Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Geophys Res Lett ; 48(7): e2020GL091527, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33867598

RESUMO

We calculate auroral energy flux and Joule heating in the high-latitude ionosphere for 27 geomagnetically active days using two-dimensional maps of field-aligned currents determined by the Active Magnetosphere and Planetary Response Experiment. The energy input to the ionosphere due to Joule heating increases more rapidly with geomagnetic activity than that due to precipitating particles. The energy flux varies more smoothly with time than Joule heating, which is impulsive in nature on time scales from minutes to tens of minutes. These impulsive events correlate well with recoveries in the Sym-H index, with the maximum correlation when compared to Sym-H recoveries 70 min later. Because of prior studies that have associated transient recoveries of Sym-H with substorm expansions, the delay found here suggests that dissipation of energy in the ionosphere occurs during the substorm growth phase prior to the release of magnetic energy caused by diversion of tail currents.

2.
Earth Planets Space ; 70(1): 81, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31258379

RESUMO

Bright auroral emissions during geomagnetic storms provide a good opportunity for testing the proposal that substorm onset is frequently triggered by plasma sheet flow bursts that are manifested in the ionosphere as auroral streamers. We have used the broad coverage of the ionospheric mapping of the plasma sheet offered by the high-resolution THEMIS all-sky-imagers (ASIs) and chose the main phases of 9 coronal mass ejection (CME) related and 9 high-speed stream (HSS)-related geomagnetic storms, and identified substorm auroral onsets defined as brightening followed by poleward expansion. We found a detectable streamer heading to near the substorm onset location for all 60 onsets that we identified and were observed well by the ASIs. This indicates that substorm onsets are very often triggered by the intrusion of plasma with lower entropy than the surrounding plasma to the onset region, with the caveat that the ASIs do not give a direct measure of the intruding plasma. The majority of the triggering streamers are "tilted streamers," which extend eastward as their eastern tip tilts equatorward to near the substorm onset location. Fourteen of the 60 cases were identified as "Harang streamers," where the streamer discernibly turns toward the west poleward of reaching to near the onset latitude, indicating flow around the Harang reversal. Using the ASI observations, we observed substantially less substorm onsets for CME storms than for HSS storms, a result in disagreement with a recent finding of approximately equal substorm occurrences. We suggest that this difference is a result of strong non-substorm streamers that give substorm-like signatures in ground magnetic field observations but are not substorms based on their auroral signature. Our results from CME storms with steady, strong southward IMF are not consistent with the ~ 2-4 h repetition of substorms that has been suggested for moderate to strong southward IMF conditions. Instead, our results indicate substantially lower substorm occurrence during such steady driving conditions. Our results also show the much more frequent occurrence of substorms during HSS period, which is likely due to the highly fluctuating IMF.

3.
J Geophys Res Space Phys ; 127(9): e2022JA030538, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36245709

RESUMO

We investigate the drivers of 40-150 keV hourly electron flux at geostationary orbit (GOES 13) using autoregressive moving average transfer functions (ARMAX) multiple regression models which remove the confounding effect of diurnal cyclicity and allow assessment of each parameter independently. By taking logs of the variables, we create nonlinear models. While many factors show high correlation with flux in single variable analysis (substorms, ULF waves, solar wind velocity (V), pressure (P), number density (N) and electric field (E y ), IMF Bz, Kp, and SymH), ARMAX models show substorms are the dominant influence at 40-75 keV and over 20-12 MLT, with little difference seen between disturbed and quiet periods. The Ey influence is positive post-midnight, negative post-noon. Pressure shows a negative influence, strongest at 150 keV. ULF waves are a more modest influence than suggested by single variable correlation. Kp and SymH show little effect when other variables are included. Using path analysis, we calculate the summed direct and indirect influences through the driving of intermediate parameters. Pressure shows a summed direct and indirect influence nearly half that of the direct substorm effect. N, V, and B z , as indirect drivers, are equally influential. While simple correlation or neural networks can be used for flux prediction, neither can effectively identify drivers. Instead, consideration of physical influences, removing cycles that artificially inflate correlations, and controlling the effects of other parameters gives a clearer picture of which are most influential in this system.

4.
J Geophys Res Space Phys ; 127(9): e2022JA030464, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36589318

RESUMO

Earth's magnetotail plays a critical role in the dynamics of the magnetosphere, particularly during intervals of geomagnetic activity. To improve our understanding of the ion dynamics in this region, energetic neutral atom (ENA) imaging can provide global measurements to place in situ measurements in context and validate simulations. The NASA Two Wide-angle Imaging Neutral-atom Spectrometers mission provided near-continuous observations using ENA imagers. ENA data can be used to calculate maps of equatorial ion temperatures that often show observations of regions of enhanced temperatures associated with phenomena in the magnetotail such as magnetic reconnection and narrow flow channels. We present an algorithm that can be used to search through a collection of these maps to identify intervals with such enhancements for further study. The algorithm results are validated against two sets of related phenomena: (a) a database of dipolarizing flux bundle (DFB) measurements from THEMIS and (b) a list of substorm onsets from SuperMAG. We demonstrate that the algorithm is very good at identifying intervals when there are DFB measurements or substorm onsets as long as there sufficient ENA data. We discuss some potential scientific studies that can result from use of the algorithm. We also show a preliminary application of the algorithm to simulation output to demonstrate the usefulness for other datasets, facilitate comparative studies, and introduce a new method for model validation.

5.
J Geophys Res Space Phys ; 125(9): e2020JA028215, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33282620

RESUMO

Four closely located satellites at and inside geosynchronous orbit (GEO) provided a great opportunity to study the dynamical evolution and spatial scale of premidnight energetic particle injections inside GEO during a moderate substorm on 23 December 2016. Just following the substorm onset, the four spacecraft, a LANL satellite at GEO, the two Van Allen Probes (also called "RBSP") at ~5.8 R E, and a THEMIS satellite at ~5.3 R E, observed substorm-related particle injections and local dipolarizations near the central meridian (~22 MLT) of a wedge-like current system. The large-scale evolution of the electron and ion (H, He, and O) injections was almost identical at the two RBSP spacecraft with ~0.5 R E apart. However, the initial short-timescale particle injections exhibited a striking difference between RBSP-A and -B: RBSP-B observed an energy dispersionless injection which occurred concurrently with a transient, strong dipolarization front (DF) with a peak-to-peak amplitude of ~25 nT over ~25 s; RBSP-A measured a dispersed/weaker injection with no corresponding DF. The spatiotemporally localized DF was accompanied by an impulsive, westward electric field (~20 mV m-1). The fast, impulsive E × B drift caused the radial transport of the electron and ion injection regions from GEO to ~5.8 R E. The penetrating DF fields significantly altered the rapid energy- and pitch angle-dependent flux changes of the electrons and the H and He ions inside GEO. Such flux distributions could reflect the transient DF-related particle acceleration and/or transport processes occurring inside GEO. In contrast, O ions were little affected by the DF fields.

6.
J Geophys Res Space Phys ; 125(10): e2020JA028144, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33133997

RESUMO

Understanding the energization processes and constituent composition of the plasma and energetic particles injected into the near-Earth region from the tail is an important component of understanding magnetospheric dynamics. In this study, we present multiple case studies of the high-energy (≳40 keV) suprathermal ion populations during energetic particle enhancement events observed by the Energetic Ion Spectrometer (EIS) on NASA's Magnetospheric Multiscale (MMS) mission in the magnetotail. We present results from correlation analysis of the flux response between different energy channels of different ion species (hydrogen, helium, and oxygen) for multiple cases. We demonstrate that this technique can be used to infer the dominant charge state of the heavy ions, despite the fact that charge is not directly measured by EIS. Using this technique, we find that the energization and dispersion of suprathermal ions during energetic particle enhancements concurrent with (or near) fast plasma flows are ordered by energy per charge state (E/q) throughout the magnetotail regions examined (~7 to 25 Earth radii). The ions with the highest energies (≳300 keV) are helium and oxygen of solar wind origin, which obtain their greater energization due to their higher charge states. Additionally, the case studies show that during these injections the flux ratio of enhancement is also well ordered by E/q. These results expand on previous results which showed that high-energy total ion measurements in the magnetosphere are dominated by high-charge-state heavy ions and that protons are often not the dominant species above ~300 keV.

7.
J Geophys Res Space Phys ; 123(10): 8131-8148, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30775195

RESUMO

The substorm process releases large amounts of energy into the magnetospheric system, although where the energy is transferred to and how it is partitioned remains an open question. In this study, we address whether the substorm process contributes a significant amount of energy to the ring current. The ring current is a highly variable region, and understanding the energization processes provides valuable insight into how substorm-ring current coupling may contribute to the generation of storm conditions and provide a source of energy for wave driving. In order to quantify the energy input into the ring current during the substorm process, we analyze Radiation Belt Storm Probes Ion Composition Experiment and Helium Oxygen Proton Electron ion flux measurements for H+, O+, and He+. The energy content of the ring current is estimated and binned spatially for L and magnetic local time. The results are combined with an independently derived substorm event list to perform a statistical analysis of variations in the ring current energy content with substorm phase. We show that the ring current energy is significantly higher in the expansion phase compared to the growth phase, with the energy enhancement persisting into the substorm recovery phase. The characteristics of the energy enhancement suggest the injection of energized ions from the tail plasma sheet following substorm onset. The local time variations indicate a loss of energetic H+ ions in the afternoon sector, likely due to wave-particle interactions. Overall, we find that the average energy input into the ring current is ∼9% of the previously reported energy released during substorms.

8.
J Geophys Res Space Phys ; 123(3): 1767-1778, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29780679

RESUMO

As a direct result of magnetic reconnection, plasma sheet fast flows act as primary transporter of mass, flux, and energy in the Earth's magnetotail. During the last decades, these flows were mainly studied within XGSM>-60RE , as observations near or beyond lunar orbit were limited. By using 5 years (2011-2015) of ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moons Interaction with the Sun) data, we statistically investigate earthward and tailward flows at around 60 RE downtail. A significant fraction of fast flows is directed earthward, comprising 43% (vx >400 km/s) to 56% (vx >100 km/s) of all observed flows. This suggests that near-Earth and midtail reconnection are equally probable of occurring on either side of the ARTEMIS downtail distance. For fast convective flows (v⊥x >400 km/s), this fraction of earthward flows is reduced to about 29%, which is in line with reconnection as source of these flows and a downtail decreasing Alfvén velocity. More than 60% of tailward convective flows occur in the dusk sector (as opposed to the dawn sector), while earthward convective flows are nearly symmetrically distributed between the two sectors for low AL (>-400 nT) and asymmetrically distributed toward the dusk sector for high AL (<-400 nT). This indicates that the dawn-dusk asymmetry is more pronounced closer to Earth and moves farther downtail during high geomagnetic activity. This is consistent with similar observations pointing to the asymmetric nature of tail reconnection as the origin of the dawn-dusk asymmetry of flows and other related observables. We infer that near-Earth reconnection is preferentially located at dusk, whereas midtail reconnection (X >- 60RE ) is likely symmetric across the tail during weak substorms and asymmetric toward the dusk sector for strong substorms, as the dawn-dusk asymmetric nature of reconnection onset in the near-Earth region progresses downtail.

9.
J Geophys Res Space Phys ; 122(3): 3212-3231, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28529838

RESUMO

We evaluate the large-scale energy budget of magnetic reconnection utilizing an analytical time-dependent impulsive reconnection model and a numerical 2-D MHD simulation. With the generalization to compressible plasma, we can investigate changes in the thermal, kinetic, and magnetic energies. We study these changes in three different regions: (a) the region defined by the outflowing plasma (outflow region, OR), (b) the region of compressed magnetic fields above/below the OR (traveling compression region, TCR), and (c) the region trailing the OR and TCR (wake). For incompressible plasma, we find that the decrease inside the OR is compensated by the increase in kinetic energy. However, for the general compressible case, the decrease in magnetic energy inside the OR is not sufficient to explain the increase in thermal and kinetic energy. Hence, energy from other regions needs to be considered. We find that the decrease in thermal and magnetic energy in the wake, together with the decrease in magnetic energy inside the OR, is sufficient to feed the increase in kinetic and thermal energies in the OR and the increase in magnetic and thermal energies inside the TCR. That way, the energy budget is balanced, but consequently, not all magnetic energy is converted into kinetic and thermal energies of the OR. Instead, a certain fraction gets transfered into the TCR. As an upper limit of the efficiency of reconnection (magnetic energy → kinetic energy) we find ηeff=1/2. A numerical simulation is used to include a finite thickness of the current sheet, which shows the importance of the pressure gradient inside the OR for the conversion of kinetic energy into thermal energy.

10.
J Geophys Res Space Phys ; 121(3): 2171-2184, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27830111

RESUMO

The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

11.
J Geophys Res Space Phys ; 120(2): 1197-1214, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26167445

RESUMO

We have produced the first series of spherical harmonic, numerical maps of the time-dependent surface perturbations in the Earth's magnetic field following the onset of substorms. Data from 124 ground magnetometer stations in the Northern Hemisphere at geomagnetic latitudes above 33° were used. Ground station data averaged over 5 min intervals covering 8 years (1998-2005) were used to construct pseudo auroral upper, auroral lower, and auroral electrojet (AU*, AL*, and AE*) indices. These indices were used to generate a list of substorms that extended from 1998 to 2005, through a combination of automated processing and visual checks. Events were sorted by interplanetary magnetic field (IMF) orientation (at the Advanced Composition Explorer (ACE) satellite), dipole tilt angle, and substorm magnitude. Within each category, the events were aligned on substorm onset. A spherical cap harmonic analysis was used to obtain a least error fit of the substorm disturbance patterns at 5 min intervals up to 90 min after onset. The fits obtained at onset time were subtracted from all subsequent fits, for each group of substorm events. Maps of the three vector components of the averaged magnetic perturbations were constructed to show the effects of substorm currents. These maps are produced for several specific ranges of values for the peak |AL*| index, IMF orientation, and dipole tilt angle. We demonstrate an influence of the dipole tilt angle on the response to substorms. Our results indicate that there are downward currents poleward and upward currents just equatorward of the peak in the substorms' westward electrojet. KEY POINTS: Show quantitative maps of ground geomagnetic perturbations due to substorms Three vector components mapped as function of time during onset and recovery Compare/contrast results for different tilt angle and sign of IMF Y-component.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa