Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 109: 129814, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815872

RESUMO

High temperature requirement A serine peptidase 1 (HTRA1) is a serine protease involved in an array of signaling pathways. It is also responsible for the regulation of protein aggregates via refolding, translocation, and degradation. It has subsequently been found that runaway proteolytic HTRA1 activity plays a role in a variety of diseases, including Age-Related Macular Degeneration (AMD), osteoarthritis, and Rheumatoid Arthritis. Selective inhibition of serine protease HTRA1 therefore offers a promising new strategy for the treatment of these diseases. Herein we disclose structure-activity-relationship (SAR) studies which identify key interactions responsible for binding affinity of small molecule inhibitors to HTRA1. The study results in highly potent molecules with IC50's less than 15 nM and excellent selectivity following a screen of 35 proteases.


Assuntos
Serina Peptidase 1 de Requerimento de Alta Temperatura A , Serina Endopeptidases , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Relação Estrutura-Atividade , Humanos , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química
2.
Bioorg Med Chem Lett ; 98: 129596, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142914

RESUMO

To identify new compounds that can effectively inhibit Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), we screened, synthesized, and evaluated a series of novel aryl fluorosulfate derivatives for their in vitro inhibitory activity against Mtb. Compound 21b exhibited an in vitro minimum inhibitory concentration (MIC) of 0.06 µM against Mtb, no cytotoxicity against both HEK293T and HepG2 mammalian cell lines, and had good in vivo mouse plasma exposure and lung concentration with a 20 mg/kg oral dose, which supports advanced development as a new chemical entity for TB treatment.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Camundongos , Antituberculosos , Células HEK293 , Mamíferos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Ésteres do Ácido Sulfúrico/química , Ésteres do Ácido Sulfúrico/farmacologia
3.
Bioorg Chem ; 143: 107005, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043397

RESUMO

Uveal melanoma (UM) represents the predominant ocular malignancy among adults, exhibiting high malignancy and proclivity for liver metastasis. GNAQ and GNA11 encoding Gαq and Gα11 proteins are key genes to drive UM, making the selective inhibition of Gαq/11 proteins to be a potential therapeutic approach for combating UM. In this study, forty-six quinazoline derivatives were designed, synthesized, and assessed for their ability to inhibit Gαq/11 proteins and UM cells. Compound F33 emerged as the most favorable candidate, and displayed moderate inhibitory activity against Gαq/11 proteins (IC50 = 9.4 µM) and two UM cell lines MP41 (IC50 = 6.7 µM) and 92.1 (IC50 = 3.7 µM). Being a small molecule inhibitor of Gαq/11 proteins, F33 could effectively suppress the activation of downstream signaling pathways in a dose-dependent manner, and significantly inhibits UM in vitro.F33 represents a promising lead compound for developing therapeutics for UM by targeting Gαq/11 proteins.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Melanoma/patologia , Transdução de Sinais , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Linhagem Celular Tumoral
4.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373293

RESUMO

The melanocortin receptors are involved in numerous physiological pathways, including appetite, skin and hair pigmentation, and steroidogenesis. In particular, the melanocortin-3 receptor (MC3R) is involved in fat storage, food intake, and energy homeostasis. Small-molecule ligands developed for the MC3R may serve as therapeutic lead compounds for treating disease states of energy disequilibrium. Herein, three previously reported pyrrolidine bis-cyclic guanidine compounds with five sites for molecular diversity (R1-R5) were subjected to parallel structure-activity relationship studies to identify the common pharmacophore of this scaffold series required for full agonism at the MC3R. The R2, R3, and R5 positions were required for full MC3R efficacy, while truncation of either the R1 or R4 positions in all three compounds resulted in full MC3R agonists. Two additional fragments, featuring molecular weights below 300 Da, were also identified that possessed full agonist efficacy and micromolar potencies at the mMC5R. These SAR experiments may be useful in generating new small-molecule ligands and chemical probes for the melanocortin receptors to help elucidate their roles in vivo and as therapeutic lead compounds.


Assuntos
Farmacóforo , Receptor Tipo 3 de Melanocortina , Receptor Tipo 3 de Melanocortina/agonistas , Receptor Tipo 3 de Melanocortina/metabolismo , Guanidina/farmacologia , Ligantes , Receptores de Melanocortina/metabolismo , Guanidinas , Relação Estrutura-Atividade
5.
J Pept Sci ; 28(12): e3430, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35767148

RESUMO

Herein, we report the synthesis and antibacterial evaluation of a series of daptomycin lactam-based analogues. As compared with daptomycin, the daptomycin analogue with singly modified lactam has an eightfold increase in its minimum inhibitory concentration (MIC) against methicillin-resistant Staphylococcus aureus. Incorporating effective modifications found in previous daptomycin structure-activity relationship studies to produce lactam-based analogues with multiple modifications did not improve the antibacterial activity of the analogues. Instead, the antibacterial activity was greatly reduced when a rather rigid 4-(phenylethynyl)benzoyl group replaced the flexible n-decanoyl group. The fact that the lactam analogue with the 4-(phenylethynyl)benzoyl group did not exhibit the antibacterial activity comparable to the two respective singly modified analogues showed that the inactivity was probably due to the deviation from the active conformation. This series of lactam analogues may generate insights on the importance of studying the active conformation of daptomycin and how the structural modifications affect the active conformation.


Assuntos
Daptomicina , Staphylococcus aureus Resistente à Meticilina , Daptomicina/farmacologia , Lactamas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
6.
Arch Pharm (Weinheim) ; 355(12): e2200167, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36125217

RESUMO

Heterocyclic scaffolds of natural as well as synthetic origin provide almost all categories of drugs exhibiting a wide range of pharmacological activities, such as antibiotics, antidiabetic and anticancer agents, and so on. Under normal homeostasis, aldose reductase 2 (ALR2) regulates vital metabolic functions; however, in pathological conditions like diabetes, ALR2 is unable to function and leads to secondary diabetic complications. ALR2 inhibitors are a novel target for the treatment of retinopathy (cataract) influenced by diabetes. Epalrestat (stat), an ALR2 inhibitor, is the only drug candidate that was approved in the last four decades; the other drugs from the stat class were retracted after clinical trial studies due to untoward iatrogenic effects. The present study summarizes the recent development (2014 and onwards) of this pharmacologically active ALR2 heterocyclic scaffold and illustrates the rationale behind the design, structure-activity relationships, and biological studies performed on these molecules. The aim of the current review is to pave a straight path for medicinal chemists and chemical biologists, and, in general, to the drug discovery scientists to facilitate the synthesis and development of novel ALR2 inhibitors that may serve as lead molecules for the treatment of diseases related to the ALR2 enzyme.


Assuntos
Aldeído Redutase , Inibidores Enzimáticos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Hipoglicemiantes/farmacologia , Relação Estrutura-Atividade , Ensaios Clínicos como Assunto
7.
Molecules ; 27(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630697

RESUMO

This paper reports on a novel series of tyrosine kinase inhibitors (TKIs) potentially useful for the treatment of chronic myeloid leukemia (CML). The newly designed and synthesized compounds are structurally related to nilotinib (NIL), a second-generation oral TKI, and to a series of imatinib (IM)-based TKIs, previously reported by our research group, these latter characterized by a hybrid structure between TKIs and heme oxygenase-1 (HO-1) inhibitors. The enzyme HO-1 was selected as an additional target since it is overexpressed in many cases of drug resistance, including CML. The new derivatives 1a-j correctly tackle the chimeric protein BCR-ABL. Therefore, the inhibition of TK was comparable to or higher than NIL and IM for many novel compounds, while most of the new analogs showed only moderate potency against HO-1. Molecular docking studies revealed insights into the binding mode with BCR-ABL and HO-1, providing a structural explanation for the differential activity. Cytotoxicity on K562 CML cells, both NIL-sensitive and -resistant, was evaluated. Notably, some new compounds strongly reduced the viability of K562 sensitive cells.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Inibidores de Proteínas Quinases , Doença Crônica , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
8.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208939

RESUMO

According to the latest report released by the World Health Organization, bacterial resistance to well-known and widely available antibacterial drugs has become a significant and severe global health concern and a grim challenge to tackle in order to cure infections associated with multidrug-resistant pathogenic microorganisms efficiently. Consequently, various strategies have been orchestrated to cure the severe complications related to multidrug-resistant bacteria effectively. Some approaches involved the retardation of biofilm formation and multidrug-resistance pumps in bacteria as well as the discovery of new antimicrobial agents demonstrating different mechanisms of action. In this regard, natural products namely alkaloids, terpenoids, steroids, anthraquinone, flavonoids, saponins, tannins, etc., have been suggested to tackle the multidrug-resistant bacterial strains owing to their versatile pharmacological effects. Amongst these, flavonoids, also known as polyphenolic compounds, have been widely evaluated for their antibacterial property due to their tendency to retard the growth of a wide range of pathogenic microorganisms, including multidrug-resistant bacteria. The hydroxylation of C5, C7, C3', and C4'; and geranylation or prenylation at C6 have been extensively studied to increase bacterial inhibition of flavonoids. On the other hand, methoxylation at C3' and C5 has been reported to decrease flavonoids' antibacterial action. Hence, the latest information on the antibacterial activity of flavonoids is summarized in this review, with particular attention to the structure-activity relationship of this broad class of natural compounds to discover safe and potent antibacterial agents as natural products.


Assuntos
Antibacterianos , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Flavonoides , Antibacterianos/química , Antibacterianos/uso terapêutico , Flavonoides/química , Flavonoides/uso terapêutico , Relação Estrutura-Atividade
9.
Med Res Rev ; 40(1): 135-157, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31218731

RESUMO

G proteins are key mediators of G protein-coupled receptor (GPCR) signaling, facilitating a plethora of important physiological processes. The role of G proteins is much less understood than other aspects of GPCR function, which is largely due to the shortage of potent and selective G protein inhibitors. The natural cyclic depsipeptides YM-254890 and FR900359 are two of the very few known selective inhibitors of the Gq subfamily, and are used as unique pharmacological tools in the study of G q -mediated signaling. Moreover, a peptide-based G protein antagonist-2A (GP-2A), a 27-residue peptide (27mer(I860A)) derived from phospholipase C-ß3 (PLC-ß3), and the small molecule BIM-46187 have also been characterized as selective G q inhibitors within the past 5 years. In this review, we highlight the recent development in chemical syntheses, characterization, and mechanism of action of these selective G q inhibitors. The development and application of G q -selective inhibitors will expand our knowledge of the structure and function of G protein-mediated signaling, shed light on the development of inhibitors for other G protein classes, and feed in to drug discovery for diseases where G proteins are implicated, including various forms of cancer.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Animais , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
10.
Med Chem Res ; 29(7): 1187-1198, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33642842

RESUMO

The aberrant protein-protein interaction between calmodulin and mutant huntingtin protein in Huntington's disease patients has been found to contribute to Huntington's disease progression. A high-throughput screen for small molecules capable of disrupting this interaction revealed a sultam series as potent small-molecule disruptors. Diversification of the sultam scaffold afforded a set of 24 analogs or further evaluation. Several structure-activity trends within the analog set were found, most notably a negligible effect of absolute stereochemistry and a strong beneficial correlation with electron-withdrawing aromatic substituents. The most promising analogs were profiled for off-target effects at relevant kinases and, ultimately, one candidate molecule was evaluated for neuroprotection in a neuronal cell model of Huntington's disease.

11.
Molecules ; 24(19)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581433

RESUMO

In earlier work, we reported a novel class of CB2 selective ligands namely cannabilactones. These compounds carry a dimethylheptyl substituent at C3, which is typical for synthetic cannabinoids. In the current study with the focus on the pharmacophoric side chain at C3 we explored the effect of replacing the C1'-gem-dimethyl group with the bulkier cyclopentyl ring, and, we also probed the chain's length and terminal carbon substitution with bromo or cyano groups. One of the analogs synthesized namely 6-[1-(1,9-dihydroxy-6-oxo-6H-benzo[c]chromen-3-yl) cyclopentyl] hexanenitrile (AM4346) has very high affinity (Ki = 4.9 nM) for the mouse CB2 receptor (mCB2) and 131-fold selectivity for that target over the rat CB1 (rCB1). The species difference in the affinities of AM4346 between the mouse (m) and the human (h) CB2 receptors is reduced when compared to our first-generation cannabilactones. In the cyclase assay, our lead compound was found to be a highly potent and efficacious hCB2 receptor agonist (EC50 = 3.7 ± 1.5 nM, E(max) = 89%). We have also extended our structure-activity relationship (SAR) studies to include biphenyl synthetic intermediates that mimic the structure of the phytocannabinoid cannabinodiol.


Assuntos
Canabinoides/síntese química , Lactonas/síntese química , Receptor CB2 de Canabinoide/antagonistas & inibidores , Animais , Canabinoides/química , Canabinoides/farmacologia , Células HEK293 , Humanos , Lactonas/química , Lactonas/farmacologia , Camundongos , Estrutura Molecular , Ratos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/química , Receptor CB2 de Canabinoide/química , Especificidade da Espécie , Relação Estrutura-Atividade
12.
Molecules ; 24(9)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035548

RESUMO

In this work, the synthesis of the cannabinoid receptor 1 neutral antagonists 8-chloro-1-(2,4-dichlorophenyl)-N-piperidin-1-yl-4,5-dihydrobenzo-1H-6-oxa-cyclohepta[1,2-c]pyrazole-3-carboxamide 1a and its deaza N-cyclohexyl analogue 1b has led to a deepening of the structure-activity studies of this class of compounds. A series of novel 4,5-dihydrobenzo-oxa-cycloheptapyrazoles analogues of 1a,b, derivatives 1c-j, was synthesized, and their affinity towards cannabinoid receptors was determined. Representative terms were evaluated using in vitro tests and isolated organ assays. Among the derivatives, 1d and 1e resulted in the most potent CB1 receptor ligands (KiCB1 = 35 nM and 21.70 nM, respectively). Interestingly, both in vitro tests and isolated organ assays evidenced CB1 antagonist activity for the majority of the new compounds, excluding compound 1e, which showed a CB1 partial agonist behaviour. CB1 antagonist activity of 1b was further confirmed by a mouse gastrointestinal transit assay. Significant activity of the new CB1 antagonists towards food intake was showed by preliminary acute assays, evidencing the potentiality of these new derivatives in the treatment of obesity.


Assuntos
Desenvolvimento de Medicamentos , Oxigênio/química , Pirazóis/química , Receptor CB1 de Canabinoide/química , Animais , Biomarcadores , Linhagem Celular , Relação Dose-Resposta a Droga , Ligantes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Especificidade de Órgãos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ligação Proteica , Pirazóis/síntese química , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Relação Estrutura-Atividade
13.
J Biol Chem ; 291(13): 7205-20, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26817840

RESUMO

Cone snail toxins are well known blockers of voltage-gated sodium channels, a property that is of broad interest in biology and therapeutically in treating neuropathic pain and neurological disorders. Although most conotoxin channel blockers function by direct binding to a channel and disrupting its normal ion movement, conotoxin µO§-GVIIJ channel blocking is unique, using both favorable binding interactions with the channel and a direct tether via an intermolecular disulfide bond. Disulfide exchange is possible because conotoxin µO§-GVIIJ contains anS-cysteinylated Cys-24 residue that is capable of exchanging with a free cysteine thiol on the channel surface. Here, we present the solution structure of an analog of µO§-GVIIJ (GVIIJ[C24S]) and the results of structure-activity studies with synthetic µO§-GVIIJ variants. GVIIJ[C24S] adopts an inhibitor cystine knot structure, with two antiparallel ß-strands stabilized by three disulfide bridges. The loop region linking the ß-strands (loop 4) presents residue 24 in a configuration where it could bind to the proposed free cysteine of the channel (Cys-910, rat NaV1.2 numbering; at site 8). The structure-activity study shows that three residues (Lys-12, Arg-14, and Tyr-16) located in loop 2 and spatially close to residue 24 were also important for functional activity. We propose that the interaction of µO§-GVIIJ with the channel depends on not only disulfide tethering via Cys-24 to a free cysteine at site 8 on the channel but also the participation of key residues of µO§-GVIIJ on a distinct surface of the peptide.


Assuntos
Conotoxinas/química , Dissulfetos/química , Proteínas Musculares/química , Canal de Sódio Disparado por Voltagem NAV1.2/química , Bloqueadores dos Canais de Sódio/química , Canais de Sódio/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Conotoxinas/síntese química , Cristalografia por Raios X , Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutação , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Caramujos/química , Bloqueadores dos Canais de Sódio/síntese química , Canais de Sódio/genética , Canais de Sódio/metabolismo , Técnicas de Síntese em Fase Sólida , Relação Estrutura-Atividade
14.
Bioorg Med Chem ; 25(11): 2901-2916, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28236510

RESUMO

The proteasome, a validated cellular target for cancer, is central for maintaining cellular homeostasis, while fatty acid synthase (FAS), a novel target for numerous cancers, is responsible for palmitic acid biosynthesis. Perturbation of either enzymatic machine results in decreased proliferation and ultimately cellular apoptosis. Based on structural similarities, we hypothesized that hybrid molecules of belactosin C, a known proteasome inhibitor, and orlistat, a known inhibitor of the thioesterase domain of FAS, could inhibit both enzymes. Herein, we describe proof-of-principle studies leading to the design, synthesis and enzymatic activity of several novel, ß-lactone-based, dual inhibitors of these two enzymes. Validation of dual enzyme targeting through activity-based proteome profiling with an alkyne probe modeled after the most potent inhibitor, and preliminary serum stability studies of selected derivatives are also described. These results provide proof of concept for dual targeting of the proteasome and fatty acid synthase-thioesterase (FAS-TE) enabling a new approach for the development of drug-candidates with potential to overcome resistance.


Assuntos
Ácido Graxo Sintases/antagonistas & inibidores , Lactonas/farmacologia , Peptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácido Graxo Sintases/metabolismo , Células HeLa , Humanos , Lactonas/química , Células MCF-7 , Estrutura Molecular , Orlistate , Peptídeos/química , Relação Estrutura-Atividade
15.
Biopolymers ; 106(1): 101-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26566778

RESUMO

Subtle changes in the sequence at the N-terminus and in the aromatic core of hexapeptidic ghrelin receptor inverse agonists can switch behavior from inverse agonism to agonism, but the C-terminal role of the sequence is unclear. Thus, analogs of the ghrelin receptor inverse agonist KbFwLL-NH2 (b = ß-(3-benzothienyl)-d-alanine) were synthesized by solid phase peptide synthesis in order to identify the influence of aromaticity, charge, and hydrophobicity. Potency and efficacy of the hexapeptides were evaluated in inositol triphosphate turnover assays. Notably, modifications directly at the C-terminal Leu(6) could influence peptide efficacy leading to decreased constitutive activity. High hydrophobicity at the C-terminal position was of importance for elevated inverse agonist activity, the introduction of charged amino acids led to decreased potency. In contrast, structure-activity relationship studies of Leu(5) located closer to the aromatic core revealed an agonism-inducing position. These findings imply that amino acids with possible cation-π or π-π interactions and a suitable orientation at the C-terminus of the aromatic core induce agonism. Receptor binding studies showed that most peptides bind to the receptor at a concentration of 1 µM and modification directly at the C-terminus is generally more accepted than Leu(5) substitution. Interestingly, this observation is not dependent on the type of modification. These studies reveal another switch region of the short ghrelin receptor ligand pointing out the sensitivity of the ghrelin receptor binding pocket.


Assuntos
Oligopeptídeos/química , Receptores de Grelina/antagonistas & inibidores , Animais , Células COS , Chlorocebus aethiops , Oligopeptídeos/síntese química , Receptores de Grelina/agonistas , Receptores de Grelina/química
16.
Bioorg Med Chem Lett ; 24(4): 1201-8, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24447850

RESUMO

Starting from a thiazolidin-4-one HTS hit, a novel series of substituted lactams was identified and developed as dual orexin receptor antagonists. In this Letter, we describe our initial efforts towards the improvement of potency and metabolic stability. These investigations delivered optimized lead compounds with CNS drug-like properties suitable for further optimization.


Assuntos
Descoberta de Drogas , Lactamas/farmacologia , Antagonistas dos Receptores de Orexina , Animais , Relação Dose-Resposta a Droga , Humanos , Lactamas/química , Lactamas/metabolismo , Estrutura Molecular , Ratos , Ratos Wistar , Relação Estrutura-Atividade
17.
Eur J Med Chem ; 249: 115130, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36702053

RESUMO

Robust experimental evidence has highlighted the role of Autotaxin (ATX)/Lysophosphatidic acid (LPA) axis not only in the pathogenesis of chronic inflammatory conditions and especially in fibroproliferative diseases but also in several types of cancer. As a result, different series of substrate-, lipid-based and small-molecule ATX inhibitors have been identified thus far by both academia and pharma. The "crowning achievement" of these drug discovery campaigns was the development and entry of the first-in-class ATX inhibitor (ziritaxestat, GLPG-1690) in advanced clinical trials against idiopathic pulmonary fibrosis. Herein, the potency optimization efforts of a new series of Autotaxin inhibitors, namely 2-substituted-2,6-dihydro-4H-thieno[3,4-c]pyrazol-1-substituted amide, is described using a previously identified novel chemical scaffold as a "hit". The mode of inhibition of the most promising ATX inhibitors was investigated, while their cellular activity, aqueous solubility and cytotoxicity were evaluated. Our pharmacological results were corroborated by chemoinformatic tools (molecular docking and molecular dynamics simulations) deployed, to provide insight into the binding mechanism of the synthesized inhibitors to ATX.


Assuntos
Fibrose Pulmonar Idiopática , Neoplasias , Humanos , Quimioinformática , Doença Crônica , Fibrose Pulmonar Idiopática/tratamento farmacológico , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Diester Fosfórico Hidrolases/metabolismo
18.
Anticancer Agents Med Chem ; 23(7): 747-764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35959907

RESUMO

Bakuchiol is a meroterpene natural product distributed in various plants. It possesses several biological activities particularly anticancer. A large number of analogs have been prepared by various researchers by targeting several positions such as phenolic -OH, ethenyl and isopropylidene groups present in the bakuchiol to develop potent therapeutic agents with improved pharmaceutical properties. The present review describes the isolation, organic synthetic schemes, chromatographic study, and biological activities of bakuchiol reported till date. Further, the review also provides an insight into the skin care effects of bakuchiol and structure-activity relationship studies of reported derivatives. Moreover, the biosynthetic pathway of bakuchiol has also been described. All the articles published on bakuchiol revealed that bakuchiol and its analogs possess a remarkable potential for the development of potent anticancer and several other therapeutic agents. The reported synthetic schemes can be utilized for the industrial production of bakuchiol. Finally, we believe that this review will provide important information to the researchers interested in the chemistry and biology of Bakuchiol.


Assuntos
Biologia , Fenóis , Humanos , Fenóis/farmacologia , Fenóis/química
19.
Heliyon ; 6(9): e04916, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32995612

RESUMO

Leishmaniasis is the most widespread pathogenic disease in several countries. Currently, no effective vaccines are available, and the control of Leishmaniasis primarily relies on decade-old chemotherapy. The treatment for the Leishmaniasis is not up to the mark. Current therapy for Leishmaniasis is ancient and requires hospitalization for the administration. These medications are also highly toxic and resistant. ß-carboline, a natural indole containing alkaloid, holds a vital position in the field of medicinal chemistry with a diversified pharmacological action. The current review focuses mainly on the anti-leishmanial effects of ß-carboline analogs and their synthetic strategies, structural activity relationship studies (SAR). The past ten years alterations unveiled by ß-carboline analogs present in phytoconstituents and various derivatives of synthesized analogs with the mechanism of action were briefly shortlisted and illustrated.

20.
Vitam Horm ; 113: 259-289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32138951

RESUMO

Since its discovery, arginine vasopressin (AVP) was subjected to several modifications with the aim of obtaining novel derivatives with increased potency and selectivity for biomedical use. Desmopressin (dDAVP) is a first generation synthetic analog of AVP with hemostatic and antimetastatic activity. dDAVP acts as a selective agonist of the arginine vasopressin type 2 receptor (AVPR2) present in microvascular endothelium and cancer cells. Considering its selective effects on AVPR2-expressing malignant and vascular tissue, and interesting antitumor profile, dDAVP was used as a lead compound for the development of novel peptide analogs with enhanced anticancer efficacy. After conducting different structure-activity relationship studies to determine key aminoacidic positions for its antitumor activity against AVPR2-expressing malignant cells, dDAVP was rationally modified and a wide panel of synthetic analogs with different sequence and structural modifications was assessed. As a result of this structure-based drug derivatization novel AVP analog [V4Q5]dDAVP (1-deamino-4-valine-5-glutamine-8-d-arginine vasopressin) was selected as the most active candidate and further developed. [V4Q5]dDAVP was evaluated in highly aggressive and metastatic cancer preclinical models deploying enhanced cytostatic, antimetastatic and angiostatic effects in comparison to parental peptide dDAVP. In addition, novel compound demonstrated good tolerability as evaluated in several toxicological studies, and cooperative therapeutic effects after combination with standard-of-care chemotherapy. In summary, due to its ability to inhibit growth and tumor-associated angiogenesis, as well as impairing progression of metastatic disease, AVP analogs such as novel [V4Q5]dDAVP are promising compounds for further development as coadjuvant agents for the management of advance or recurrent cancers.


Assuntos
Antineoplásicos/farmacologia , Desamino Arginina Vasopressina/farmacologia , Neoplasias/tratamento farmacológico , Receptores de Vasopressinas/agonistas , Animais , Modelos Animais de Doenças , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa