Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cereb Cortex ; 33(6): 2997-3011, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35830871

RESUMO

Research studies based on tractography have revealed a prominent reduction of asymmetry in some key white-matter tracts in schizophrenia (SCZ). However, we know little about the influence of common genetic risk factors for SCZ on the efficiency of routing on structural brain networks (SBNs). Here, we use a novel recall-by-genotype approach, where we sample young adults from a population-based cohort (ALSPAC:N genotyped = 8,365) based on their burden of common SCZ risk alleles as defined by polygenic risk score (PRS). We compared 181 individuals at extremes of low (N = 91) or high (N = 90) SCZ-PRS under a robust diffusion MRI-based graph theoretical SBN framework. We applied a semi-metric analysis revealing higher SMR values for the high SCZ-PRS group compared with the low SCZ-PRS group in the left hemisphere. Furthermore, a hemispheric asymmetry index showed a higher leftward preponderance of indirect connections for the high SCZ-PRS group compared with the low SCZ-PRS group (PFDR < 0.05). These findings might indicate less efficient structural connectivity in the higher genetic risk group. This is the first study in a population-based sample that reveals differences in the efficiency of SBNs associated with common genetic risk variants for SCZ.


Assuntos
Esquizofrenia , Adulto Jovem , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Predisposição Genética para Doença/genética , Encéfalo/diagnóstico por imagem , Fatores de Risco , Genótipo
2.
Hum Brain Mapp ; 44(8): 3311-3323, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36987996

RESUMO

Understanding the neurodegenerative mechanisms underlying cognitive decline in the general population may facilitate early detection of adverse health outcomes in late life. This study investigates genetic links between brain morphometry, ageing and cognitive ability. We develop Genomic Principal Components Analysis (Genomic PCA) to model general dimensions of brain-wide morphometry at the level of their underlying genetic architecture. Genomic PCA is applied to genome-wide association data for 83 brain-wide volumes (36,778 UK Biobank participants) and we extract genomic principal components (PCs) to capture global dimensions of genetic covariance across brain regions (unlike ancestral PCs that index genetic similarity between participants). Using linkage disequilibrium score regression, we estimate genetic overlap between those general brain dimensions and cognitive ageing. The first genetic PCs underlying the morphometric organisation of 83 brain-wide regions accounted for substantial genetic variance (R2  = 40%) with the pattern of component loadings corresponding closely to those obtained from phenotypic analyses. Genetically more central regions to overall brain structure - specifically frontal and parietal volumes thought to be part of the central executive network - tended to be somewhat more susceptible towards age (r = -0.27). We demonstrate the moderate genetic overlap between the first PC underlying each of several structural brain networks and general cognitive ability (rg  = 0.17-0.21), which was not specific to a particular subset of the canonical networks examined. We provide a multivariate framework integrating covariance across multiple brain regions and the genome, revealing moderate shared genetic etiology between brain-wide morphometry and cognitive ageing.


Assuntos
Disfunção Cognitiva , Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Encéfalo/diagnóstico por imagem , Cognição , Envelhecimento , Polimorfismo de Nucleotídeo Único
3.
Neuroimage ; 233: 117945, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33711482

RESUMO

Understanding sex-related differences across the human cerebral cortex is an important step in elucidating the basis of psychological, behavioural and clinical differences between the sexes. Prior structural neuroimaging studies primarily focused on regional sex differences using univariate analyses. Here we focus on sex differences in cortical morphological networks (CMNs) derived using multivariate modelling of regional cortical measures of volume and surface from high-quality structural MRI scans from healthy participants in the Human Connectome Project (HCP) (n = 1,063) and the Southwest University Longitudinal Imaging Multimodal (SLIM) study (n = 549). The functional relevance of the CMNs was inferred using the NeuroSynth decoding function. Sex differences were widespread but not uniform. In general, females had higher volume, thickness and cortical folding in networks that involve prefrontal (both ventral and dorsal regions including the anterior cingulate) and parietal regions while males had higher volume, thickness and cortical folding in networks that primarily include temporal and posterior cortical regions. CMN loading coefficients were used as input features to linear discriminant analyses that were performed separately in the HCP and SLIM; sex was predicted with a high degree of accuracy (81%-85%) across datasets. The availability of behavioral data in the HCP enabled us to show that male-biased surface-based CMNs were associated with externalizing behaviors. These results extend previous literature on regional sex-differences by identifying CMNs that can reliably predict sex, are relevant to the expression of psychopathology and provide the foundation for the future investigation of their functional significance in clinical populations.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Caracteres Sexuais , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/tendências , Masculino , Adulto Jovem
4.
Neuroimage ; 225: 117493, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33127479

RESUMO

Structural brain networks constructed from diffusion MRI are important biomarkers for understanding human brain structure and its relation to cognitive functioning. There is increasing interest in learning differences in structural brain networks between groups of subjects in neuroimaging studies, leading to a variable selection problem in network classification. Traditional methods often use independent edgewise tests or unstructured generalized linear model (GLM) with regularization on vectorized networks to select edges distinguishing the groups, which ignore the network structure and make the results hard to interpret. In this paper, we develop a symmetric bilinear logistic regression (SBLR) with elastic-net penalty to identify a set of small clique subgraphs in network classification. Clique subgraphs, consisting of all the interconnections among a subset of brain regions, have appealing neurological interpretations as they may correspond to some anatomical circuits in the brain related to the outcome. We apply this method to study differences in the structural connectome between adolescents with high and low crystallized cognitive ability, using the crystallized cognition composite score, picture vocabulary and oral reading recognition tests from NIH Toolbox. A few clique subgraphs containing several small sets of brain regions are identified between different levels of functioning, indicating their importance in crystallized cognition.


Assuntos
Encéfalo/diagnóstico por imagem , Cognição , Adolescente , Encéfalo/fisiologia , Imagem de Difusão por Ressonância Magnética , Humanos , Modelos Lineares , Modelos Logísticos , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia
5.
Hum Brain Mapp ; 42(5): 1406-1415, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33289924

RESUMO

Cerebral small vessel disease is a common finding in the elderly and associated with various clinical sequelae. Previous studies suggest disturbances in the integration capabilities of structural brain networks as a mediating link between imaging and clinical presentations. To what extent cerebral small vessel disease might interfere with other measures of global network topology is not well understood. Connectomes were reconstructed via diffusion weighted imaging in a sample of 930 participants from a population based epidemiologic study. Linear models were fitted testing for an association of graph-theoretical measures reflecting integration and segregation with both the Peak width of Skeletonized Mean Diffusivity (PSMD) and the load of white matter hyperintensities of presumed vascular origin (WMH). The latter were subdivided in periventricular and deep for an analysis of localisation-dependent correlations of cerebral small vessel disease. The median WMH volume was 0.6 mL (1.4) and the median PSMD 2.18 mm2 /s x 10-4 (0.5). The connectomes showed a median density of 0.880 (0.030), the median values for normalised global efficiency, normalised clustering coefficient, modularity Q and small-world propensity were 0.780 (0.045), 1.182 (0.034), 0.593 (0.026) and 0.876 (0.040) respectively. An increasing burden of cerebral small vessel disease was significantly associated with a decreased integration and increased segregation and thus decreased small-worldness of structural brain networks. Even in rather healthy subjects increased cerebral small vessel disease burden is accompanied by topological brain network disturbances. Segregation parameters and small-worldness might as well contribute to the understanding of the known clinical sequelae of cerebral small vessel disease.


Assuntos
Doenças de Pequenos Vasos Cerebrais/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Rede Nervosa/patologia , Substância Branca/patologia , Idoso , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
6.
Hum Brain Mapp ; 37(1): 300-10, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26466741

RESUMO

Cerebral small vessel disease (SVD), including white matter hyperintensities (WMH), lacunes and microbleeds, and brain atrophy, are related to cognitive impairment. However, these magnetic resonance imaging (MRI) markers for SVD do not account for all the clinical variances observed in subjects with SVD. Here, we investigated the relation between conventional MRI markers for SVD, network efficiency and cognitive performance in 436 nondemented elderly with cerebral SVD. We computed a weighted structural connectivity network from the diffusion tensor imaging and deterministic streamlining. We found that SVD-severity (indicated by higher WMH load, number of lacunes and microbleeds, and lower total brain volume) was related to networks with lower density, connection strengths, and network efficiency, and to lower scores on cognitive performance. In multiple regressions models, network efficiency remained significantly associated with cognitive index and psychomotor speed, independent of MRI markers for SVD and mediated the associations between these markers and cognition. This study provides evidence that network (in)efficiency might drive the association between SVD and cognitive performance. This highlights the importance of network analysis in our understanding of SVD-related cognitive impairment in addition to conventional MRI markers for SVD and might provide an useful tool as disease marker.


Assuntos
Encéfalo/patologia , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/patologia , Transtornos Cognitivos/etiologia , Vias Neurais/patologia , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Desempenho Psicomotor
7.
Heliyon ; 10(6): e27947, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509880

RESUMO

Cerebral small vessel disease (SVD) may be associated with an increased risk of depressive symptoms. Serum uric acid (SUA), an antioxidant, may be involved in the occurrence and development of depressive symptoms, but the mechanism remains unknown. Moreover, the relationship between structural brain networks and SUA has not been explored. This study examined the relationship between SUA and depressive symptoms in patients with SVD using graph theory analysis. We recruited 208 SVD inpatients and collected fasting blood samples upon admission. Depressive symptoms were assessed using the 24-item Hamilton Depression Rating Scale (HAMD-24). Magnetic resonance imaging was used to evaluate SVD, and diffusion tensor images were used to analyze structural brain networks using graph theory. Patients with depressive symptoms (n = 34, 25.76%) compared to those without (334.53 vs 381.28 µmol/L, p = 0.017) had lower SUA levels. Graph theoretical analyses showed a positive association of SUA with betweenness centrality, nodal efficiency, and clustering coefficients and a negative correlation with the shortest path length in SVD with depressive symptoms group. HAMD scores were significantly associated with nodal network metrics in the right cerebral hemisphere. Our findings suggested that lower SUA levels are significantly associated with disrupted structural brain networks in the right cerebral hemisphere of patients with SVD who have depressive symptoms.

8.
J Neural Eng ; 18(4)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33930878

RESUMO

Objective.Our understanding of early brain development is limited due to rapid changes in white matter pathways after birth. In this study, we introduced a multi-scale cross-modal approach to investigate the rich club (RC) organization and topology of the structural brain networks in 40 healthy neonates using diffusion-weighted imaging and resting-state fMRI data.Approach.A group independent component analysis was first performed to identify eight resting state networks (RSNs) used as functional modules. A groupwise whole-brain functional parcellation was also performed at five scales comprising 100-900 parcels. The distribution of RC nodes was then investigated within and between the RSNs. We further assessed the distribution of short and long-range RC, feeder and local connections across different parcellation scales.Main results.Sharing the scale-free characteristic of small-worldness, the neonatal structural brain networks exhibited an RC organization at different nodal scales (NSs). The subcortical, sensory-motor and default mode networks were found to be strongly involved in the RC organization of the structural brain networks, especially in the zones where the RSNs overlapped, with an average cross-scale proportion of 45.9%, 28.5% and 10.5%, respectively. A large proportion of the connector hubs were found to be RC members for the coarsest (73%) to finest (92%) NSs. Our results revealed a prominent involvement of cortico-subcortical and cortico-cerebellar white matter pathways in the RC organization of the neonatal brain. Regardless of the NS, the majority (more than 65.2%) of the inter-RSN connections were long distance RC or feeder with an average physical connection of 105.5 and 97.4 mm, respectively. Several key RC regions were identified, including the insula and cingulate gyri, middle and superior temporal gyri, hippocampus and parahippocampus, fusiform gyrus, precuneus, superior frontal and precentral gyri, calcarine fissure and lingual gyrus.Significance.Our results emphasize the importance of the multi-scale connectivity analysis in assessing the cross-scale reproducibility of the connectivity results concerning the global and local topological properties of the brain networks. Our findings may improve our understanding of the early brain development.


Assuntos
Imageamento por Ressonância Magnética , Rede Nervosa , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Córtex Cerebral , Humanos , Recém-Nascido , Rede Nervosa/diagnóstico por imagem , Vias Neurais , Reprodutibilidade dos Testes
9.
Ther Adv Neurol Disord ; 12: 1756286419880664, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798688

RESUMO

BACKGROUND: Focal dystonias are severe and disabling movement disorders of a still unclear origin. The structural brain networks associated with focal dystonia have not been well characterized. Here, we investigated structural brain network fingerprints in patients with blepharospasm (BSP) compared with those with hemifacial spasm (HFS), and healthy controls (HC). The patients were also examined following treatment with botulinum neurotoxin (BoNT). METHODS: This study included matched groups of 13 BSP patients, 13 HFS patients, and 13 HC. We measured patients using structural-magnetic resonance imaging (MRI) at baseline and after one month BoNT treatment, at time points of maximal and minimal clinical symptom representation, and HC at baseline. Group regional cross-correlation matrices calculated based on grey matter volume were included in graph-based network analysis. We used these to quantify global network measures of segregation and integration, and also looked at local connectivity properties of different brain regions. RESULTS: The networks in patients with BSP were more segregated than in patients with HFS and HC (p < 0.001). BSP patients had increased connectivity in frontal and temporal cortices, including sensorimotor cortex, and reduced connectivity in the cerebellum, relative to both HFS patients and HC (p < 0.05). Compared with HC, HFS patients showed increased connectivity in temporal and parietal cortices and a decreased connectivity in the frontal cortex (p < 0.05). In BSP patients, the connectivity of the frontal cortex diminished after BoNT treatment (p < 0.05). In contrast, HFS patients showed increased connectivity in the temporal cortex and reduced connectivity in cerebellum after BoNT treatment (p < 0.05). CONCLUSIONS: Our results show that BSP patients display alterations in both segregation and integration in the brain at the network level. The regional differences identified in the sensorimotor cortex and cerebellum of these patients may play a role in the pathophysiology of focal dystonia. Moreover, symptomatic reduction of hyperkinesia by BoNT treatment was associated with different brain network fingerprints in both BSP and HFS patients.

10.
Connect Neuroimaging (2019) ; 11848: 42-53, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34514470

RESUMO

The permutation test is an often used test procedure for determining statistical significance in brain network studies. Unfortunately, generating every possible permutation for large-scale brain imaging datasets such as HCP and ADNI with hundreds of subjects is not practical. Many previous attempts at speeding up the permutation test rely on various approximation strategies such as estimating the tail distribution with known parametric distributions. In this study, we propose the novel transposition test that exploits the underlying algebraic structure of the permutation group. The method is applied to a large number of diffusion tensor images in localizing the regions of the brain network differences.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa