Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Psychol Med ; 53(7): 2831-2841, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34852855

RESUMO

BACKGROUND: Overgeneralised self-blame and worthlessness are key symptoms of major depressive disorder (MDD) and have previously been associated with self-blame-selective changes in connectivity between right superior anterior temporal lobe (rSATL) and subgenual frontal cortices. Another study showed that remitted MDD patients were able to modulate this neural signature using functional magnetic resonance imaging (fMRI) neurofeedback training, thereby increasing their self-esteem. The feasibility and potential of using this approach in symptomatic MDD were unknown. METHOD: This single-blind pre-registered randomised controlled pilot trial probed a novel self-guided psychological intervention with and without additional rSATL-posterior subgenual cortex (BA25) fMRI neurofeedback, targeting self-blaming emotions in people with insufficiently recovered MDD and early treatment-resistance (n = 43, n = 35 completers). Participants completed three weekly self-guided sessions to rebalance self-blaming biases. RESULTS: As predicted, neurofeedback led to a training-induced reduction in rSATL-BA25 connectivity for self-blame v. other-blame. Both interventions were safe and resulted in a 46% reduction on the Beck Depression Inventory-II, our primary outcome, with no group differences. Secondary analyses, however, revealed that patients without DSM-5-defined anxious distress showed a superior response to neurofeedback compared with the psychological intervention, and the opposite pattern in anxious MDD. As predicted, symptom remission was associated with increases in self-esteem and this correlated with the frequency with which participants employed the psychological strategies in daily life. CONCLUSIONS: These findings suggest that self-blame-rebalance neurofeedback may be superior over a solely psychological intervention in non-anxious MDD, although further confirmatory studies are needed. Simple self-guided strategies tackling self-blame were beneficial, but need to be compared against treatment-as-usual in further trials. https://doi.org/10.1186/ISRCTN10526888.


Assuntos
Transtorno Depressivo Maior , Neurorretroalimentação , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/patologia , Projetos Piloto , Neurorretroalimentação/métodos , Depressão , Imageamento por Ressonância Magnética , Método Simples-Cego
2.
Neuroimage ; 249: 118863, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974116

RESUMO

TMS has become a powerful tool to explore cortical function, and in parallel has proven promising in the development of therapies for various psychiatric and neurological disorders. Unfortunately, much of the inference of the direct effects of TMS has been assumed to be limited to the area a few centimeters beneath the scalp, though clearly more distant regions are likely to be influenced by structurally connected stimulation sites. In this study, we sought to develop a novel paradigm to individualize TMS coil placement to non-invasively achieve activation of specific deep brain targets of relevance to the treatment of psychiatric disorders. In ten subjects, structural diffusion imaging tractography data were used to identify an accessible cortical target in the right frontal pole that demonstrated both anatomic and functional connectivity to right Brodmann area 25 (BA25). Concurrent TMS-fMRI interleaving was used with a series of single, interleaved TMS pulses applied to the right frontal pole at four intensity levels ranging from 80% to 140% of motor threshold. In nine of ten subjects, TMS to the individualized frontal pole sites resulted in significant linear increase in BOLD activation of BA25 with increasing TMS intensity. The reliable activation of BA25 in a dosage-dependent manner suggests the possibility that the careful combination of imaging with TMS can make use of network properties to help overcome depth limitations and allow noninvasive brain stimulation to influence deep brain structures.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Estimulação Encefálica Profunda , Imagem de Tensor de Difusão , Estimulação Magnética Transcraniana , Adulto , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
3.
Neuromodulation ; 25(2): 202-210, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35125139

RESUMO

OBJECTIVES: Despite converging basic scientific and clinical evidence of the link between chronic pain and depression, existing therapies do not often take advantage of this overlap. Here, we provide a critical review of the literature that highlights the intersection in brain networks between chronic low back pain (CLBP) and depression and discuss findings from previous deep brain stimulation (DBS) studies for pain. Based on a multidimensional model of pain processing and the connectivity of the subgenual cingulate cortex (SCC) with areas that are implicated in both CLBP and depression, we propose a novel approach to the treatment of CLBP using DBS of the SCC. MATERIALS AND METHODS: A narrative review with literature assessment. RESULTS: CLBP is associated with a shift away from somatosensory representation toward brain regions that mediate emotional processes. There is a high degree of overlap between these regions and those involved in depression, including the anterior cingulate cortex, medial prefrontal cortex, nucleus accumbens, and amygdala. Whereas target sites from previous DBS trials for pain were not anatomically positioned to engage these areas and their associated networks, the SCC is structurally connected to all of these regions as well as others involved in mediating sensory, cognitive, and affective processing in CLBP. CONCLUSIONS: CLBP and depression share a common underlying brain network interconnected by the SCC. Current data and novel technology provide an optimal opportunity to develop clinically effective trials of SCC DBS for CLBP.


Assuntos
Dor Crônica , Estimulação Encefálica Profunda , Dor Lombar , Encéfalo , Mapeamento Encefálico , Dor Crônica/terapia , Giro do Cíngulo/diagnóstico por imagem , Humanos , Dor Lombar/diagnóstico por imagem , Dor Lombar/terapia
4.
J Neurosci ; 40(43): 8306-8328, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32989097

RESUMO

The delicate balance among primate prefrontal networks is necessary for homeostasis and behavioral flexibility. Dorsolateral prefrontal cortex (dlPFC) is associated with cognition, while the most ventromedial subgenual cingulate area 25 (A25) is associated with emotion and emotional expression. Yet A25 is weakly connected with dlPFC, and it is unknown how the two regions communicate. In rhesus monkeys of both sexes, we investigated how these functionally distinct areas may interact through pregenual anterior cingulate area 32 (A32), which is strongly connected with both. We found that dlPFC innervated the deep layers of A32, while A32 innervated all layers of A25, mostly targeting spines of excitatory neurons. Approximately 20% of A32 terminations formed synapses on inhibitory neurons in A25, notably the powerful parvalbumin inhibitory neurons in the deep layers, and the disinhibitory calretinin neurons in the superficial layers. By innervating distinct inhibitory microenvironments in laminar compartments, A32 is positioned to tune activity in columns of A25. The circuitry of the sequential pathway indicates that when dlPFC is engaged, A32 can dampen A25 output through the parvalbumin inhibitory microsystem in the deep layers of A25. A32 thus may flexibly recruit or reduce activity in A25 to maintain emotional equilibrium, a process that is disrupted in depression. Moreover, pyramidal neurons in A25 had a heightened density of NMDARs, which are the targets of novel rapid-acting antidepressants. Pharmacologic antagonism of NMDARs in patients with depression may reduce excitability in A25, mimicking the effects of the neurotypical serial pathway identified here.SIGNIFICANCE STATEMENT The anterior cingulate is a critical hub in prefrontal networks through connections with functionally distinct areas. Dorsolateral and polar prefrontal areas that are associated with complex cognition are connected with the anterior cingulate in a pattern that allows them to indirectly control downstream activity from the anterior cingulate to the subgenual cingulate, which is associated with heightened activity and negative affect in depression. This set of pathways provides a circuit mechanism for emotional regulation, with the anterior cingulate playing a balancing role for integration of cognitive and emotional processes. Disruption of these pathways may perturb network function and the ability to regulate cognitive and affective processes based on context.


Assuntos
Cognição/fisiologia , Emoções/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Antidepressivos/farmacologia , Mapeamento Encefálico , Calbindina 2/fisiologia , Depressão/fisiopatologia , Feminino , Giro do Cíngulo/fisiologia , Macaca mulatta , Masculino , Neurônios/fisiologia , Parvalbuminas/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sinapses/fisiologia
5.
Cereb Cortex ; 29(11): 4818-4830, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30796800

RESUMO

Affective disorders are associated with increased sensitivity to negative feedback that influences approach-avoidance decision making. Although neuroimaging studies of these disorders reveal dysregulation in primate cingulate areas 25 and 32 and the anterior hippocampus (aHipp), the causal involvement of these structures and their interaction in the primate brain is unknown. We therefore investigated the effects of localized pharmacological manipulations of areas 25 and 32 and/or the aHipp of the marmoset monkey on performance of an anxiolytic-sensitive instrumental decision-making task in which an approach-avoidance conflict is created by pairing a response with reward and punishment. During control infusions animals avoided punishment, but this bias was reduced by increasing glutamate release within the aHipp or area 32, and inactivation or 5-HT1a antagonism within area 25. Conversely, increasing glutamate release in area 25 enhanced punishment avoidance but, in contrast to previous reports, area 32 and aHipp inactivations had no effect. Simultaneous inactivation or 5-HT1a antagonism within area 25, but not area 32, abolished the reduced punishment avoidance seen after increasing aHipp glutamate. Besides providing causal evidence that these primate areas differentially regulate negative feedback sensitivity, this study links the decision-making deficits in affective disorders to aberrant aHipp-area 25 circuit activity.


Assuntos
Aprendizagem da Esquiva/fisiologia , Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Punição , Recompensa , Animais , Callithrix , Conflito Psicológico , Feminino , Ácido Glutâmico/fisiologia , Masculino
6.
J Neurosci ; 38(7): 1677-1698, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29358365

RESUMO

The structural and functional integrity of subgenual cingulate area 25 (A25) is crucial for emotional expression and equilibrium. A25 has a key role in affective networks, and its disruption has been linked to mood disorders, but its cortical connections have yet to be systematically or fully studied. Using neural tracers in rhesus monkeys, we found that A25 was densely connected with other ventromedial and posterior orbitofrontal areas associated with emotions and homeostasis. A moderate pathway linked A25 with frontopolar area 10, an area associated with complex cognition, which may regulate emotions and dampen negative affect. Beyond the frontal lobe, A25 was connected with auditory association areas and memory-related medial temporal cortices, and with the interoceptive-related anterior insula. A25 mostly targeted the superficial cortical layers of other areas, where broadly dispersed terminations comingled with modulatory inhibitory or disinhibitory microsystems, suggesting a dominant excitatory effect. The architecture and connections suggest that A25 is the consummate feedback system in the PFC. Conversely, in the entorhinal cortex, A25 pathways terminated in the middle-deep layers amid a strong local inhibitory microenvironment, suggesting gating of hippocampal output to other cortices and memory storage. The graded cortical architecture and associated laminar patterns of connections suggest how areas, layers, and functionally distinct classes of inhibitory neurons can be recruited dynamically to meet task demands. The complement of cortical connections of A25 with areas associated with memory, emotion, and somatic homeostasis provide the circuit basis to understand its vulnerability in psychiatric and neurologic disorders.SIGNIFICANCE STATEMENT Integrity of the prefrontal subgenual cingulate cortex is crucial for healthy emotional function. Subgenual area 25 (A25) is mostly linked with other prefrontal areas associated with emotion in a dense network positioned to recruit large fields of cortex. In healthy states, A25 is associated with internal states, autonomic function, and transient negative affect. Constant hyperactivity in A25 is a biomarker for depression in humans and may trigger extensive activation in its dominant connections with areas associated with emotions and internal balance. A pathway between A25 and frontopolar area 10 may provide a critical link to regulate emotions and dampen persistent negative affect, which may be explored for therapeutic intervention in depression.


Assuntos
Córtex Cerebral/fisiologia , Emoções/fisiologia , Interocepção/fisiologia , Memória/fisiologia , Animais , Mapeamento Encefálico , Conectoma , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/fisiologia , Retroalimentação Fisiológica , Feminino , Homeostase , Macaca mulatta , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia , Neuroimagem , Córtex Pré-Frontal/fisiologia
7.
J Neurosci ; 37(42): 10215-10229, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28924006

RESUMO

Important real-world decisions are often arduous as they frequently involve sequences of choices, with initial selections affecting future options. Evaluating every possible combination of choices is computationally intractable, particularly for longer multistep decisions. Therefore, humans frequently use heuristics to reduce the complexity of decisions. We recently used a goal-directed planning task to demonstrate the profound behavioral influence and ubiquity of one such shortcut, namely aversive pruning, a reflexive Pavlovian process that involves neglecting parts of the decision space residing beyond salient negative outcomes. However, how the brain implements this important decision heuristic and what underlies individual differences have hitherto remained unanswered. Therefore, we administered an adapted version of the same planning task to healthy male and female volunteers undergoing functional magnetic resonance imaging (fMRI) to determine the neural basis of aversive pruning. Through both computational and standard categorical fMRI analyses, we show that when planning was influenced by aversive pruning, the subgenual cingulate cortex was robustly recruited. This neural signature was distinct from those associated with general planning and valuation, two fundamental cognitive components elicited by our task but which are complementary to aversive pruning. Furthermore, we found that individual variation in levels of aversive pruning was associated with the responses of insula and dorsolateral prefrontal cortices to the receipt of large monetary losses, and also with subclinical levels of anxiety. In summary, our data reveal the neural signatures of an important reflexive Pavlovian process that shapes goal-directed evaluations and thereby determines the outcome of high-level sequential cognitive processes.SIGNIFICANCE STATEMENT Multistep decisions are complex because initial choices constrain future options. Evaluating every path for long decision sequences is often impractical; thus, cognitive shortcuts are often essential. One pervasive and powerful heuristic is aversive pruning, in which potential decision-making avenues are curtailed at immediate negative outcomes. We used neuroimaging to examine how humans implement such pruning. We found it to be associated with activity in the subgenual cingulate cortex, with neural signatures that were distinguishable from those covarying with planning and valuation. Individual variations in aversive pruning levels related to subclinical anxiety levels and insular cortex activation. These findings reveal the neural mechanisms by which basic negative Pavlovian influences guide decision-making during planning, with implications for disrupted decision-making in psychiatric disorders.


Assuntos
Aprendizagem da Esquiva/fisiologia , Comportamento de Escolha/fisiologia , Condicionamento Clássico/fisiologia , Tomada de Decisões/fisiologia , Objetivos , Giro do Cíngulo/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Tempo de Reação/fisiologia , Adulto Jovem
8.
Neuroimage ; 156: 119-127, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28506872

RESUMO

There is considerable need to develop tailored approaches to psychiatric treatment. Numerous researchers have proposed using functional magnetic resonance imaging (fMRI) biomarkers to predict therapeutic response, in particular by measuring task-evoked subgenual anterior cingulate (sgACC) and amygdala activation in mood and anxiety disorders. Translating this to the clinic relies on the assumption that blood-oxygen-level dependent (BOLD) responses in these regions are stable within individuals. To test this assumption, we scanned a group of 29 volunteers twice (mean test-retest interval=14.3 days) and calculated the within-subject reliability of the amplitude of the amygdalae and sgACC BOLD responses to emotional faces using three paradigms: emotion identification; emotion matching; and gender classification. We also calculated the reliability of activation in a control region, the right fusiform face area (FFA). All three tasks elicited robust group activations in the amygdalae and sgACC (which changed little on average over scanning sessions), but within-subject reliability was surprisingly low, despite excellent reliability in the control right FFA region. Our findings demonstrate low statistical reliability of two important putative treatment biomarkers in mood and anxiety disorders.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Reconhecimento Facial/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Emoções/fisiologia , Feminino , Humanos , Masculino , Transtornos Mentais/diagnóstico , Reprodutibilidade dos Testes , Adulto Jovem
9.
BMC Neurol ; 16(1): 198, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27756252

RESUMO

BACKGROUND: Although post-stroke depression is a well-characterized disorder, there is less understanding of how pre-existence of depression is affected by a stroke. CASE PRESENTATION: We describe a patient with treatment-resistant major depression, which had been ongoing for 14 years but disappeared shortly after onset of a subarachnoid hemorrhage. Her cognitive function and functional status were mostly unaffected by the stroke. However, she no longer excessively regretted past events. Lesions were found in the orbitofrontal cortex, which is involved in feeling regret, and in the adjacent subgenual cingulate area, which is metabolically hyperactive in treatment-resistant depression and is the target for deep-brain stimulation for relief of treatment-resistant depression. The lesions from the stroke may have caused the disappearance of the patient's treatment-resistant depression by alleviating excessive regret and decreasing the elevated activity in these areas. CONCLUSIONS: This patient's clinical course may shed light on the neuropsychological and neurophysiological mechanisms of major depression of the melancholic subtype.


Assuntos
Transtorno Depressivo Maior/fisiopatologia , Giro do Cíngulo/patologia , Córtex Pré-Frontal/patologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Cognição/fisiologia , Estimulação Encefálica Profunda/métodos , Emoções/fisiologia , Feminino , Humanos
11.
Neuroimage ; 88: 252-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24121201

RESUMO

Blocking of the serotonin transporter (SERT) represents the initial mechanism of action of selective serotonin reuptake inhibitors (SSRIs) which can be visualized due to the technical proceedings of SERT occupancy studies. When compared to the striatum, higher SERT occupancy in the midbrain and lower values in the thalamus were reported. This indicates that occupancy might be differently distributed throughout the brain, which is supported by preclinical findings indicating a regionally varying SERT activity and antidepressant drug concentration. The present study therefore aimed to investigate regional SERT occupancies with positron emission tomography and the radioligand [(11)C]DASB in 19 depressed patients after acute and prolonged intake of oral doses of either 10mg/day escitalopram or 20mg/day citalopram. Compared to the mean occupancy across cortical and subcortical regions, we detected increased SERT occupancies in regions commonly associated with antidepressant response, such as the subgenual cingulate, amygdala and raphe nuclei. When acute and prolonged drug intake was compared, SERT occupancies increased in subcortical areas that are known to be rich in SERT. Moreover, SERT occupancy in subcortical brain areas after prolonged intake of antidepressants was predicted by plasma drug levels. Similarly, baseline SERT binding potential seems to impact SERT occupancy, as regions rich in SERT showed greater binding reduction as well as higher residual binding. These findings suggest a region-specific distribution of SERT blockage by SSRIs and relate the postulated link between treatment response and SERT occupancy to certain brain regions such as the subgenual cingulate cortex.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/sangue
12.
Hum Brain Mapp ; 35(4): 1630-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23616377

RESUMO

The current diagnosis of psychiatric disorders including major depressive disorder based largely on self-reported symptoms and clinical signs may be prone to patients' behaviors and psychiatrists' bias. This study aims at developing an unsupervised machine learning approach for the accurate identification of major depression based on single resting-state functional magnetic resonance imaging scans in the absence of clinical information. Twenty-four medication-naive patients with major depression and 29 demographically similar healthy individuals underwent resting-state functional magnetic resonance imaging. We first clustered the voxels within the perigenual cingulate cortex into two subregions, a subgenual region and a pregenual region, according to their distinct resting-state functional connectivity patterns and showed that a maximum margin clustering-based unsupervised machine learning approach extracted sufficient information from the subgenual cingulate functional connectivity map to differentiate depressed patients from healthy controls with a group-level clustering consistency of 92.5% and an individual-level classification consistency of 92.5%. It was also revealed that the subgenual cingulate functional connectivity network with the highest discriminative power primarily included the ventrolateral and ventromedial prefrontal cortex, superior temporal gyri and limbic areas, indicating that these connections may play critical roles in the pathophysiology of major depression. The current study suggests that subgenual cingulate functional connectivity network signatures may provide promising objective biomarkers for the diagnosis of major depression and that maximum margin clustering-based unsupervised machine learning approaches may have the potential to inform clinical practice and aid in research on psychiatric disorders.


Assuntos
Mapeamento Encefálico/métodos , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adulto , Inteligência Artificial , Feminino , Giro do Cíngulo/fisiopatologia , Humanos , Masculino , Vias Neurais/fisiopatologia , Descanso/fisiologia , Processamento de Sinais Assistido por Computador
13.
World J Biol Psychiatry ; 25(3): 175-187, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38185882

RESUMO

OBJECTIVES: This study compared machine learning models using unimodal imaging measures and combined multi-modal imaging measures for deep brain stimulation (DBS) outcome prediction in treatment resistant depression (TRD). METHODS: Regional brain glucose metabolism (CMRGlu), cerebral blood flow (CBF), and grey matter volume (GMV) were measured at baseline using 18F-fluorodeoxy glucose (18F-FDG) positron emission tomography (PET), arterial spin labelling (ASL) magnetic resonance imaging (MRI), and T1-weighted MRI, respectively, in 19 patients with TRD receiving subcallosal cingulate (SCC)-DBS. Responders (n = 9) were defined by a 50% reduction in HAMD-17 at 6 months from the baseline. Using an atlas-based approach, values of each measure were determined for pre-selected brain regions. OneR feature selection algorithm and the naïve Bayes model was used for classification. Leave-out-one cross validation was used for classifier evaluation. RESULTS: The performance accuracy of the CMRGlu classification model (84%) was greater than CBF (74%) or GMV (74%) models. The classification model using the three image modalities together led to a similar accuracy (84%0 compared to the CMRGlu classification model. CONCLUSIONS: CMRGlu imaging measures may be useful for the development of multivariate prediction models for SCC-DBS studies for TRD. The future of multivariate methods for multimodal imaging may rest on the selection of complementing features and the developing better models.Clinical Trial Registration: ClinicalTrials.gov (#NCT01983904).


Assuntos
Estimulação Encefálica Profunda , Transtorno Depressivo Resistente a Tratamento , Humanos , Estimulação Encefálica Profunda/métodos , Transtorno Depressivo Resistente a Tratamento/diagnóstico por imagem , Transtorno Depressivo Resistente a Tratamento/terapia , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem Multimodal
14.
Biol Psychiatry ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944141

RESUMO

Most mental disorders involve dysfunction of the dorsolateral prefrontal cortex (dlPFC), a recently evolved brain region that subserves working memory, abstraction, and the thoughtful regulation of attention, action, and emotion. For example, schizophrenia, depression, long COVID, and Alzheimer's disease are all associated with dlPFC dysfunction, with neuropathology often being focused in layer III. The dlPFC has extensive top-down projections, e.g., to the posterior association cortices to regulate attention and to the subgenual cingulate cortex via the rostral and medial PFC to regulate emotional responses. However, the dlPFC is particularly dependent on arousal state and is very vulnerable to stress and inflammation, which are etiological and/or exacerbating factors for most mental disorders. The cellular mechanisms by which stress and inflammation impact the dlPFC are a topic of current research and are summarized in this review. For example, the layer III dlPFC circuits that generate working memory-related neuronal firing have unusual neurotransmission, depending on NMDA receptor and nicotinic α7 receptor actions that are blocked under inflammatory conditions by kynurenic acid. These circuits also have unusual neuromodulation, with the molecular machinery to magnify calcium signaling in spines needed to support persistent firing, which must be tightly regulated to prevent toxic calcium actions. Stress rapidly weakens layer III connectivity by driving feedforward calcium-cAMP (cyclic adenosine monophosphate) opening of potassium channels on spines. This is regulated by postsynaptic noradrenergic α2A adrenergic receptor and mGluR3 (metabotropic glutamate receptor 3) signaling but dysregulated by inflammation and/or chronic stress exposure, which contribute to spine loss. Treatments that strengthen the dlPFC via pharmacological (the α2A adrenergic receptor agonist, guanfacine) or repetitive transcranial magnetic stimulation manipulation provide a rational basis for therapy.

15.
Biol Psychiatry ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39396736

RESUMO

BACKGROUND: Severe forms of depression have been linked to excessive subcallosal cingulate (SCC) activity. Stimulation of SCC with surgically implanted electrodes can alleviate depression, but current noninvasive techniques cannot directly and selectively modulate deep targets. We developed a new noninvasive neuromodulation approach that can deliver low-intensity focused ultrasonic waves to the SCC. METHODS: Twenty-two subjects with treatment-resistant depression participated in a randomized, double-blind, sham-controlled study. Ultrasonic stimulation was delivered to bilateral SCC during concurrent functional MRI to quantify target engagement. Mood state was measured with the Sadness subscale of the Positive and Negative Affect Schedule before and after 40 minutes of real or sham SCC stimulation. Change in depression severity was measured with the 6-item Hamilton Depression Rating Scale (HDRS- 6) at 24 hours and 7 days. RESULTS: Functional MRI demonstrated a target-specific decrease in SCC activity during stimulation (p=0.028, n=16). In 7 of 16 participants, SCC neuromodulation was detectable at the individual-subject level with a single 10-minute scan (p<0.05, small-volume-correction). Mood and depression scores improved more with real than with sham stimulation. In the per-protocol sample (n=19), real stimulation was superior to sham for HDRS-6 at 24 hours and for Sadness (both p<0.05, d>1). Non-significant trends were found in the intent-to-treat sample. CONCLUSIONS: This small pilot study indicates that ultrasonic stimulation modulates SCC activity and can rapidly reduce depressive symptoms. The capability to noninvasively and selectively target deep brain areas creates new possibilities for future development of circuit-directed therapeutics, and for the dissection of deep-brain circuit function in humans.

16.
J Psychiatr Res ; 163: 296-304, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245316

RESUMO

BACKGROUND: Schizophrenia is a complex and disabling disorder. Around 30% of patients have treatment-resistant schizophrenia (TRS). OBJECTIVE: This study summarizes the outcomes after three years follow-up of the first series of patients with TRS treated with deep brain stimulation (DBS) and discuss surgical, clinical and imaging analysis. METHODS: Eight patients with TRS treated with DBS in the nucleus accumbens (NAcc) or the subgenual cingulate gyrus (SCG) were included. Symptoms were rated with the PANSS scale and normalized using the illness density index (IDI). A reduction in IDI-PANSS of ≥25% compared to baseline was the criterion of good response. The volume of activated tissue was calculated to perform a connectomic analysis for each patient. An estimation of the tracts and cortical areas modulated was generated. RESULTS: Five women and three men were analyzed. After 3 years' follow-up, positive symptoms improved in 50% of the SCG group and 75% of the NAcc group (p = 0.06), and general symptoms improved in 25% and 50% respectively (p = 0.06). The SCG group showed activation of the cingulate bundle and modulation of orbitofrontal and frontomesial regions; in contrast, the NAcc group showed activation of the ventral tegmental area projections pathway and modulation of regions associated with the "default mode network" (precuneus) and Brodmann areas 19 and 20. CONCLUSIONS: These results showed a trend toward improvement for positive and general symptoms in patients with TRS treated with DBS. The connectomic analysis will help us understand the interaction of this treatment with the disease to pursue future trial designs.


Assuntos
Estimulação Encefálica Profunda , Esquizofrenia , Masculino , Humanos , Feminino , Esquizofrenia/terapia , Esquizofrenia/etiologia , Estimulação Encefálica Profunda/métodos , Esquizofrenia Resistente ao Tratamento , Núcleo Accumbens/diagnóstico por imagem , Lobo Parietal
17.
Front Neurosci ; 16: 779964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281511

RESUMO

Listening to samba percussion often elicits feelings of pleasure and the desire to move with the beat-an experience sometimes referred to as "feeling the groove"- as well as social connectedness. Here we investigated the effects of performance timing in a Brazilian samba percussion ensemble on listeners' experienced pleasantness and the desire to move/dance in a behavioral experiment, as well as on neural processing as assessed via functional magnetic resonance imaging (fMRI). Participants listened to different excerpts of samba percussion produced by multiple instruments that either were "in sync", with no additional asynchrony between instrumental parts other than what is usual in naturalistic recordings, or were presented "out of sync" by delaying the snare drums (by 28, 55, or 83 ms). Results of the behavioral experiment showed increasing pleasantness and desire to move/dance with increasing synchrony between instruments. Analysis of hemodynamic responses revealed stronger bilateral brain activity in the supplementary motor area, the left premotor area, and the left middle frontal gyrus with increasing synchrony between instruments. Listening to "in sync" percussion thus strengthens audio-motor interactions by recruiting motor-related brain areas involved in rhythm processing and beat perception to a higher degree. Such motor related activity may form the basis for "feeling the groove" and the associated desire to move to music. Furthermore, in an exploratory analysis we found that participants who reported stronger emotional responses to samba percussion in everyday life showed higher activity in the subgenual cingulate cortex, an area involved in prosocial emotions, social group identification and social bonding.

18.
Brain Stimul ; 14(3): 703-709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33866020

RESUMO

BACKGROUND: Precise targeting of brain functional networks is believed critical for treatment efficacy of rTMS (repetitive pulse transcranial magnetic stimulation) in treatment resistant major depression. OBJECTIVE: To use imaging data from a "failed" clinical trial of rTMS in Veterans to test whether treatment response was associated with rTMS coil location in active but not sham stimulation, and compare fMRI functional connectivity between those stimulation locations. METHODS: An imaging substudy of 49 Veterans (mean age, 56 years; range, 27-78 years; 39 male) from a randomized, sham-controlled, double-blinded clinical trial of rTMS treatment, grouping participants by clinical response, followed by group comparisons of treatment locations identified by individualized fiducial markers on structural MRI and resting state fMRI derived networks. RESULTS: The average stimulation location for responders versus nonresponders differed in the active but not in the sham condition (P = .02). The average responder location derived from the active condition showed significant negative functional connectivity with the subgenual cingulate (P < .001) while the nonresponder location did not (P = .17), a finding replicated in independent cohorts of 84 depressed and 35 neurotypical participants. The responder and nonresponder stimulation locations evoked different seed based networks (FDR corrected clusters, all P < .03), revealing additional brain regions related to rTMS treatment outcome. CONCLUSION: These results provide evidence from a randomized controlled trial that clinical response to rTMS is related to accuracy in targeting the region within DLPFC that is negatively correlated with subgenual cingulate. These results support the validity of a neuro-functionally informed rTMS therapy target in Veterans.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Estimulação Magnética Transcraniana , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal , Resultado do Tratamento
19.
Biol Psychiatry ; 90(10): 689-700, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32800379

RESUMO

Transcranial magnetic stimulation (TMS) is an effective treatment for depression but is limited in that the optimal therapeutic target remains unknown. Early TMS trials lacked a focal target and thus positioned the TMS coil over the prefrontal cortex using scalp measurements. Over time, it became clear that this method leads to variation in the stimulation site and that this could contribute to heterogeneity in antidepressant response. Newer methods allow for precise positioning of the TMS coil over a specific brain location, but leveraging these precise methods requires a more precise therapeutic target. We review how neuroimaging is being used to identify a more focal therapeutic target for depression. We highlight recent studies showing that more effective TMS targets in the frontal cortex are functionally connected to deep limbic regions such as the subgenual cingulate cortex. We review how connectivity might be used to identify an optimal TMS target for use in all patients and potentially even a personalized target for each individual patient. We address the clinical implications of this emerging field and highlight critical questions for future research.


Assuntos
Transtorno Depressivo Maior , Estimulação Magnética Transcraniana , Encéfalo/diagnóstico por imagem , Depressão/terapia , Humanos , Neuroimagem
20.
Neurosci Biobehav Rev ; 108: 207-217, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733222

RESUMO

Moral motivations drive humans to sacrifice selfish needs to serve the needs of others and internalized sociocultural norms. Over the past two decades, several brain regions have been associated with different aspects of moral cognition and behaviour. Only more recently, however, investigations have highlighted the importance of the basal forebrain for moral motivation. This includes the septo-hypothalamic region, implicated in kinship bonding across mammal species, and the closely connected subgenual frontal cortex. Understanding the neuroanatomy of moral motivation and its impairments will be fundamental for future research aiming to promote prosocial behaviour and mental health.


Assuntos
Prosencéfalo Basal/fisiologia , Giro do Cíngulo/fisiologia , Hipotálamo/fisiologia , Princípios Morais , Motivação/fisiologia , Apego ao Objeto , Cognição Social , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa