Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 614
Filtrar
1.
Small ; 20(5): e2306637, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759387

RESUMO

Selective hydrogenation of nitrostyrenes is a great challenge due to the competitive activation of the nitro groups (─NO2 ) and carbon-carbon (C═C) double bonds. Photocatalysis has emerged as an alternative to thermocatalysis for the selective hydrogenation reaction, bypassing the precious metal costs and harsh conditions. Herein, two crystalline phases of layered ternary sulfide Cu2 WS4 , that is, body-centered tetragonal I-Cu2 WS4 nanosheets and primitive tetragonal P-Cu2 WS4 nanoflowers, are controlled synthesized by adjusting the capping agents. Remarkably, these nanostructures show visible-light-driven photocatalytic performance for selective hydrogenation of 3-nitrostyrene under mild conditions. In detail, the I-Cu2 WS4 nanosheets show excellent conversion of 3-nitrostyrene (99.9%) and high selectivity for 3-vinylaniline (98.7%) with the assistance of Na2 S as a hole scavenger. They also can achieve good hydrogenation selectivity to 3-ethylnitrobenzene (88.5%) with conversion as high as 96.3% by using N2 H4 as a proton source. Mechanism studies reveal that the photogenerated electrons and in situ generated protons from water participate in the former hydrogenation pathway, while the latter requires the photogenerated holes and in situ generated reactive oxygen species to activate the N2 H4 to form cis-N2 H2 for further reduction. The present work expands the rational synthesis of ternary sulfide nanostructures and their potential application for solar-energy-driven organic transformations.

2.
Small ; : e2311627, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462958

RESUMO

For a carbon-neutral society, the production of hydrogen as a clean fuel through water electrolysis is currently of great interest. Since water electrolysis is a laborious energetic reaction, it requires high energy to maintain efficient and sustainable production of hydrogen. Catalytic electrodes can reduce the required energy and minimize production costs. In this context, herein, a bifunctional electrocatalyst made from iron nickel sulfide (FeNi2 S4 [FNS]) for the overall electrochemical water splitting is introduced. Compared to Fe2 NiO4 (FNO), FNS shows a significantly improved performance toward both OER and HER in alkaline electrolytes. At the same time, the FNS electrode exhibits high activity toward the overall electrochemical water splitting, achieving a current density of 10 mA cm-2 at 1.63 V, which is favourable compared to previously published nonprecious electrocatalysts for overall water splitting. The long-term chronopotentiometry test reveals an activation followed by a subsequent stable overall cell potential at around 2.12 V for 20 h at 100 mA cm-2 .

3.
Small ; : e2401491, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751305

RESUMO

The design and fabrication of a lithiophilic skeleton are highly important for constructing advanced Li metal anodes. In this work, a new lithiophilic skeleton is reported by planting metal sulfides (e.g., Ni3S2) on vertical graphene (VG) via a facile ultrafast Joule heating (UJH) method, which facilitates the homogeneous distribution of lithiophilic sites on carbon cloth (CC) supported VG substrate with firm bonding. Ni3S2 nanoparticles are homogeneously anchored on the optimized skeleton as CC/VG@Ni3S2, which ensures high conductivity and uniform deposition of Li metal with non-dendrites. By means of systematic electrochemical characterizations, the symmetric cells coupled with CC/VG@Ni3S2 deliver a steady long-term cycle within 14 mV overpotential for 1800 h (900 cycles) at 1 mA cm-2 and 1 mAh cm-2. Meanwhile, the designed CC/VG@Ni3S2-Li||LFP full cell shows notable electrochemical performance with a capacity retention of 92.44% at 0.5 C after 500 cycles and exceptional rate performance. This novel synthesis strategy for metal sulfides on hierarchical carbon-based materials sheds new light on the development of high-performance lithium metal batteries (LMBs).

4.
Small ; 20(11): e2309025, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37890449

RESUMO

Transition metal-based sulfides exhibit remarkable potential as electrocatalysts for oxygen evolution reaction (OER) due to the unique intrinsic structure and physicochemical characteristics. Nevertheless, currently available sulfide catalysts based on transition metals face a bottleneck in large-scale commercial applications owing to their unsatisfactory stability. Here, the first fabrication of (FeCoNiMn2 )S2 dual-phase medium-entropy metal sulfide (dp-MEMS) is successfully achieved, which demonstrated the expected optimization of stability in the OER process. Benefiting from the "cell wall" -like structure and the synergistic effect in medium-entropy systems, (FeCoNiMn2 )S2 dp-MEMS delivers an exceptionally low overpotential of 169 and 232 mV at current densities of 10 and 100 mA cm-2 , respectively. The enhancement mechanism of catalytic activity and stability is further validated by density functional theory (DFT) calculations. Additionally, the rechargeable Zn-air batteries integrated with FeCoNiMn2 )S2 dp-MEMS exhibit remarkable performance outperforming the commercial catalyst (Pt/C+RuO2 ). This work demonstrates that the dual-phase medium-entropy metal sulfide-based catalysts have the potential to provide a greater application value for OER and related energy conversion systems.

5.
Small ; : e2310518, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429235

RESUMO

Due to their significant capacity and reliable reversibility, transition metal sulphides (TMSs) have received attention as potential anode materials for sodium-ion batteries (SIBs). Nonetheless, a prevalent challenge with TMSs lies in their significant volume expansion and sluggish kinetics, impeding their capacity for rapid and enduring Na+ storage. Herein, a Cu1.96 S@NC nanodisc material enriched with copper vacancies is synthesised via a hydrothermal and annealing procedure. Density functional theory (DFT) calculations reveal that the incorporation of copper vacancies significantly boosts electrical conductivity by reducing the energy barrier for ion diffusion, thereby promoting efficient electron/ion transport. Moreover, the presence of copper vacancies creates ample active sites for the integration of sodium ions, streamlines charge transfer, boosts electronic conductivity, and, ultimately, significantly enhances the overall performance of SIBs. This novel anode material, Cu1.96 S@NC, demonstrates a reversible capacity of 339 mAh g-1 after 2000 cycles at a rate of 5 A g-1 . In addition, it maintains a noteworthy reversible capacity of 314 mAh g-1 with an exceptional capacity retention of 96% even after 2000 cycles at 20 A g-1 . The results demonstrate that creating cationic vacancies is a highly effective strategy for engineering anode materials with high capacity and rapid reactivity.

6.
Small ; : e2403268, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747023

RESUMO

Metal-organic framework derived materials received a lot of attention due to their significant benefits in photocatalytic reactions. In this work, a Z-scheme ZnIn2S4/Bi2S3 hierarchical heterojunction is first developed by a one-pot method using CAU-17 as a template. The specific preparation method endows an intimate interface contact between these two monomers, and CAU-17-derived Bi2S3 possesses a high surface area and porosity, resulting in an efficient charge separation and O2 capture. Thus, for photocatalytic H2O2 production from the O2 reduction reaction, the ZnIn2S4/Bi2S3 heterojunction can achieve an H2O2 yield of 995 µmol L-1 in pure water and ambient air under visible light, 4.5 and 4 times that of ZnIn2S4 and Bi2S3, respectively. In addition, in tetracycline solution, ZnIn2S4/Bi2S3 can degrade tetracycline with a degradation rate of 95% by photocatalysis, and at the same time, a final H2O2 production yield of 1223 µmol L-1 is reached. Similarly, high yields of H2O2 are also obtained from wastewater containing o-nitrophenol, acid golden yellow, or acid red, and these pollutants are effectively degraded. This work reveals the potential of metal-organic framework-derived materials in photocatalysis, as well as provides insights into H2O2 green synthesis and wastewater treatment.

7.
Small ; : e2401891, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004881

RESUMO

Various polytypes of van der Waals (vdW) materials can be formed by sulfur and tin, which exhibit distinctive and complementary electronic properties. Hence, these materials are attractive candidates for the design of multifunctional devices. This work demonstrates direct selective growth of tin sulfides by laser irradiation. A 532 nm continuous wave laser is used to synthesize centimeter-scale tin sulfide tracks from single source precursor tin(II) o-ethylxanthate under ambient conditions. Modulation of laser irradiation conditions enables tuning of the dominant phase of tin sulfide as well as SnS2/SnS heterostructures formation. An in-depth investigation of the morphological, structural, and compositional characteristics of the laser-synthesized tin sulfide microstructures is reported. Furthermore, laser-synthesized tin sulfides photodetectors show broad spectral response with relatively high photoresponsivity up to 4 AW-1 and fast switching time (τ rise = 1.8 ms and τ fall = 16 ms). This approach is versatile and can be exploited in various fields such as energy conversion and storage, catalysis, chemical sensors, and optoelectronics.

8.
Small ; 20(15): e2306967, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37992250

RESUMO

The traditional recycling methods of the spent lithium ion batteries (LIBs) involve the intricate and cumbersome steps. This work proposes a facile method of acid leaching followed by the sulfurization treatment to achieve the high Li leaching efficiency, and obtain high-performance multi-function electrocatalysts for oxygen reduction (ORR), oxygen evolution (OER), and methanol oxidation reactions (MOR) from the spent LIB ternary cathodes. By this method, the Li leaching efficiency from the spent LIB ternary cathode can reach 98.3%, and the transition metal sulfide heterostructures (LNMCO-H-450S) consisting MnS, NiS2, and NiCo2S4 phases can be obtained. LNMCO-H-450S shows the superior bifunctional oxygen catalytic activities with ORR half-wave potential of 0.763 V and OER potential at 10 mA cm-2 of 1.561 V, surpassing most of the state-of-the-art electrocatalysts. LNMCO-H-450S also demonstrates the superior MOR catalytic activity with the potential at 100 mA cm-2 being 1.37 V. Using LNMCO-H-450S as the oxygen catalyst, this work can construct the aqueous and solid-state zinc-air batteries with high power density of 309 and 257 mW cm-2, respectively. This work provides a promising strategy for the efficient recovery of Li, and reutilization of Ni, Co, and Mn from the spent LIB ternary cathodes.

9.
Chemistry ; : e202401842, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923056

RESUMO

Sulfilimines and their derivatives have garnered considerable interest in both synthetic and medicinal chemistry. Photochemical nitrene transfer to sulfides is known as a conventional synthetic approach to sulfilimines. However, the existing methods have a limited substrate scope stemming from the incompatibility of singlet nitrene intermediates with nucleophilic functional groups. Herein, we report the synthesis of N-sulfonyl sulfilimines via visible-light-mediated energy transfer to sulfonyl azides, uncovering the previously overlooked reactivity of triplet nitrenes with sulfides through a postulated mechanism involving single electron transfer. This reaction features broad functional group tolerance, water compatibility, and amenability to the late-stage functionalization of drugs. Thus, this work represents an important example of energy transfer chemistry that overcomes challenges in traditional synthetic methods.

10.
Chemistry ; 30(10): e202303401, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38057690

RESUMO

The synthesis of highly efficient visible-light-responsive photocatalysts is fundamental to solving the problems of low efficiency and poor selectivity in photocatalytic organic synthesis reactions. We synthesized a crystalline polyoxometalate @metal-organic framework material {Zn4 (H2 O)8 [Ir(ppy)2 (dcbpy)]4 [SiW12 O40 ]} ⋅ 4H2 O (Ir-SiW) by self-assembly of Ir metalloligands with POMs. The introduction of Ir metalloligands extends the light absorbing range to visible light, improving the efficient utilization of solar energy. The transfer of photogenerated electrons from Ir metalloligands to SiW12 was observed under visible light irradiation, which boosted the carrier separation efficiency. The synergistic effect of the two components increased the photocatalytic thioether oxidation activity, and the product methyl phenyl sulfoxide for 2.5 h under visible light irradiation (λ >400 nm) reached 99.5 %, which was higher than those of other POM-based photocatalysts. Meanwhile, the yield of methyl phenyl sulfoxide was still higher than 97 % after three cycles, demonstrating the high stability and reusability of Ir-SiW.

11.
Chemistry ; 30(32): e202400700, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38625164

RESUMO

The sensitive and reliable nanozyme-based sensor enables the detection of low concentrations of H2O2 in biological microenvironments, it has potential applications as an in-situ monitoring platform for cellular H2O2 release. The uniformly dispersed bimetallic sulfide (Zn2SnS4) nanoflowers were synthesized via a one-pot hydrothermal method and the two kinds of metal ions can serve as morphology and structure directing agents for each other in the synthetic process. The nanoparticles were utilized as nanozyme materials to fabricate a novel electrochemical sensor, and it exhibits a distinct electrochemical response towards H2O2 with excellent stability and detection capability (with a minimum detection limit of 1.79 nM (S/N=3)), the excellent characteristics facilitate the precise detection of low concentrations of H2O2 in biological microenvironments. Use the macrophages differentiated from leukemia THP-1 cells as a representative sensing model, the sensor was successfully utilized for real-time monitoring of the release of H2O2 induced by living cells, which has significant potential applications in clinical diagnosis and cancer treatment.


Assuntos
Técnicas Eletroquímicas , Peróxido de Hidrogênio , Limite de Detecção , Sulfetos , Peróxido de Hidrogênio/química , Humanos , Técnicas Eletroquímicas/métodos , Sulfetos/química , Zinco/química , Células THP-1 , Macrófagos/metabolismo
12.
Crit Rev Food Sci Nutr ; : 1-29, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644658

RESUMO

As one of the most important vegetables and oils consumed globally, cruciferous foods are appreciated for their high nutritional value. However, there is no comprehensive knowledge to sufficiently unravel the "flavor mystery" of cruciferous foods. The present review provides a comprehensive literature on the recent advances regarding the contribution of glucosinolates (GSL) degradation products to cruciferous foods odor, which focuses on key GSL degradation products contributing to distinct odor of cruciferous foods (Brassica oleracea, Brassica rapa, Brassica napus, Brassica juncea, Raphanus sativus), and key factors affecting GSL degradation pathways (i.e., enzyme-induced degradation, thermal-induced degradation, chemical-induced degradation, microwave-induced degradation) during different processing and cooking. A total of 93 volatile GSL degradation products (i.e., 36 nitriles, 33 isothiocyanates, 3 thiocyanates, 5 epithionitriles, and 16 sulfides) and 29 GSL (i.e., 20 aliphatic, 5 aromatic, and 4 indolic) were found in generalized cruciferous foods. Remarkably, cruciferous foods have a distinctive pungent, spicy, pickled, sulfur, and vegetable odor. In general, isothiocyanates are mostly present in enzyme-induced degradation of GSL and are therefore often enriched in fresh-cut or low-temperature, short-time cooked cruciferous foods. In contrast, nitriles are mainly derived from thermal-induced degradation of GSL, and are thus often enriched in high-temperature, long-time cooked cruciferous foods.


Processing and cooking can cause degradation of glucosinolates and formation of volatiles.Structure­odor relationship of glucosinolates degradation products is discussed.Nitriles, isothiocyanates, and sulfides play an important role in cruciferous foods odor.Both enzyme- and thermal-induced degradation of glucosinolates is strongly pH-dependent.

13.
Nanotechnology ; 35(23)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497442

RESUMO

In contrast to lithium-ion batteries, lithium-sulfur batteries have higher theoretical energy density and lower cost, so they would become competitive in the practical application. However, the shuttle effect of polysulfides and slow oxidation-reduction kinetics can degrade their electrochemical performance and cycle life. In this work, we have first developed the porous FeNi Prussian blue cubes as precursors. The calcination in different atmospheres was employed to make precursors convert into common pyrolysis products or novel carbon-based phosphides, and sulfides, labeled as FeNiP/A-C, FeNiP/A-P, and FeNiP/A-S. When these products serve as host materials in the sulfur cathode, the electrochemical performance of lithium-sulfur batteries is in the order of S@FeNiP/A-P > S@FeNiP/A-S > S@FeNiP/A-C. Specifically, the initial discharge capacity of S@FeNiP/A-P can reach 679.1 mAh g-1at 1 C, and the capacity would maintain 594.6 mAh g-1after 300 cycles. That is because the combination of carbon-based porous structure and numerous well-dispersed Ni2P/Fe2P active sites contribute FeNiP/A-P to obtain larger lithium-ion diffusion, lower resistance, stronger chemisorption, and more excellent catalytic effect than other samples. This work may deliver that metal-organic framework-derived carbon-based phosphides are more suitable to serve as sulfur hosts than carbon-based sulfides or common pyrolysis products for enhancing Li-S batteries' performance.

14.
Environ Sci Technol ; 58(27): 12113-12122, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38917351

RESUMO

Size and purity of metal phosphate and metal sulfide colloids can control the solubility, persistence, and bioavailability of metals in environmental systems. Despite their importance, methods for detecting and characterizing the diversity in the elemental composition of these colloids in complex matrices are missing. Here, we develop a single-particle inductively coupled plasma time-of-flight mass spectrometry (sp-icpTOF-MS) approach to characterize the elemental compositions of individual metal phosphate and sulfide colloids extracted from complex matrices. The stoichiometry was accurately determined for particles of known composition with an equivalent spherical diameter of ≥∼200 nm. Assisted by machine learning (ML), the new method could distinguish particles of the copper sulfides covellite (CuS), chalcocite (Cu2S), and chalcopyrite particles (CuFeS2) with 75% (for Cu2S) to 99% (for CuFeS2) accuracy. Application of the sp-icpTOF-MS method to particles recovered from natural samples revealed that iron sulfide (FeS) particles in lake sediment contained ∼4% copper and zinc impurities, whereas pure pyrite (FeS2) was identified in hydraulic fracturing wastewater and confirmed by selected area electron diffraction. Colloidal mercury in an offshore marine sediment was present as pure mercury sulfide (HgS), whereas geogenic HgS recovered from an industrial process contained ∼0.08 wt % silver per Hg, enabling source apportionment of these colloids using ML. X-ray absorption spectroscopy confirmed that Hg was predominantly present as metacinnabar (ß-HgS) in the industrial process sample. The determination of impurities in individual colloids, such as zinc and copper in FeS, and silver in HgS may enable improved assessment of their origin, reactivity, and bioavailability potential.


Assuntos
Coloides , Espectrometria de Massas , Fosfatos , Solo , Sulfetos , Coloides/química , Sulfetos/química , Solo/química , Fosfatos/química , Sedimentos Geológicos/química , Metais/química
15.
Environ Sci Technol ; 58(1): 960-969, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38150269

RESUMO

SO2 reduction with CH4 to produce elemental sulfur (S8) or other sulfides is typically challenging due to high energy barriers and catalyst poisoning by SO2. Herein, we report that a comproportionation reaction (CR) induced by H2S recirculating significantly accelerates the reactions, altering reaction pathways and enabling flexible adjustment of the products from S8 to sulfides. Results show that SO2 can be fully reduced to H2S at a lower temperature of 650 °C, compared to the 800 °C required for the direct reduction (DR), effectively eliminating catalyst poisoning. The kinetic rate constant is significantly improved, with CR at 650 °C exhibiting about 3-fold higher value than DR at 750 °C. Additionally, the apparent activation energy decreases from 128 to 37 kJ/mol with H2S, altering the reaction route. This CR resolves the challenges related to robust sulfur-oxygen bond activation and enhances CH4 dissociation. During the process, the well-dispersed lamellar MoS2 crystallites with Co promoters (CoMoS) act as active species. H2S facilitates the comproportionation reaction, reducing SO2 to a nascent sulfur (Sx*). Subsequently, CH4 efficiently activates CoMoS in the absence of SO2, forming H2S. This shifts the mechanism from Mars-van Krevelen (MvK) in DR to sequential Langmuir-Hinshelwood (L-H) and MvK in CR. Additionally, it mitigates sulfation poisoning through this rapid activation reaction pathway. This unique comproportionation reaction provides a novel strategy for efficient sulfur resource utilization.


Assuntos
Metano , Dióxido de Enxofre , Metano/química , Sulfetos/química , Temperatura , Enxofre/química , Oxirredução
16.
Environ Sci Technol ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344765

RESUMO

Volatile sulfur compounds, such as dimethyl sulfide (DMS), carbonyl sulfide (OCS), and carbon disulfide (CS2), have significant implications for both atmospheric chemistry and climate change. Despite the crucial role of oceans in regulating their atmospheric budgets, our comprehension of their cycles in seawater remains insufficient. To address this gap, a field investigation was conducted in the western North Pacific to clarify the sources, sinks, and biogeochemical controls of these gases in two different marine environments, including relatively eutrophic Kuroshio-Oyashio extension (KOE) and oligotrophic North Pacific subtropical gyre. Our findings revealed higher concentrations of these gases in both seawater and the atmosphere in the KOE compared to the subtropical gyre. In the KOE, nutrient-rich upwelling stimulated rapid DMS biological production, while reduced seawater temperatures hindered the removal of OCS and CS2, leading to their accumulation. Furthermore, we have quantitatively evaluated the relative contribution of each pathway to the source and sink of DMS, OCS, and CS2 within the mixed layer and identified vertical exchange as a potential sink in most cases, transporting substantial amounts of these gases from the mixed layer to deeper waters. This research advances our understanding of sulfur gas source-sink dynamics in seawater, contributing to the assessment of their marine emissions and atmospheric budgets.

17.
Environ Sci Technol ; 58(22): 9804-9814, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38771927

RESUMO

Autotrophic denitrification utilizing iron sulfides as electron donors has been well studied, but the occurrence and mechanism of abiotic nitrate (NO3-) chemodenitrification by iron sulfides have not yet been thoroughly investigated. In this study, NO3- chemodenitrification by three types of iron sulfides (FeS, FeS2, and pyrrhotite) at pH 6.37 and ambient temperature of 30 °C was investigated. FeS chemically reduced NO3- to ammonium (NH4+), with a high reduction efficiency of 97.5% and NH4+ formation selectivity of 82.6%, but FeS2 and pyrrhotite did not reduce NO3- abiotically. Electrochemical Tafel characterization confirmed that the electron release rate from FeS was higher than that from FeS2 and pyrrhotite. Quenching experiments and density functional theory calculations further elucidated the heterogeneous chemodenitrification mechanism of NO3- by FeS. Fe(II) on the FeS surface was the primary site for NO3- reduction. FeS possessing sulfur vacancies can selectively adsorb oxygen atoms from NO3- and water molecules and promote water dissociation to form adsorbed hydrogen, thereby forming NH4+. Collectively, these findings suggest that the NO3- chemodenitrification by iron sulfides cannot be ignored, which has great implications for the nitrogen, sulfur, and iron cycles in soil and water ecosystems.


Assuntos
Compostos de Amônio , Nitratos , Sulfetos , Nitratos/química , Compostos de Amônio/química , Sulfetos/química , Ferro/química , Desnitrificação
18.
Molecules ; 29(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38893390

RESUMO

This study details the rational design and synthesis of Cu2ZnSnS4 (CZTS)-doped anatase (A) heterostructures, utilizing earth-abundant elements to enhance the efficiency of solar-driven water splitting. A one-step hydrothermal method was employed to fabricate a series of CZTS-A heterojunctions. As the concentration of titanium dioxide (TiO2) varied, the morphology of CZTS shifted from floral patterns to sheet-like structures. The resulting CZTS-A heterostructures underwent comprehensive characterization through photoelectrochemical response assessments, optical measurements, and electrochemical impedance spectroscopy analyses. Detailed photoelectrochemical (PEC) investigations demonstrated notable enhancements in photocurrent density and incident photon-to-electron conversion efficiency (IPCE). Compared to pure anatase electrodes, the optimized CZTS-A heterostructures exhibited a seven-fold increase in photocurrent density and reached a hydrogen production efficiency of 1.1%. Additionally, the maximum H2 production rate from these heterostructures was 11-times greater than that of pure anatase and 250-times higher than the original CZTS after 2 h of irradiation. These results underscore the enhanced PEC performance of CZTS-A heterostructures, highlighting their potential as highly efficient materials for solar water splitting. Integrating Cu2ZnSnS4 nanoparticles (NPs) within TiO2 (anatase) heterostructures implied new avenues for developing earth-abundant and cost-effective photocatalytic systems for renewable energy applications.

19.
Molecules ; 29(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38999064

RESUMO

The PhI(OAc)2-promoted 1,2-transfer reaction between allylic alcohols and thiophenols, conducted in an argon atmosphere, has proven to be effective in producing ß-carbonyl sulfides from 1,1-disubstituted allylic alcohols in high yields. This method offers a fast and efficient way to synthesize ß-carbonyl sulfides, which are valuable intermediates in organic synthesis. This discussion focuses on the effects of the oxidizer, temperature, and solvent on the reaction. A proposed tentative mechanism for this reaction is also discussed.

20.
Chimia (Aarau) ; 78(1-2): 7-12, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38430058

RESUMO

Heterogeneous catalysis is essential to most industrial chemical processes. To achieve a better sustainability of these processes we need highly efficient and highly selective catalysts that are based on earth-abundant materials rather than the more conventional noble metals. Here, we discuss the potential of inorganic materials as catalysts for chemical transformations focusing in particular on the promising transition metal phosphides and sulfides. We describe our recent and current efforts to understand the interfacial chemistry of these materials that governs catalysis, and to tune catalytic reactivity by controlled chemical modification of the material surfaces and by use of interfacial electric fields.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa