Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharm Res ; 38(4): 607-624, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33811278

RESUMO

PURPOSE: Many monoclonal antibodies (mAbs) are administered via subcutaneous (SC) injection. Local transport and absorption kinetics and mechanisms, however, remain poorly understood. A multiphysics computational model was developed to simulate the injection and absorption processes of a protein solution in the SC tissue. METHODS: Quantitative relationships among tissue properties and transport behaviors of an injected solution were described by respective physical laws. SC tissue was treated as a 3-dimensional homogenous, poroelastic medium, in which vasculatures and lymphatic vessels were implicitly treated. Tissue deformation was considered, and interstitial fluid flow was modeled by Darcy's law. Transport of the drug mass was described based on diffusion and advection, which was integrated with tissue mechanics and interstitial fluid dynamics. RESULTS: Injection and absorption of albumin and IgG solutions were simulated. Upon injection, a sharp rise in tissue pressure, porosity, and fluid velocity could be observed at the injection tip. Largest tissue deformation appeared at the model surface. Transport of drug mass out of the injection zone was minimal. Absorption by local lymphatics was found to last several weeks. CONCLUSIONS: A bottom-up method was developed to simulate drug transport and absorption of protein solutions in skin tissue base on physical principles. The results appear to match experimental observations.


Assuntos
Anticorpos Monoclonais/farmacocinética , Modelos Biológicos , Tela Subcutânea/metabolismo , Absorção Fisiológica , Anticorpos Monoclonais/administração & dosagem , Disponibilidade Biológica , Simulação por Computador , Humanos , Injeções Subcutâneas
2.
Drug Deliv ; 30(1): 2163003, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36625437

RESUMO

Subcutaneous injection of monoclonal antibodies (mAbs) has attracted much attention in the pharmaceutical industry. During the injection, the drug is delivered into the tissue producing strong fluid flow and tissue deformation. While data indicate that the drug is initially uptaken by the lymphatic system due to the large size of mAbs, many of the critical absorption processes that occur at the injection site remain poorly understood. Here, we propose the MPET2 approach, a multi-network poroelastic and transport model to predict the absorption of mAbs during and after subcutaneous injection. Our model is based on physical principles of tissue biomechanics and fluid dynamics. The subcutaneous tissue is modeled as a mixture of three compartments, i.e., interstitial tissue, blood vessels, and lymphatic vessels, with each compartment modeled as a porous medium. The proposed biomechanical model describes tissue deformation, fluid flow in each compartment, the fluid exchanges between compartments, the absorption of mAbs in blood vessels and lymphatic vessels, as well as the transport of mAbs in each compartment. We used our model to perform a high-fidelity simulation of an injection of mAbs in subcutaneous tissue and evaluated the long-term drug absorption. Our model results show good agreement with experimental data in depot clearance tests.


Assuntos
Anticorpos Monoclonais , Vasos Linfáticos , Injeções Subcutâneas , Sistema Linfático , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa