Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.613
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 39: 557-581, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33651964

RESUMO

There is a growing interest in understanding tissue organization, homeostasis, and inflammation. However, despite an abundance of data, the organizing principles of tissue biology remain poorly defined. Here, we present a perspective on tissue organization based on the relationships between cell types and the functions that they perform. We provide a formal definition of tissue homeostasis as a collection of circuits that regulate specific variables within the tissue environment, and we describe how the functional organization of tissues allows for the maintenance of both tissue and systemic homeostasis. This leads to a natural definition of inflammation as a response to deviations from homeostasis that cannot be reversed by homeostatic mechanisms alone. We describe how inflammatory signals act on the same cellular functions involved in normal tissue organization and homeostasis in order to coordinate emergency responses to perturbations and ultimately return the system to a homeostatic state. Finally, we consider the hierarchy of homeostatic and inflammatory circuits and the implications for the development of inflammatory diseases.


Assuntos
Inflamação , Animais , Homeostase , Humanos
2.
Annu Rev Immunol ; 39: 537-556, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33577346

RESUMO

The IL-17 family is an evolutionarily old cytokine family consisting of six members (IL-17A through IL-17F). IL-17 family cytokines signal through heterodimeric receptors that include the shared IL-17RA subunit, which is widely expressed throughout the body on both hematopoietic and nonhematopoietic cells. The founding family member, IL-17A, is usually referred to as IL-17 and has received the most attention for proinflammatory roles in autoimmune diseases like psoriasis. However, IL-17 is associated with a wide array of diseases with perhaps surprisingly variable pathologies. This review focuses on recent advances in the roles of IL-17 during health and in disease pathogenesis. To decipher the functions of IL-17 in diverse disease processes it is useful to first consider the physiological functions that IL-17 contributes to health. We then discuss how these beneficial functions can be diverted toward pathogenic amplification of deleterious pathways driving chronic disease.


Assuntos
Doenças Autoimunes , Interleucina-17 , Animais , Doenças Autoimunes/etiologia , Citocinas , Humanos , Intenção , Receptores de Interleucina-17
3.
Cell ; 187(4): 897-913.e18, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280374

RESUMO

Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.


Assuntos
Complemento C3 , Mucosa Intestinal , Microbiota , Animais , Humanos , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Neutrófilos , Complemento C3/metabolismo , Células Estromais/metabolismo
4.
Cell ; 186(20): 4271-4288.e24, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37699390

RESUMO

Endometrial decidualization connecting embryo implantation and placentation is transient but essential for successful pregnancy, which, however, is not systematically investigated. Here, we use a scStereo-seq technology to spatially visualize and define the dynamic functional decidual hubs assembled by distinct immune, endothelial, trophoblast, and decidual stromal cells (DSCs) in early pregnant mice. We unravel the DSC transdifferentiation trajectory and surprisingly discover a dual-featured type of immune-featured DSCs (iDSCs). We find that immature DSCs attract immune cells and induce decidual angiogenesis at the mesenchymal-epithelial transition hub during decidualization initiation. iDSCs enable immune cell recruitment and suppression, govern vascularization, and promote cytolysis at immune cell assembling and vascular hubs, respectively, to establish decidual homeostasis at a later stage. Interestingly, dysfunctional and spatially disordered iDSCs cause abnormal accumulation of immune cells in the vascular hub, which disrupts decidual hub specification and eventually leads to pregnancy complications in DBA/2-mated CBA/J mice.

5.
Annu Rev Immunol ; 33: 715-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25861980

RESUMO

Inflammation is an unstable state. It either resolves or persists. Why inflammation persists and the factors that define tissue tropism remain obscure. Increasing evidence suggests that tissue-resident stromal cells not only provide positional memory but also actively regulate the differential accumulation of inflammatory cells within inflamed tissues. Furthermore, at many sites of chronic inflammation, structures that mimic secondary lymphoid tissues are observed, suggesting that chronic inflammation and lymphoid tissue formation share common activation programs. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis and disease persistence in chronic inflammation. This review highlights our increasing understanding of the role of stromal cells in inflammation and summarizes the novel immunological role that stromal cells exert in the persistence of inflammatory diseases.


Assuntos
Inflamação/imunologia , Inflamação/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Células Estromais/imunologia , Células Estromais/metabolismo , Animais , Comunicação Celular , Doença Crônica , Humanos , Inflamação/patologia , Organogênese/imunologia , Fenótipo
6.
Cell ; 184(4): 1000-1016.e27, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33508229

RESUMO

Despite the established dogma of central nervous system (CNS) immune privilege, neuroimmune interactions play an active role in diverse neurological disorders. However, the precise mechanisms underlying CNS immune surveillance remain elusive; particularly, the anatomical sites where peripheral adaptive immunity can sample CNS-derived antigens and the cellular and molecular mediators orchestrating this surveillance. Here, we demonstrate that CNS-derived antigens in the cerebrospinal fluid (CSF) accumulate around the dural sinuses, are captured by local antigen-presenting cells, and are presented to patrolling T cells. This surveillance is enabled by endothelial and mural cells forming the sinus stromal niche. T cell recognition of CSF-derived antigens at this site promoted tissue resident phenotypes and effector functions within the dural meninges. These findings highlight the critical role of dural sinuses as a neuroimmune interface, where brain antigens are surveyed under steady-state conditions, and shed light on age-related dysfunction and neuroinflammatory attack in animal models of multiple sclerosis.


Assuntos
Cavidades Cranianas/imunologia , Cavidades Cranianas/fisiologia , Dura-Máter/imunologia , Dura-Máter/fisiologia , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos/líquido cefalorraquidiano , Senescência Celular , Quimiocina CXCL12/farmacologia , Dura-Máter/irrigação sanguínea , Feminino , Homeostase , Humanos , Imunidade , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Células Estromais/citologia , Linfócitos T/citologia
7.
Immunity ; 57(6): 1345-1359.e5, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38692280

RESUMO

Regulatory T (Treg) cells in epidydimal visceral adipose tissue (eVAT) of lean mice and humans regulate metabolic homeostasis. We found that constitutive or punctual depletion of eVAT-Treg cells reined in the differentiation of stromal adipocyte precursors. Co-culture of these precursors with conditional medium from eVAT-Treg cells limited their differentiation in vitro, suggesting a direct effect. Transcriptional comparison of adipocyte precursors, matured in the presence or absence of the eVAT-Treg-conditioned medium, identified the oncostatin-M (OSM) signaling pathway as a key distinction. Addition of OSM to in vitro cultures blocked the differentiation of adipocyte precursors, while co-addition of anti-OSM antibodies reversed the ability of the eVAT-Treg-conditioned medium to inhibit in vitro adipogenesis. Genetic depletion of OSM (specifically in Treg) cells or of the OSM receptor (specifically on stromal cells) strongly impaired insulin sensitivity and related metabolic indices. Thus, Treg-cell-mediated control of local progenitor cells maintains adipose tissue and metabolic homeostasis, a regulatory axis seemingly conserved in humans.


Assuntos
Adipócitos , Diferenciação Celular , Homeostase , Resistência à Insulina , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Humanos , Camundongos , Adipócitos/metabolismo , Diferenciação Celular/imunologia , Oncostatina M/metabolismo , Transdução de Sinais , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/imunologia , Células Estromais/metabolismo , Camundongos Endogâmicos C57BL , Técnicas de Cocultura , Adipogenia , Células Cultivadas , Masculino , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Meios de Cultivo Condicionados/farmacologia
8.
Genes Dev ; 37(17-18): 781-800, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37798016

RESUMO

Adipose tissue exhibits a remarkable capacity to expand, contract, and remodel in response to changes in physiological and environmental conditions. Here, we describe recent advances in our understanding of how functionally distinct tissue-resident mesenchymal stromal cell subpopulations orchestrate several aspects of physiological and pathophysiological adipose tissue remodeling, with a particular focus on the adaptations that occur in response to changes in energy surplus and environmental temperature. The study of adipose tissue remodeling provides a vehicle to understand the functional diversity of stromal cells and offers a lens through which several generalizable aspects of tissue reorganization can be readily observed.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Tecido Adiposo , Obesidade , Células Estromais
9.
Immunity ; 53(1): 127-142.e7, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32562599

RESUMO

Located within red pulp cords, splenic red pulp macrophages (RPMs) are constantly exposed to the blood flow, clearing senescent red blood cells (RBCs) and recycling iron from hemoglobin. Here, we studied the mechanisms underlying RPM homeostasis, focusing on the involvement of stromal cells as these cells perform anchoring and nurturing macrophage niche functions in lymph nodes and liver. Microscopy revealed that RPMs are embedded in a reticular meshwork of red pulp fibroblasts characterized by the expression of the transcription factor Wilms' Tumor 1 (WT1) and colony stimulating factor 1 (CSF1). Conditional deletion of Csf1 in WT1+ red pulp fibroblasts, but not white pulp fibroblasts, drastically altered the RPM network without altering circulating CSF1 levels. Upon RPM depletion, red pulp fibroblasts transiently produced the monocyte chemoattractants CCL2 and CCL7, thereby contributing to the replenishment of the RPM network. Thus, red pulp fibroblasts anchor and nurture RPM, a function likely conserved in humans.


Assuntos
Fibroblastos/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/imunologia , Baço/citologia , Proteínas WT1/metabolismo , Animais , Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Regulação da Expressão Gênica , Humanos , Imunidade Inata/imunologia , Ferro/metabolismo , Fator Estimulador de Colônias de Macrófagos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Ratos , Transdução de Sinais/imunologia , Baço/metabolismo
10.
Immunity ; 50(6): 1467-1481.e6, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31201093

RESUMO

Tissue-resident macrophages are receptive to specific signals concentrated in cellular niches that direct their cell differentiation and maintenance genetic programs. Here, we found that deficiency of the cytokine RANKL in lymphoid tissue organizers and marginal reticular stromal cells of lymph nodes resulted in the loss of the CD169+ sinusoidal macrophages (SMs) comprising the subcapsular and the medullary subtypes. Subcapsular SM differentiation was impaired in mice with targeted RANK deficiency in SMs. Temporally controlled RANK removal in lymphatic endothelial cells (LECs) revealed that lymphatic RANK activation during embryogenesis and shortly after birth was required for the differentiation of both SM subtypes. Moreover, RANK expression by LECs was necessary for SM restoration after inflammation-induced cell loss. Thus, cooperation between mesenchymal cells and LECs shapes a niche environment that supports SM differentiation and reconstitution after inflammation.


Assuntos
Citocinas/metabolismo , Linfonodos/citologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Células Estromais/metabolismo , Animais , Biomarcadores , Diferenciação Celular , Microambiente Celular , Imunofenotipagem , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais
11.
Immunity ; 50(6): 1453-1466.e4, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31053503

RESUMO

In lymph nodes, subcapsular sinus macrophages (SSMs) form an immunological barrier that monitors lymph drained from peripheral tissues. Upon infection, SSMs activate B and natural killer T (NKT) cells while secreting inflammatory mediators. Here, we investigated the mechanisms regulating development and homeostasis of SSMs. Embryonic SSMs originated from yolk sac hematopoiesis and were replaced by a postnatal wave of bone marrow (BM)-derived monocytes that proliferated to establish the adult SSM network. The SSM network self-maintained by proliferation with minimal BM contribution. Upon pathogen-induced transient deletion, BM-derived cells contributed to restoring the SSM network. Lymphatic endothelial cells (LECs) were the main source of CSF-1 within the lymph node and conditional deletion of Csf1 in adult LECs decreased the network of SSMs and medullary sinus macrophages (MSMs). Thus, SSMs have a dual hematopoietic origin, and LECs are essential to the niche supporting these macrophages.


Assuntos
Células Endoteliais/metabolismo , Macrófagos/metabolismo , Animais , Biomarcadores , Comunicação Celular , Diferenciação Celular , Expressão Gênica , Genes Reporter , Hematopoese/genética , Hematopoese/imunologia , Homeostase , Linfonodos/citologia , Linfonodos/imunologia , Vasos Linfáticos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Monócitos/citologia , Monócitos/metabolismo , Saco Vitelino
12.
Immunity ; 50(3): 707-722.e6, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30824323

RESUMO

Type 2 lymphocytes promote both physiologic tissue remodeling and allergic pathology, yet their physical tissue niches are poorly described. Here, we used quantitative imaging to define the tissue niches of group 2 innate lymphoid cells (ILC2s), which are critical instigators of type 2 immunity. We identified a dominant adventitial niche around lung bronchi and larger vessels in multiple tissues, where ILC2s localized with subsets of dendritic and regulatory T cells. However, ILC2s were most intimately associated with adventitial stromal cells (ASCs), a mesenchymal fibroblast-like subset that expresses interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP). In vitro, ASCs produced TSLP that supported ILC2 accumulation and activation. ILC2s and IL-13 drove reciprocal ASC expansion and IL-33 expression. During helminth infection, ASC depletion impaired lung ILC2 and Th2 cell accumulation and function, which are in part dependent on ASC-derived IL-33. These data indicate that adventitial niches are conserved sites where ASCs regulate type 2 lymphocyte expansion and function.


Assuntos
Imunidade Inata/imunologia , Linfócitos/imunologia , Células Estromais/imunologia , Animais , Brônquios/imunologia , Citocinas/imunologia , Interleucina-13/imunologia , Interleucina-33/imunologia , Camundongos , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Linfopoietina do Estroma do Timo
13.
Annu Rev Cell Dev Biol ; 30: 677-704, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25150008

RESUMO

Two opposing descriptions of so-called mesenchymal stem cells (MSCs) exist at this time. One sees MSCs as the postnatal, self-renewing, and multipotent stem cells for the skeleton. This cell coincides with a specific type of bone marrow perivascular cell. In skeletal physiology, this skeletal stem cell is pivotal to the growth and lifelong turnover of bone and to its native regeneration capacity. In hematopoietic physiology, its role as a key player in maintaining hematopoietic stem cells in their niche and in regulating the hematopoietic microenvironment is emerging. In the alternative description, MSCs are ubiquitous in connective tissues and are defined by in vitro characteristics and by their use in therapy, which rests on their ability to modulate the function of host tissues rather than on stem cell properties. Here, I discuss how the two views developed, conceptually and experimentally, and attempt to clarify the confusion arising from their collision.


Assuntos
Células-Tronco Mesenquimais/citologia , Animais , Células da Medula Óssea/classificação , Células da Medula Óssea/citologia , Osso e Ossos/citologia , Antígeno CD146/análise , Separação Celular/métodos , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Células Clonais/citologia , Tecido Conjuntivo/imunologia , Humanos , Imunomodulação , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/classificação , Camundongos , Modelos Biológicos , Pericitos/citologia , Células-Tronco Pluripotentes/citologia , Quimera por Radiação , Nicho de Células-Tronco , Células Estromais/classificação , Células Estromais/citologia , Transplante Heterotópico
14.
EMBO J ; 42(9): e111762, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36943004

RESUMO

Senescence and altered differentiation potential of bone marrow stromal cells (BMSCs) lead to age-related bone loss. As an important posttranscriptional regulatory pathway, alternative splicing (AS) regulates the diversity of gene expression and has been linked to induction of cellular senescence. However, the role of splicing factors in BMSCs during aging remains poorly defined. Herein, we found that the expression of the splicing factor Y-box binding protein 1 (YBX1) in BMSCs decreased with aging in mice and humans. YBX1 deficiency resulted in mis-splicing in genes linked to BMSC osteogenic differentiation and senescence, such as Fn1, Nrp2, Sirt2, Sp7, and Spp1, thus contributing to BMSC senescence and differentiation shift during aging. Deletion of Ybx1 in BMSCs accelerated bone loss in mice, while its overexpression stimulated bone formation. Finally, we identified a small compound, sciadopitysin, which attenuated the degradation of YBX1 and bone loss in old mice. Our study demonstrated that YBX1 governs cell fate of BMSCs via fine control of RNA splicing and provides a potential therapeutic target for age-related osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Camundongos , Animais , Osteogênese/genética , Envelhecimento/metabolismo , Senescência Celular , Diferenciação Celular/genética , Osteoporose/metabolismo , Células da Medula Óssea , Proteína 1 de Ligação a Y-Box/metabolismo
15.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38240380

RESUMO

Skeletal muscle stem cells (MuSCs) are recognised as functionally heterogeneous. Cranial MuSCs are reported to have greater proliferative and regenerative capacity when compared with those in the limb. A comprehensive understanding of the mechanisms underlying this functional heterogeneity is lacking. Here, we have used clonal analysis, live imaging and single cell transcriptomic analysis to identify crucial features that distinguish extraocular muscle (EOM) from limb muscle stem cell populations. A MyogeninntdTom reporter showed that the increased proliferation capacity of EOM MuSCs correlates with deferred differentiation and lower expression of the myogenic commitment gene Myod. Unexpectedly, EOM MuSCs activated in vitro expressed a large array of extracellular matrix components typical of mesenchymal non-muscle cells. Computational analysis underscored a distinct co-regulatory module, which is absent in limb MuSCs, as driver of these features. The EOM transcription factor network, with Foxc1 as key player, appears to be hardwired to EOM identity as it persists during growth, disease and in vitro after several passages. Our findings shed light on how high-performing MuSCs regulate myogenic commitment by remodelling their local environment and adopting properties not generally associated with myogenic cells.


Assuntos
Músculo Esquelético , Músculos Oculomotores , Camundongos , Animais , Músculo Esquelético/metabolismo , Músculos Oculomotores/metabolismo , Camundongos Endogâmicos C57BL , Proliferação de Células , Células-Tronco
16.
Semin Immunol ; 70: 101835, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37651849

RESUMO

Aging is characterized by progressive loss of organ and tissue function, and the immune system is no exception to that inevitable principle. Of all the age-related changes in the body, reduction of the size of, and naïve T (Tn) cell output from, the thymus occurs earliest, being prominent already before or by the time of puberty. Therefore, to preserve immunity against new infections, over much of their lives, vertebrates dominantly rely on peripheral maintenance of the Tn cell pool in the secondary lymphoid organs (SLO). However, SLO structure and function subsequently also deteriorate with aging. Several recent studies have made a convincing case that this deterioration is of major importance to the erosion of protective immunity in the last third of life. Specifically, the SLO were found to accumulate multiple degenerative changes with aging. Importantly, the results from adoptive transfer and parabiosis studies teach us that the old microenvironment is the limiting factor for protective immunity in old mice. In this review, we discuss the extent, mechanisms, and potential role of stromal cell aging in the age-related alteration of T cell homeostatic maintenance and immune function decline. We use that discussion to frame the potential strategies to correct the SLO stromal aging defects - in the context of other immune rejuvenation approaches, - to improve functional immune responses and protective immunity in older adults.


Assuntos
Envelhecimento , Timo , Humanos , Animais , Camundongos , Timo/fisiologia , Sistema Imunitário , Quimiocinas , Ataxia , Tecido Linfoide
17.
Proc Natl Acad Sci U S A ; 121(32): e2404146121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39074278

RESUMO

Cell-matrix interactions in 3D environments significantly differ from those in 2D cultures. As such, mechanisms of mechanotransduction in 2D cultures are not necessarily applicable to cell-encapsulating hydrogels that resemble features of tissue architecture. Accordingly, the characterization of molecular pathways in 3D matrices is expected to uncover insights into how cells respond to their mechanical environment in physiological contexts, and potentially also inform hydrogel-based strategies in cell therapies. In this study, a bone marrow-mimetic hydrogel was employed to systematically investigate the stiffness-responsive transcriptome of mesenchymal stromal cells. High matrix rigidity impeded integrin-collagen adhesion, resulting in changes in cell morphology characterized by a contractile network of actin proximal to the cell membrane. This resulted in a suppression of extracellular matrix-regulatory genes involved in the remodeling of collagen fibrils, as well as the upregulation of secreted immunomodulatory factors. Moreover, an investigation of long noncoding RNAs revealed that the cytoskeleton regulator RNA (CYTOR) contributes to these 3D stiffness-driven changes in gene expression. Knockdown of CYTOR using antisense oligonucleotides enhanced the expression of numerous mechanoresponsive cytokines and chemokines to levels exceeding those achievable by modulating matrix stiffness alone. Taken together, our findings further our understanding of mechanisms of mechanotransduction that are distinct from canonical mechanotransductive pathways observed in 2D cultures.


Assuntos
Matriz Extracelular , Mecanotransdução Celular , Células-Tronco Mesenquimais , RNA Longo não Codificante , Humanos , Células-Tronco Mesenquimais/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Matriz Extracelular/metabolismo , Hidrogéis/química , Regulação da Expressão Gênica , Colágeno/metabolismo , Células Cultivadas , Imunomodulação/genética
18.
EMBO J ; 41(4): e108415, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34957577

RESUMO

Leptin receptor (LepR)-positive cells are key components of the bone marrow hematopoietic microenvironment, and highly enrich skeletal stem and progenitor cells that maintain homeostasis of the adult skeleton. However, the heterogeneity and lineage hierarchy within this population has been elusive. Using genetic lineage tracing and single-cell RNA sequencing, we found that Lepr-Cre labels most bone marrow stromal cells and osteogenic lineage cells in adult long bones. Integrated analysis of Lepr-Cre-traced cells under homeostatic and stress conditions revealed dynamic changes of the adipogenic, osteogenic, and periosteal lineages. Importantly, we discovered a Notch3+ bone marrow sub-population that is slow-cycling and closely associated with the vasculatures, as well as key transcriptional networks promoting osteo-chondrogenic differentiation. We also identified a Sca-1+ periosteal sub-population with high clonogenic activity but limited osteo-chondrogenic potential. Together, we mapped the transcriptomic landscape of adult LepR+ stem and progenitor cells and uncovered cellular and molecular mechanisms underlying their maintenance and lineage specification.


Assuntos
Osso e Ossos/citologia , Receptores para Leptina/metabolismo , Análise de Célula Única/métodos , Células-Tronco/fisiologia , Envelhecimento/fisiologia , Animais , Antígenos Ly/metabolismo , Diferenciação Celular , Linhagem da Célula , Ensaio de Unidades Formadoras de Colônias , Feminino , Fraturas Ósseas , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rosiglitazona/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Estresse Fisiológico
19.
Trends Immunol ; 44(9): 724-743, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37573226

RESUMO

The natural history of advanced malignant melanoma demonstrates that, in most cases, widespread tumor dissemination is preceded by regional metastases involving tumor-draining lymph nodes [sentinel lymph nodes (SLNs)]. Under physiological conditions, LNs play a central role in immunosurveillance to non-self-antigens to which they are exposed via afferent lymph. The dysfunctional immunity in SLNs is mediated by tumor secretory factors that allow the survival of metastatic melanoma cells within the LN by creating a premetastatic niche (PMN). Recent studies outline the altered microenvironment of LNs shaped by melanoma mediators. Here, we discuss tumor secretory factors involved in subverting tumor immunity and remodeling LNs and highlight emerging therapeutic strategies to reinvigorate antitumoral immunity in SLNs.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Metástase Linfática/patologia , Melanoma/patologia , Neoplasias Cutâneas/patologia , Linfonodos , Microambiente Tumoral
20.
Immunity ; 47(1): 80-92.e4, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28709801

RESUMO

Lymph nodes (LNs) are strategically situated throughout the body at junctures of the blood vascular and lymphatic systems to direct immune responses against antigens draining from peripheral tissues. The current paradigm describes LN development as a programmed process that is governed through the interaction between mesenchymal lymphoid tissue organizer (LTo) cells and hematopoietic lymphoid tissue inducer (LTi) cells. Using cell-type-specific ablation of key molecules involved in lymphoid organogenesis, we found that initiation of LN development is dependent on LTi-cell-mediated activation of lymphatic endothelial cells (LECs) and that engagement of mesenchymal stromal cells is a succeeding event. LEC activation was mediated mainly by signaling through receptor activator of NF-κB (RANK) and the non-canonical NF-κB pathway and was steered by sphingosine-1-phosphate-receptor-dependent retention of LTi cells in the LN anlage. Finally, the finding that pharmacologically enforced interaction between LTi cells and LECs promotes ectopic LN formation underscores the central LTo function of LECs.


Assuntos
Células Endoteliais/fisiologia , Linfonodos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Organogênese , Animais , Diferenciação Celular , Células Cultivadas , Coristoma , Embrião de Mamíferos , Receptor beta de Linfotoxina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa