soil fertility and climate change mitigation, and carbon can be sequestered in soil through proper soil management, including straw return. However, results of studies of long-term straw return on SOC are contradictory and increasing SOC stocks in upland soils is challenging. This study of North China upland agricultural fields quantified the effects of several fertilizer and straw return treatments on SOC storage changes and crop yields, considering different cropping duration periods, soil types, and cropping systems to establish the relationships of SOC sequestration rates with initial SOC stocks and annual straw C inputs. Our meta-analysis using long-term field experiments showed that SOC stock responses to straw return were greater than that of mineral fertilizers alone. Black soils with higher initial SOC stocks also had lower SOC stock increases than did soils with lower initial SOC stocks (fluvo-aquic and loessial soils) following applications of nitrogen-phosphorous-potassium (NPK) fertilizer and NPK+S (straw). Soil C stocks under the NPK and NPK+S treatments increased in the more-than-20-year duration period, while significant SOC stock increases in the NP and NP+S treatment groups were limited to the 11- to 20-year period. Annual crop productivity was higher in double-cropped wheat and maize under all fertilization treatments, including control (no fertilization), than in the single-crop systems (wheat or maize). Also, the annual soil sequestration rates and annual straw C inputs of the treatments with straw return (NP+S and NPK+S) were significantly positively related. Moreover, initial SOC stocks and SOC sequestration rates of those treatments were highly negatively correlated. Thus, long-term straw return integrated with mineral fertilization in upland wheat and maize croplands leads to increased crop yields and SOC stocks. However, those effects of straw return are highly dependent on fertilizer management, cropping system, soil type, duration period, and the initial SOC content.

12.
J Appl Microbiol ; 128(1): 138-150, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31495045

RESUMO

AIMS: In order to understand the response of soil microbial communities to the long-term of decomposed straw return, the modifications of soil microbial community structure and composition induced by more than 10 years of fresh and decomposed straw return was investigated and the key environmental factors were analysed. METHODS AND RESULTS: Phospholipid fatty acid analysis and high-through sequencing technique were applied to analyse the structure and composition of the soil microbial communities. Compared with fresh straw, returning decomposed straw increased the relative abundance of bacteria and fungi by 1·9 and 7·7% at a rate of ~3750 kg ha-1 , and increased by 23·1 and 5·7%, at a rate of ~7500 kg ha-1 respectively. The relative abundance of the bacteria related to soil nitrification increased, but the ones related to soil denitrification decreased with decomposed straw return, which led to higher total nitrogen contents in soils. Moreover, returning decomposed straw reduced pathogenic fungal populations (genus of Alternara), which had significantly positive correlation with soil electric conductivity. It indicated that the long-term of decomposed straw return might have lower risk of soil-borne disease mainly for the reasonable soil salinity. CONCLUSIONS: Long-term of decomposed straw return could provide suitable nutrient and salinity for healthier development of soil microbial community, both in abundance and structure, compared with fresh straw return. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of the study helps to better understand how the microbial community modifications induced by decomposed straw return benefit on soil health. The obtained key factors impacting soil microbial community variations is meaningful in soil health management under conditions of straw return.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Microbiota , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Condutividade Elétrica , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Nitrificação , Nitrogênio/análise , Solo/química
13.
Ecotoxicol Environ Saf ; 167: 520-530, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30384059

RESUMO

Cassava (Manihot esculenta Crantz) intercropped with peanut (Arachis hypogaea) has good complementary effects in time and space. In the field plot test, the land equivalent ratio (LER) of cassava-peanut intercropping system was 1.43, showing obvious intercropping yield advantage. Compared with monocropping, Cd contents in the roots of cassava and seeds of peanut were significantly reduced by 20.00% and 31.67%, respectively (p < 0.05). Under the unit area of hectare, compared with monocropping of cassava and peanut, the bioconcentration amount (BCA) of Cd in the intercropping system increased significantly by 24.98% and 25.59%, respectively (p < 0.05), and the metal removal equivalent ratio (MRER) of Cd was 1.25, indicating that the intercropping pattern had advantage in Cd removal. In the cement pool plot test, compared with the control, cassava intercropped with peanut under biochar and crushed straw additions did not only enhance the available nutrients and organic matter contents in rhizosphere soil but also promoted the crop growth and increased the content of chlorophyll (SPAD values) of plant leaves. The peanut seeds biomass under biochar and straw additions were significantly increased by 112.34% and 59.38% (p < 0.05), respectively, while the cassava roots biomass under biochar addition was significantly increased by 63.54% (p < 0.05). Applying biochar significantly decreased the content of Cd which extracted by diethylenetriaminepentaacetic acid (DTPA-Cd) in soil and reduced Cd uptake as well as translocation into plant tissues. The BCA of Cd of cassava under biochar addition decreased significantly by 53.87% in maturity stage (p < 0.05), thus reduced the ecological risk of Cd to crops and was of great significance to produce high quality and safe agricultural products. Besides, the crushed straw enhanced the biomass of crops, reduced Cd content in all tissues and maintained Cd uptake in the intercropping system. Therefore, it can realize the integration of ecological remediation and economic benefit of two energy plants in Cd contaminated soil after applied crushed straw in cassava-peanut intercropping system.


Assuntos
Arachis/química , Cádmio/análise , Carvão Vegetal/química , Manihot/química , Biomassa , Fenômenos Químicos , Clorofila/análise , Concentração de Íons de Hidrogênio , Folhas de Planta/química , Raízes de Plantas/química , Rizosfera , Sementes/química , Solo/química , Poluentes do Solo/análise
14.
Ecotoxicol Environ Saf ; 169: 881-893, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30597788

RESUMO

A 90 day experiment was conducted in the laboratory to investigate the potential effects of transgenic Cry1Ab-expressing rice (Bacillus thuringiensis (Bt) rice: T775 and its F1 hybrid) straw return on earthworm Eisenia fetida, compared to non-Bt rice (TYHZ) straw. Juvenile E. fetida could survive, grow up, mature and reproduce offspring well in a Bt rice treated test during the whole experiment. The significantly higher relative growth rate (RGR) was found in earthworms from Bt rice treatment than from non-Bt rice treatment on the 7th day. The period of sexual maturity for earthworms from Bt rice treatments was shortened significantly, compared to non-Bt rice treatments. Adult E. fetida survived with weight loss under Bt rice treatments. On the 7th and 15th day, earthworm RGR decreased and glutathione peroxidase (GSH-PX) activity increased under Bt rice straw treatments. Significantly fewer offspring were produced by earthworms from Bt rice than non-Bt rice treatments on the 60th and 75th day. Enzyme-linked immunosorbent assay (ELISA) determined a sharp decrease of Cry1Ab in straw mixed soil along with the experimental time, regardless of juvenile or adult earthworm treatments. Cry1Ab concentration in the earthworms from the juvenile group was significantly higher than those from the adult group. Bt rice straw return had significant effects on soil nutrients, especially on the content of total and available phosphorus. In view of two bioassays, Bt rice (T775 and its F1 hybrid) straw return presented different effects on E. fetida from the juvenile (no deleterious effect) and adult (a little negative effect) groups, that were not directly related to Cry1Ab presence and nutrient differences among the three rice variety treatments.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Oligoquetos/efeitos dos fármacos , Oryza/genética , Plantas Geneticamente Modificadas , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Biomarcadores Ambientais , Genes Bacterianos , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Oligoquetos/crescimento & desenvolvimento , Oryza/metabolismo , Reprodução , Solo/química
15.
Glob Chang Biol ; 24(12): 5919-5932, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30295405

RESUMO

It is widely recommended that crop straw be returned to croplands to maintain or increase soil carbon (C) storage in arable soils. However, because C and nitrogen (N) biogeochemical cycles are closely coupled, straw return may also affect soil reactive N (Nr) losses, but these effects remain uncertain, especially in terms of the interactions between soil C sequestration and Nr losses under straw addition. Here, we conducted a global meta-analysis using 363 publications to assess the overall effects of straw return on soil Nr losses, C sequestration and crop productivity in agroecosystems. Our results show that on average, compared to mineral N fertilization, straw return with same amount of mineral N fertilizer significantly increased soil organic C (SOC) content (14.9%), crop yield (5.1%), and crop N uptake (10.9%). Moreover, Nr losses in the form of nitrous oxide (N2 O) emissions from rice paddies (17.3%), N leaching (8.7%), and runoff (25.6%) were significantly reduced, mainly due to enhanced microbial N immobilization. However, N2 O emissions from upland fields (21.5%) and ammonia (NH3 ) emissions (17.0%) significantly increased following straw return, mainly due to the stimulation of nitrification/denitrification and soil urease activity. The increase in NH3 and N2 O emissions was significantly and negatively correlated with straw C/N ratio and soil clay content. Regarding the interactions between C sequestration and Nr losses, the increase in SOC content following straw return was significantly and positively correlated with the decrease in N leaching and runoff. However, at a global scale, straw return increased net Nr losses from both rice and upland fields due to a greater stimulation of NH3 emissions than the reduction in N leaching and runoff. The trade-offs between increased net Nr losses and soil C sequestration highlight the importance of reasonably managing straw return to soils to limit NH3 emissions without decreasing associated C sequestration potential.


Assuntos
Agricultura , Sequestro de Carbono , Substâncias Húmicas , Nitrogênio/análise , Solo/química , Agricultura/métodos , Fertilizantes/análise , Nitrificação , Óxido Nitroso/análise , Oryza/metabolismo
16.
Ecotoxicol Environ Saf ; 159: 293-300, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29763811

RESUMO

With the development of grain production technologies and improvement of rural living standard, the production and utilization of straw have significantly been changed in China. More than 1 billion tones of straw are produced per year, and vast amount of them are discarded without effective utilization, leading various environmental and social impacts. Straw return is an effective approach of the straw utilization that has been greatly recommended by government and scientists in China. This paper discussed the current status of the straw return in China. Specifically, the production and models of straw return were explored and their environmental impacts were extensively evaluated. It was concluded that straw could be positively effective on the improvement of the soil quality and the grain production. However, it appeared that the straw return also had several neglect negative effects, implying that further research and assessment on the returned straw are required before its large-scale promotion in China.


Assuntos
Produtos Agrícolas , Gerenciamento de Resíduos , Agricultura , China , Grão Comestível , Meio Ambiente , Solo
17.
Glob Chang Biol ; 20(5): 1366-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24395454

RESUMO

Straw return has been widely recommended as an environmentally friendly practice to manage carbon (C) sequestration in agricultural ecosystems. However, the overall trend and magnitude of changes in soil C in response to straw return remain uncertain. In this meta-analysis, we calculated the response ratios of soil organic C (SOC) concentrations, greenhouse gases (GHGs) emission, nutrient contents and other important soil properties to straw addition in 176 published field studies. Our results indicated that straw return significantly increased SOC concentration by 12.8 ± 0.4% on average, with a 27.4 ± 1.4% to 56.6 ± 1.8% increase in soil active C fraction. CO2 emission increased in both upland (27.8 ± 2.0%) and paddy systems (51.0 ± 2.0%), while CH4 emission increased by 110.7 ± 1.2% only in rice paddies. N2 O emission has declined by 15.2 ± 1.1% in paddy soils but increased by 8.3 ± 2.5% in upland soils. Responses of macro-aggregates and crop yield to straw return showed positively linear with increasing SOC concentration. Straw-C input rate and clay content significantly affected the response of SOC. A significant positive relationship was found between annual SOC sequestered and duration, suggesting that soil C saturation would occur after 12 years under straw return. Overall, straw return was an effective means to improve SOC accumulation, soil quality, and crop yield. Straw return-induced improvement of soil nutrient availability may favor crop growth, which can in turn increase ecosystem C input. Meanwhile, the analysis on net global warming potential (GWP) balance suggested that straw return increased C sink in upland soils but increased C source in paddy soils due to enhanced CH4 emission. Our meta-analysis suggested that future agro-ecosystem models and cropland management should differentiate the effects of straw return on ecosystem C budget in upland and paddy soils.


Assuntos
Agricultura , Poluentes Atmosféricos/metabolismo , Sequestro de Carbono , Gases/metabolismo , Efeito Estufa , Carbono/metabolismo , Ecossistema , Poaceae/crescimento & desenvolvimento , Solo/química
18.
Chemosphere ; 352: 141372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311036

RESUMO

The mobility of arsenic (As) specie in agricultural soils is significantly impacted by the interaction between ferrihydrite (Fh) and dissolved organic material (DOM) from returning crop straw. However, additional research is necessary to provide molecular evidence for the interaction of toxic and mobile As (As(III)) specie and crop straw-based organo- Fh coprecipitates (OFCs). This study investigated the As(III) sorption behaviours of OFCs synthesized with maize or rape derived-DOM under various environmental conditions and the primary molecular sorption mechanisms using As K-edge X-ray absorption near edge structure (XANES) spectroscopy. According to our findings, pure Fh adsorbed more As(III) relative to the other two OFCs, and the presence of natural organic matter in the OFCs induced more As(III) adsorption at pH 5.0. Findings from this study indicated a maximum As(III) sorption on Ma (53.71 mg g⁻1) and Ra OFC (52.46 mg g⁻1) at pH 5.0, with a sharp decrease as the pH increased from 5.0 to 8.0. Additionally, As K-edge XANES spectroscopy indicated that ∼30% of adsorbed As(III) on the OFCs undergoes transformation to As(V) at pH 7-8. Functional groups from the DOM, such as O-H, COOH, and CO, contributed to As(III) desorption and its oxidation to As(V), whereas ionic strength analysis revealed inner complexation as the dominant As(III) sorption mechanism on the OFCs. Overall, the results indicate that the interaction of natural organic matter (NOM) with As(III) at higher pH promotes As(III) mobility, which is crucial when evaluating As migration and bioavailability in alkaline agricultural soils.


Assuntos
Arsênio , Arsênio/química , Zea mays , Compostos Férricos/química , Adsorção , Solo
19.
Sci Total Environ ; 945: 173930, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879027

RESUMO

Biodegradable microplastics (MPs) have been released into agricultural soils and inevitably undergo various aging processes. Straw return is a popular agricultural management strategy in many countries. However, the effect of straw return on the aging process of biodegradable MPs in flooded paddy soil, which is crucial for studying the characteristics, fate, and environmental implications of biodegradable MPs, remains unclear. Here, we constructed a 180-day microcosm incubation to elucidate the aging mechanism of polylactic acid (PLA)-MPs in straw-enriched paddy soil. This study elucidated that the prominent aging characteristic of PLA-MPs occurred in the straw-enriched paddy soil, accompanied by increased chrominance (76.64-182.3 %), hydrophilicity (2.92-22.07 %), roughness (33.12-58.01 %), and biofilm formation (42.12-100.3 %) for the PLA-MPs, especially with 2 % (w/w) straw return treatment (P < 0.05). A 2 % straw return treatment has significantly impacted ester CO group changes in PLA-MPs, altered the MPs-attached soil bacterial communities composition, strengthened bacterial network structure, and increased soil proteinase K activity. The findings of this work demonstrated that flooded, straw-enriched paddy soil accelerated PLA-MPs aging affected by soil-water chemistry, soil microbe, and soil enzymatic. This study helps to deepen our understanding of the aging process of PLA-MPs in straw return paddy soil. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) are emerging contaminants in the global soil and terrestrial ecosystems. Biodegradable MPs are more likely to be formed and released into agricultural soils during aging. Straw return is a popular agricultural management strategy in many countries. Considering the wide use of plastic film, sewage sludge, plastic-coated fertilizer, and organic fertilizer in agricultural ecosystems, it is crucial to pay attention to the aging process of biodegradable MPs in straw-enriched paddy soil, which has not been adequately emphasized. This aspect has been overlooked in previous studies and threatens ecosystems. This study demonstrated that straw-enriched paddy soil accelerated polylactic acid (PLA)-MPs aging influenced by the dissolved organic matter, microorganisms, and enzyme activity associated with straw decomposition.


Assuntos
Agricultura , Biodegradação Ambiental , Microplásticos , Poluentes do Solo , Solo , Microplásticos/análise , Solo/química , Poluentes do Solo/análise , Agricultura/métodos , Microbiologia do Solo , Poliésteres , Oryza
20.
Plants (Basel) ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794428

RESUMO

Leguminous green manure (LGM) has a reputation for improving crop productivity. However, little is known about the beneficial interactions with straw on crop yield and nutrient (N, P, K) use efficiency. Herein, a 9-year field experiment (from 2015 to 2023) containing three treatments-(1) chemical fertilizer as the control (CK), (2) NPK + straw return (Straw) and (3) NPK + straw return with LGM (Straw + LGM)-was conducted to investigate whether the combined application of LGM and straw can increase productivity and nutrient use efficiency in the wheat-maize-sunflower diversified cropping rotation. The results showed that in the third rotation (2021-2023), Straw + LGM significantly increased wheat yield by 10.2% and maize yield by 19.9% compared to CK. The total equivalent yield under Straw + LGM was the highest (26.09 Mg ha-1), exceeding Straw and CK treatments by 2.7% and 12.3%, respectively. For each 2 Mg ha-1 increase in straw returned to the field, sunflower yield increased by 0.2 Mg ha-1, whereas for each 1 Mg ha-1 increase in LGM yield from the previous crop, sunflower yield increased by 0.45 Mg ha-1. Compared to CK, the co-application of LGM and straw increased the N use efficiency of maize in the first and third rotation cycle by 70.6% and 55.8%, respectively, and the P use efficiency by 147.8% in the third rotation cycle. Moreover, Straw treatment led to an increase of net income from wheat and sunflower by 14.5% and 44.6%, while Straw + LGM increased the net income from maize by 15.8% in the third rotation cycle. Combining leguminous green manure with a diversified cropping rotation has greater potential to improve nutrient use efficiency, crop productivity and net income, which can be recommended as a sustainable agronomic practice in the Hetao District, Northwest China.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa