Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 25(13): e202400328, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38742991

RESUMO

Baeyer-Villiger monooxygenases belong to a family of flavin-binding proteins that catalyze the Baeyer-Villiger (BV) oxidation of ketones to produce lactones or esters, which are important intermediates in pharmaceuticals or sustainable materials. Phenylacetone monooxygenase (PAMO) from Thermobifida fusca with moderate thermostability catalyzes the oxidation of aryl ketone substrates, but is limited by high specificity and narrow substrate scope. In the present study, we applied loop optimization by loop swapping followed by focused saturation mutagenesis in order to evolve PAMO mutants capable of catalyzing the regioselective BV oxidation of cyclohexanone and cyclobutanone derivatives with formation of either normal or abnormal esters or lactones. We further modulated PAMO to increase enantioselectivity. Crystal structure studies indicate that rotation occurs in the NADP-binding domain and that the high B-factor region is predominantly distributed in the catalytic pocket residues. Computational analyses further revealed dynamic character in the catalytic pocket and reshaped hydrogen bond interaction networks, which is more favorable for substrate binding. Our study provides useful insights for studying enzyme-substrate adaptations.


Assuntos
Oxigenases de Função Mista , Engenharia de Proteínas , Thermobifida , Estereoisomerismo , Especificidade por Substrato , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Thermobifida/enzimologia , Thermobifida/metabolismo , Oxirredução , Biocatálise , Domínio Catalítico , Modelos Moleculares
2.
Chembiochem ; 25(9): e202400011, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38415939

RESUMO

Characterization of the aromatic ammonia-lyase from Loktanella atrilutea (LaAAL) revealed reduced activity towards canonical AAL substrates: l-Phe, l-Tyr, and l-His, contrasted by its pronounced efficiency towards 3,4-dimethoxy-l-phenylalanine. Assessing the optimal conditions, LaAAL exhibited maximal activity at pH 9.5 in the ammonia elimination reaction route, distinct from the typical pH ranges of most PALs and TALs. Within the exploration of the ammonia source for the opposite, synthetically valuable ammonia addition reaction, the stability of LaAAL exhibited a positive correlation with the ammonia concentration, with the highest stability in 4 M ammonium carbamate of unadjusted pH of ~9.5. While the enzyme activity increased with rising temperatures yet, the highest operational stability and highest stationary conversions of LaAAL were observed at 30 °C. The substrate scope analysis highlighted the catalytic adaptability of LaAAL in the hydroamination of diverse cinnamic acids, especially of meta-substituted and di-/multi-substituted analogues, with structural modelling exposing steric clashes between the substrates' ortho-substituents and catalytic site residues. LaAAL showed a predilection for ammonia elimination, while classifying as a tyrosine ammonia-lyase (TAL) among the natural AAL classes. However, its distinctive attributes, such as genomic context, unique substrate specificity and catalytic fingerprint, suggest a potential natural role beyond those of known AAL classes.


Assuntos
Amônia-Liases , Biocatálise , Amônia-Liases/metabolismo , Amônia-Liases/química , Especificidade por Substrato , Amônia/metabolismo , Amônia/química , Concentração de Íons de Hidrogênio , Domínio Catalítico , Modelos Moleculares
3.
Chembiochem ; : e202400680, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317170

RESUMO

An increasingly effective strategy to identify synthetically useful enzymes is to sample the diversity already present in Nature. Here, we construct and assay a panel of phylogenetically diverse aromatic prenyltransferases (PTs). These enzymes catalyze a variety of C-C bond forming reactions in natural product biosynthesis and are emerging as tools for synthetic chemistry and biology. Homolog screening was further empowered through substrate-multiplexed screening, which provides direct information on enzyme specificity. We perform a head-to-head assessment of the model members of the PT family and further identify homologs with divergent sequences that rival these superb enzymes. This effort revealed the first bacterial O-Tyr PT and, together, provide valuable benchmarking for future synthetic applications of PTs.

4.
Appl Environ Microbiol ; 89(6): e0022023, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37191513

RESUMO

Nitrilase can catalyze nitrile compounds to generate corresponding carboxylic acids. Nitrilases as promiscuous enzymes can catalyze a variety of nitrile substrates, such as aliphatic nitriles, aromatic nitriles, etc. However, researchers tend to prefer enzymes with high substrate specificity and high catalytic efficiency. In this study, we developed an active pocket remodeling (ALF-scanning) based on modulating the geometry of the nitrilase active pocket to alter substrate preference and improve catalytic efficiency. Using this strategy, combined with site-directed saturation mutagenesis, we successfully obtained 4 mutants with strong aromatic nitrile preference and high catalytic activity, W170G, V198L, M197F, and F202M, respectively. To explore the synergistic relationship of these 4 mutations, we constructed 6 double-combination mutants and 4 triple-combination mutants. By combining mutations, we obtained the synergistically enhanced mutant V198L/W170G, which has a significant preference for aromatic nitrile substrates. Compared with the wild type, its specific activities for 4 aromatic nitrile substrates are increased to 11.10-, 12.10-, 26.25-, and 2.55-fold, respectively. By mechanistic dissection, we found that V198L/W170G introduced a stronger substrate-residue π-alkyl interaction in the active pocket and obtained a larger substrate cavity (225.66 Å3 to 307.58 Å3), making aromatic nitrile substrates more accessible to be catalyzed by the active center. Finally, we conducted experiments to rationally design the substrate preference of 3 other nitrilases based on the substrate preference mechanism and also obtained the corresponding aromatic nitrile substrate preference mutants of these three nitrilases and these mutants with greatly improved catalytic efficiency. Notably, the substrate range of SmNit is widened. IMPORTANCE In this study, the active pocket was largely remodeled based on the ALF-scanning strategy we developed. It is believed that ALF-scanning not only could be employed for substrate preference modification but might also play a role in protein engineering of other enzymatic properties, such as substrate region selectivity and substrate spectrum. In addition, the mechanism of aromatic nitrile substrate adaptation we found is widely applicable to other nitrilases in nature. To a large extent, it could provide a theoretical basis for the rational design of other industrial enzymes.


Assuntos
Aminoidrolases , Nitrilas , Aminoidrolases/genética , Aminoidrolases/metabolismo , Catálise , Engenharia de Proteínas , Especificidade por Substrato
5.
Chemistry ; 29(42): e202300911, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37139626

RESUMO

This study identifies new acyl donors for manufacturing statin analogues through the acylation of monacolin J acid by the laboratory evolved acyltransferase LovD9. Vinyl and p-nitrophenyl esters have emerged as alternate substrates for LovD9-catalyzed acylation. While vinyl esters can reach product yields as high as the ones obtained by α-dimethyl butyryl-S-methyl-3-mercaptopropionate (DMB-SMMP), the thioester for which LovD9 was evolved, p-nitrophenyl esters display a reactivity even higher than DMB-SMMP for the first acylation step yet the acylation product yield is lower. The reaction mechanisms were elucidated through quantum mechanics (QM) calculations.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Aciltransferases/metabolismo , Biocatálise , Acilação , Ésteres , Especificidade por Substrato
6.
Appl Microbiol Biotechnol ; 107(4): 1243-1256, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36662259

RESUMO

In this study, rational design and saturation mutagenesis efforts for engineering phenylalanine ammonia-lyase from Petroselinum crispum (PcPAL) provided tailored PALs active towards challenging, highly valuable di-substituted substrates, such as the L-DOPA precursor 3,4-dimethoxy-L-phenylalanine or the 3-bromo-4-methoxy-phenylalanine. The rational design approach and saturation mutagenesis strategy unveiled identical PcPAL variants of improved activity, highlighting the limited mutational variety of the substrate specificity-modulator residues, L134, F137, I460 of PcPAL. Due to the restricted catalytic efficiency of the best performing L134A/I460V and F137V/I460V PcPAL variants, we imprinted these beneficial mutations to PALs of different origins. The variants of PALs from Arabidopsis thaliana (AtPAL) and Anabaena variabilis (AvPAL) showed higher catalytic efficiency than their PcPAL homologues. Further, the engineered PALs were also compared in terms of catalytic efficiency with a novel aromatic ammonia-lyase from Loktanella atrilutea (LaAAL), close relative of the metagenome-derived aromatic ammonia-lyase AL-11, reported recently to possess atypically high activity towards substrates with electron-donor aromatic substituents. Indeed, LaAAL outperformed the engineered Pc/At/AvPALs in the production of 3,4-dimethoxy-L-phenylalanine; however, in case of 3-bromo-4-methoxy derivatives it showed no activity, with computational results supporting the occurrence of steric hindrance. Transferring the unique array of selectivity modulator residues from LaAAL to the well-characterized PALs did not enhance their activity towards the targeted substrates. Moreover, applying the rational design strategy valid for these well-characterized PALs to LaAAL decreased its activity. These results suggest that distinct tailoring rationale is required for LaAAL/AL-11-like aromatic ammonia-lyases, which might represent a distinct PAL subclass, with natural reaction and substrate scope modified through evolutionary processes. KEY POINTS: • PAL-activity for challenging substrates generated by protein engineering • Rational/semi-rational protein engineering reveals constrained mutational variability • Engineered PALs are outperformed by novel ALs of distinct catalytic site signature.


Assuntos
Fenilalanina Amônia-Liase , Engenharia de Proteínas , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Domínio Catalítico , Fenilalanina , Mutação
7.
Proteins ; 89(3): 336-347, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33118210

RESUMO

Predicting the range of substrates accepted by an enzyme from its amino acid sequence is challenging. Although sequence- and structure-based annotation approaches are often accurate for predicting broad categories of substrate specificity, they generally cannot predict which specific molecules will be accepted as substrates for a given enzyme, particularly within a class of closely related molecules. Combining targeted experimental activity data with structural modeling, ligand docking, and physicochemical properties of proteins and ligands with various machine learning models provides complementary information that can lead to accurate predictions of substrate scope for related enzymes. Here we describe such an approach that can predict the substrate scope of bacterial nitrilases, which catalyze the hydrolysis of nitrile compounds to the corresponding carboxylic acids and ammonia. Each of the four machine learning models (logistic regression, random forest, gradient-boosted decision trees, and support vector machines) performed similarly (average ROC = 0.9, average accuracy = ~82%) for predicting substrate scope for this dataset, although random forest offers some advantages. This approach is intended to be highly modular with respect to physicochemical property calculations and software used for structural modeling and docking.


Assuntos
Aminoidrolases , Proteínas de Bactérias , Aprendizado de Máquina , Simulação de Acoplamento Molecular/métodos , Aminoidrolases/química , Aminoidrolases/genética , Aminoidrolases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Fenômenos Químicos , Ligantes , Nitrilas/química , Nitrilas/metabolismo , Ligação Proteica
8.
Chem Rec ; 21(12): 3758-3778, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34164920

RESUMO

Transition-metal-catalyzed C-H functionalization is one of the fascinating scientific fronts in organic synthesis for the formation of conjugated arenes and has emerged as a benchmark to revolutionize the synthetic enterprise since past decades. In this realm, chelation-guided functionalization of C-H bonds using an exogenous directing group has received considerable attention recently for the expedient regioselective construction of C-C and C-heteroatom bonds as an efficient and sustainable alternative. This article outlines our contribution towards a wide variety of transformations that have been achieved by the directed C-H functionalization through the fine tuning of catalytic systems.

9.
Appl Microbiol Biotechnol ; 105(2): 509-523, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33394147

RESUMO

Ribose-5-phosphate isomerase B (RpiB) was first identified in the pentose phosphate pathway responsible for the inter-conversion of ribose-5-phosphate and ribulose-5-phosphate. Though there are seldom key enzymes in central carbon metabolic system developed as useful biocatalysts, RpiB with the advantages of wide substrate scope and high stereoselectivity has become a potential biotechnological tool to fulfill the demand of rare sugars currently. In this review, the pivotal roles of RpiB in carbon metabolism are summarized, and their sequence identity and structural similarity are discussed. Substrate binding and catalytic mechanisms are illustrated to provide solid foundations for enzyme engineering. Interesting differences in origin, physiological function, structure, and catalytic mechanism between RpiB and ribose-5-phosphate isomerase A are introduced. Moreover, enzyme engineering efforts for rare sugar production are stressed, and prospects of future development are concluded briefly in the viewpoint of biocatalysis. Aided by the progresses of structural and computational biology, the application of RpiB will be promoted greatly in the preparation of valuable molecules. KEY POINTS: • Detailed illustration of RpiB's vital function in central carbon metabolism. • Potential of RpiB in sequence, substrate scope, and mechanism for application. • Enzyme engineering efforts to promote RpiB in the preparation of rare sugars.


Assuntos
Aldose-Cetose Isomerases , Açúcares , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Carbono , Via de Pentose Fosfato
10.
Adv Synth Catal ; 361(11): 2402-2420, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31379472

RESUMO

The utilization of carbon dioxide as a C1-building block for the production of valuable chemicals has recently attracted much interest. Whereas chemical CO2 fixation is dominated by C-O and C-N bond forming reactions, the development of novel concepts for the carboxylation of C-nucleophiles, which leads to the formation of carboxylic acids, is highly desired. Beside transition metal catalysis, biocatalysis has emerged as an attractive method for the highly regioselective (de)carboxylation of electron-rich (hetero)aromatics, which has been recently further expanded to include conjugated α,ß-unsaturated (acrylic) acid derivatives. Depending on the type of substrate, different classes of enzymes have been explored for (i) the ortho-carboxylation of phenols catalyzed by metal-dependent ortho-benzoic acid decarboxylases and (ii) the side-chain carboxylation of para-hydroxystyrenes mediated by metal-independent phenolic acid decarboxylases. Just recently, the portfolio of bio-carboxylation reactions was complemented by (iii) the para-carboxylation of phenols and the decarboxylation of electron-rich heterocyclic and acrylic acid derivatives mediated by prenylated FMN-dependent decarboxylases, which is the main focus of this review. Bio(de)carboxylation processes proceed under physiological reaction conditions employing bicarbonate or (pressurized) CO2 when running in the energetically uphill carboxylation direction. Aiming to facilitate the application of these enzymes in preparative-scale biotransformations, their catalytic mechanism and substrate scope are analyzed in this review.

11.
Int J Biol Macromol ; 267(Pt 1): 131473, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614185

RESUMO

Actinoplanes utahensis deacylase (AAC)-catalyzed deacylation of echinocandin B (ECB) is a promising method for the synthesis of anidulafungin, the newest of the echinocandin antifungal agents. However, the low activity of AAC significantly limits its practical application. In this work, we have devised a multi-dimensional rational design strategy for AAC, conducting separate analyses on the substrate-binding pocket's volume, curvature, and length. Furthermore, we quantitatively analyzed substrate properties, particularly on hydrophilic and hydrophobic. Accordingly, we tailored the linoleic acid-binding pocket of AAC to accommodate the extended long lipid chain of ECB. By fine-tuning the key residues, the resulting AAC mutants can accommodate the ECB lipid chain with a lower curvature binding pocket. The D53A/I55F/G57M/F154L/Q661L mutant (MT) displayed 331 % higher catalytic efficiency than the wild-type (WT) enzyme. The MT product conversion was 94.6 %, reaching the highest reported level. Utilizing a multi-dimensional rational design for a customized mutation strategy of the substrate-binding pocket is an effective approach to enhance the catalytic efficiency of enzymes in handling complicated substrates.


Assuntos
Equinocandinas , Proteínas Fúngicas , Interações Hidrofóbicas e Hidrofílicas , Equinocandinas/química , Especificidade por Substrato , Sítios de Ligação , Mutação , Modelos Moleculares , Amidoidrolases/química , Amidoidrolases/genética , Amidoidrolases/metabolismo , Ligação Proteica
12.
Sheng Wu Gong Cheng Xue Bao ; 40(9): 2786-2796, 2024 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-39319707

RESUMO

2-ketoglutarate (2-KG)/Fe2+-dependent dioxygenases can catalyze the highly specific regio- and stereoselective functionalization of C(sp3)-H bond of complex compounds under mild reaction conditions. Hyoscyamine 6ß-hydroxylase (H6H), a member of these dioxygenases, catalyzes two consecutive oxidation reactions in the synthesis of scopolamine. The first reaction is the hydroxylation of hyoscyamine to 6ß-hydroxyhyoscyamine and the second is epoxidation of 6ß-hydroxyhyoscyamine. This paper introduces the catalytic mechanism, substrate scope, and application of H6H and evaluates the possibility of this enzyme as a biocatalyst for the functionalization of C(sp3)-H bond in complex compounds with different structural characteristics via hydroxylation or epoxidation, providing a theoretical basis for modification and application of this enzyme.


Assuntos
Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Escopolamina , Oxirredução , Hidroxilação
13.
J Biotechnol ; 377: 43-52, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37890533

RESUMO

In this study we assessed the applicability of the recently reported ancestral l-amino acid oxidase (AncLAAO), for the development of an enzyme-coupled phenylalanine ammonia-lyase (PAL) activity assay. Firstly, the expression and isolation of the AncLAAO-N1 was optimized, followed by activity tests of the obtained octameric N-terminal His-tagged enzyme towards various phenylalanine analogues to assess the compatibility of its substrate scope with that of the well-characterized PALs. AncLAAO-N1 showed high catalytic efficiency towards phenylalanines mono-, di-, or multiple-substituted in the meta- or para-positions, with ortho- substituted substrates being poorly transformed, these results highlighting the significant overlap between its substrate scope and those of PALs. After successful set-up of the AncLAAO-PAL coupled solid phase assay, in a 'proof of concept' approach we demonstrated its applicability for the high-throughput activity screens of PAL-libraries, by screening the saturation mutagenesis-derived I460NNK variant library of PAL from Petroselinum crispum, using p-MeO-phenylalanine as model substrate. Notably, the hits revealed by the coupled assay comprised all the active PAL variants: I460V, I460T, I460S, I460L, previously identified from the tested PAL-library by other assays. Our results validate the applicability of AncLAAO for coupled enzyme systems with phenylalanine ammonia-lyases, including cell-based assays suitable for the high-throughput screening of directed evolution-derived PAL-libraries.


Assuntos
L-Aminoácido Oxidase , Fenilalanina Amônia-Liase , Fenilalanina Amônia-Liase/química , Fenilalanina/metabolismo , Catálise
14.
J Agric Food Chem ; 70(45): 14510-14521, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36331356

RESUMO

The N-acyl homoserine lactone (AHL) acylases are widely used as quorum sensing (QS) blockers to inhibit bacterial food spoilage. However, their substrate specificity for long-chain substrates weakens their efficiency. In this study, a computer-assisted design of AHL acylase PF2571 was performed to modify its substrate scope. The results showed that the variant PF2571H194Y, L221R could effectively quench N-hexanoyl-l-homoserine lactone and N-octanoyl-l-homoserine lactone without impairing its activity against long-chain AHLs. Kinetic analysis of the enzymatic activities further corroborated the observed substrate expansion. The inhibitory activities of this variant were significantly enhanced against the QS phenotype of Aeromonas veronii BY-8, with inhibition rates of 45.67, 78.25, 54.21, and 54.65% against proteases, motility, biofilms, and extracellular polysaccharides, respectively. Results for molecular dynamics simulation showed that the steric hindrance, induced by residue substitution, could have been responsible for the change in substrate scope. This study dramatically improves the practicability of AHL acylase in controlling food spoilage.


Assuntos
Acil-Butirolactonas , Amidoidrolases , Acil-Butirolactonas/metabolismo , Cinética , Amidoidrolases/química , Percepção de Quorum , 4-Butirolactona/metabolismo
15.
Front Chem ; 9: 687817, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249862

RESUMO

Amine acid transformation is an important chemical process in biological systems. As a well-developed and acknowledged tool, chiral aldehyde catalysis provides good catalytic activation and stereoselective control abilities in the asymmetric reaction of N-unprotected amino acid esters and amino acid esters analogs, in which the key to success is the design of the catalysts derived from chiral BINOL aldehyde, which is based on the face control of enolate intermediates. In this review, one of the co-catalytic systems that combined with a transition metal to form a multiplex catalytic system and the well-established multiplex stereocenters of chiral aldehyde catalysis have been reviewed. Finally, a novel organocatalysis is prospected.

16.
Front Bioeng Biotechnol ; 9: 648382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777917

RESUMO

The sugar alcohols and functional sugars have wide applications in food, pharmaceutical, and chemical industries. However, the smaller quantities of natural occurring sugar alcohols and functional sugars restricted their applications. The enzymatic and whole-cell catalyst production is emerging as the predominant alternatives. The properties of Yarrowia lipolytica make it a promising sugar alcohol and functional sugar producer. However, there are still some issues to be resolved. As there exist reviews about the chemical structures, physicochemical properties, biological functions, applications, and biosynthesis of sugar alcohols and/or functional sugars in Y. lipolytica, this mini review will not only update the recent advances in enzymatic and microbial production of sugar alcohols (erythritol, D-threitol, and xylitol) and functional sugars (isomaltulose, trehalose, fructo-oligosaccharides, and galacto-oligosaccharides) by using recombinant Y. lipolytica but also focus on the studies of gene discovery, pathway engineering, expanding substrate scope, bioprocess engineering, and novel breeding methods to resolve the aforementioned issues.

17.
ACS Synth Biol ; 8(5): 1204-1214, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31042373

RESUMO

Cyclization is a common strategy to confer proteolytic resistance to peptide scaffolds. Thus, cyclic peptides have been the focus of extensive bioengineering efforts. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a superfamily of peptidic natural products that often contain macrocycles. In the RiPP family of lanthipeptides, macrocyclization is accomplished through formation of thioether cross-links between cysteines and dehydrated serines/threonines. The recent production of lanthipeptide libraries and development of methods to display lanthipeptides on yeast or phage highlights their potential for bioengineering and synthetic biology. In this regard, the prochlorosins are especially promising as the corresponding class II lanthipeptide synthetase ProcM matures numerous precursor peptides with diverse core peptide sequences. To facilitate future bioengineering projects, one of its native substrates, ProcA2.8, was subjected in this study to in-depth mutational analysis to test the limitations of ProcM-mediated cyclization. Alanine scan mutagenesis was performed on all residues within the two rings, and multiple prolines were introduced at various positions. Moreover, mutation, deletion, and insertion of residues in the region linking the two lanthionine rings was tested. Additional residues were also introduced or deleted from either ring, and inversion of ring forming residues was attempted to generate diastereomers. The findings were used for epitope grafting of the RGD integrin binding epitope within prochlorosin 2.8, resulting in a low nanomolar affinity binder of the αvß3 integrin that was more stable toward proteolysis and displayed higher affinity than the linear counterpart.


Assuntos
Peptídeos Cíclicos/metabolismo , Alanina/análogos & derivados , Alanina/metabolismo , Sequência de Aminoácidos , Ciclização , Mutagênese Sítio-Dirigida , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Engenharia de Proteínas , Processamento de Proteína Pós-Traducional , Sulfetos/metabolismo
18.
Chempluschem ; 83(5): 375-382, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-31957356

RESUMO

The use of water as a donor for hydrogen suitable for the reduction of several important classes of organic compounds is described. It is found that the reductive water splitting can be promoted by several metalloids among which silicon shows the best efficiency. The developed methodologies were applied for the reduction of nitro compounds, N-oxides, sulfoxides, alkenes, alkynes, hydrodehalogenation as well as for the gram-scale synthesis of several substrates of industrial importance.

19.
ChemCatChem ; 10(12): 2627-2633, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30069247

RESUMO

Tailored mutants of phenylalanine ammonia-lyase from Petroselinum crispum (PcPAL) were created and tested in ammonia elimination from various sterically demanding, non-natural analogues of phenylalanine and in ammonia addition reactions into the corresponding (E)-arylacrylates. The wild-type PcPAL was inert or exhibited quite poor conversions in both reactions with all members of the substrate panel. Appropriate single mutations of residue F137 and the highly conserved residue I460 resulted in PcPAL variants that were active in ammonia elimination but still had a poor activity in ammonia addition onto bulky substrates. However, combined mutations that involve I460 besides the well-studied F137 led to mutants that exhibited activity in ammonia addition as well. The synergistic multiple mutations resulted in substantial substrate scope extension of PcPAL and opened up new biocatalytic routes for the synthesis of both enantiomers of valuable phenylalanine analogues, such as (4-methoxyphenyl)-, (napthalen-2-yl)-, ([1,1'-biphenyl]-4-yl)-, (4'-fluoro-[1,1'-biphenyl]-4-yl)-, and (5-phenylthiophene-2-yl)alanines.

20.
Biotechnol Adv ; 36(1): 247-263, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29174001

RESUMO

Baeyer-Villiger monooxygenases (BVMOs) are versatile biocatalysts for the conversion of ketones to lactones or esters while also being able to efficiently oxidize sulfides to sulfoxides. However, there are limitations for the application of BVMOs in synthesis. In this review we provide an overview of the protein engineering studies aiming at optimizing different properties of BVMOs. We describe hot spots in the active sites of certain BVMOs that have been successfully targeted for changing the substrate scope, as well as the possibility to influence this property by allosteric effects. The identified hot spots in the active sites for controlling enantio- and regioselectivity are shown to be transferable to other BVMOs and we describe concepts to influence heteroatom oxidation, improve protein stability and change the cofactor dependency of BVMOs. Summarizing all these different studies enabled the identification of BVMO- or property-dependent as well as universal hot spots.


Assuntos
Oxigenases de Função Mista , Engenharia de Proteínas , Proteínas Recombinantes , Modelos Moleculares , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa