Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.111
Filtrar
1.
J Biol Chem ; 299(6): 104810, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172729

RESUMO

RNA sequencing (RNA-seq) is a powerful technique for understanding cellular state and dynamics. However, comprehensive transcriptomic characterization of multiple RNA-seq datasets is laborious without bioinformatics training and skills. To remove the barriers to sequence data analysis in the research community, we have developed "RNAseqChef" (RNA-seq data controller highlighting expression features), a web-based platform of systematic transcriptome analysis that can automatically detect, integrate, and visualize differentially expressed genes and their biological functions. To validate its versatile performance, we examined the pharmacological action of sulforaphane (SFN), a natural isothiocyanate, on various types of cells and mouse tissues using multiple datasets in vitro and in vivo. Notably, SFN treatment upregulated the ATF6-mediated unfolded protein response in the liver and the NRF2-mediated antioxidant response in the skeletal muscle of diet-induced obese mice. In contrast, the commonly downregulated pathways included collagen synthesis and circadian rhythms in the tissues tested. On the server of RNAseqChef, we simply evaluated and visualized all analyzing data and discovered the NRF2-independent action of SFN. Collectively, RNAseqChef provides an easy-to-use open resource that identifies context-dependent transcriptomic features and standardizes data assessment.


Assuntos
Perfilação da Expressão Gênica , Internet , Isotiocianatos , RNA-Seq , Software , Sulfóxidos , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Isotiocianatos/farmacologia , Sulfóxidos/farmacologia , RNA-Seq/métodos , RNA-Seq/normas , Especificidade de Órgãos/efeitos dos fármacos , Reprodutibilidade dos Testes , Camundongos Obesos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Antioxidantes/metabolismo , Visualização de Dados
2.
Mol Med ; 30(1): 94, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902597

RESUMO

Despite recent advances in tumor diagnosis and treatment technologies, the number of cancer cases and deaths worldwide continues to increase yearly, creating an urgent need to find new methods to prevent or treat cancer. Sulforaphane (SFN), as a member of the isothiocyanates (ITCs) family, which is the hydrolysis product of glucosinolates (GLs), has been shown to have significant preventive and therapeutic cancer effects in different human cancers. Early studies have shown that SFN scavenges oxygen radicals by increasing cellular defenses against oxidative damage, mainly through the induction of phase II detoxification enzymes by nuclear factor erythroid 2-related factor 2 (Nrf2). More and more studies have shown that the anticancer mechanism of SFN also includes induction of apoptotic pathway in tumor cells, inhibition of cell cycle progression, and suppression of tumor stem cells. Therefore, the application of SFN is expected to be a necessary new approach to treating cancer. In this paper, we review the multiple molecular mechanisms of SFN in cancer prevention and treatment in recent years, which can provide a new vision for cancer treatment.


Assuntos
Anticarcinógenos , Isotiocianatos , Neoplasias , Sulfóxidos , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Sulfóxidos/farmacologia , Sulfóxidos/uso terapêutico , Humanos , Neoplasias/prevenção & controle , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Anticarcinógenos/farmacologia , Anticarcinógenos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo
3.
Biochem Biophys Res Commun ; 726: 150244, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38905785

RESUMO

Sulforaphane (SFaN) is a food-derived compound with several bioactive properties, including atherosclerosis, diabetes, and obesity treatment. However, the mechanisms by which SFaN exerts its various effects are still unclear. To elucidate the mechanisms of the various effects of SFaN, we explored novel SFaN-binding proteins using SFaN beads and identified acyl protein thioesterase 2 (APT2). We also found that SFaN binds to the APT2 via C56 residue and attenuates the palmitoylation of APT2, thereby reducing plasma membrane localization of APT2. This study reveals a novel bioactivity of SFaN as a regulator of APT2 protein palmitoylation.


Assuntos
Isotiocianatos , Lipoilação , Sulfóxidos , Tioléster Hidrolases , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Isotiocianatos/química , Sulfóxidos/farmacologia , Sulfóxidos/metabolismo , Sulfóxidos/química , Humanos , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/química , Lipoilação/efeitos dos fármacos , Ligação Proteica , Células HEK293 , Membrana Celular/metabolismo
4.
Mol Carcinog ; 63(8): 1611-1620, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38780147

RESUMO

Sulforaphane (SFN) exerts anticancer effect on various cancers including gastric cancer. However, the regulatory effect of SFN on programmed death-ligand 1 (PD-L1) and checkpoint blockade therapy in gastric cancer have not been elucidated. Here we demonstrated that SFN suppressed gastric cancer cell growth both in vitro and in vivo study. SFN upregulated PD-L1 expression through activating ΔNP63α in gastric cancer cells. Further, we found that SFN impaired the anticancer effect of anti-PD-L1 monoclonal antibody (α-PD-L1 mab) on gastric cancer cells. These results uncover a novel PD-L1 regulatory mechanism and the double-edged role of SFN in gastric cancer intervention.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Isotiocianatos , Neoplasias Gástricas , Sulfóxidos , Fatores de Transcrição , Isotiocianatos/farmacologia , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Antígeno B7-H1/metabolismo , Sulfóxidos/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Animais , Camundongos , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus
5.
Exp Dermatol ; 33(2): e15020, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38414073

RESUMO

Thirdhand smoke (THS) is the residual cigarette smoke that settles on indoor surface fabrics, dust and can accumulate in the environment. Therefore, it can be a risk factor for individuals who have frequent dermal contact with THS-contaminated surfaces. In the present study, it was aimed to elucidate the toxicity of dermal THS exposure in HaCaT human keratinocytes. The THS was extracted from terrycloth exposed to 3R4F research cigarette smoke in a closed chamber and the adverse outcomes induced by THS were determined through assessment of cytotoxicity tests (MTT and NRU), intracellular GSH level, total SOD activity, matrix metalloproteinase-1 (MMP-1) and IL-6 levels. The wound healing capacity of THS-exposed keratinocytes was evaluated via scratch assay. A potent antioxidant isothiocyanate compound, sulforaphane (SFN), was used as a negative control. THS was dose-dependently cytotoxic (12.5%-100%, v/v) to the HaCaT cells through mitochondrial cell dysfunction (p < 0.01), which was ameliorated by SFN (0.62 µM) pre-treatment. In parallel, THS exposure significantly decreased the intracellular GSH deposits and T-SOD activity in keratinocytes. Collagen degradation through elevated MMP-1 expression was observed in THS-exposed cells in parallel with the delay of wound healing and increased pro-inflammatory response in a dose-dependent manner (p < 0.05). The findings are expected to raise awareness about THS as an environmental pollutant for skin, particularly in the highest-ranked countries in cigarette consumption. To conclude, these results might contribute to the studies on the importance of dermal exposure to THS in the pathogenesis of epidermal alterations and the other skin diseases.


Assuntos
Poluição por Fumaça de Tabaco , Humanos , Poluição por Fumaça de Tabaco/efeitos adversos , Metaloproteinase 1 da Matriz , Estresse Oxidativo , Queratinócitos , Superóxido Dismutase , Produtos do Tabaco
6.
BMC Cancer ; 24(1): 814, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977944

RESUMO

BACKGROUND: Despite a multimodal approach including surgery, chemo- and radiotherapy, the 5-year event-free survival rate for rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in childhood, remains very poor for metastatic patients, mainly due to the selection and proliferation of tumour cells driving resistance mechanisms. Personalised medicine-based protocols using new drugs or targeted therapies in combination with conventional treatments have the potential to enhance the therapeutic effects, while minimizing damage to healthy tissues in a wide range of human malignancies, with several clinical trials being started. In this study, we analysed, for the first time, the antitumour activity of SFX-01, a complex of synthetic d, l-sulforaphane stabilised in alpha-cyclodextrin (Evgen Pharma plc, UK), used as single agent and in combination with irradiation, in four preclinical models of alveolar and embryonal RMS. Indeed, SFX-01 has shown promise in preclinical studies for its ability to modulate cellular pathways involved in inflammation and oxidative stress that are essential to be controlled in cancer treatment. METHODS: RH30, RH4 (alveolar RMS), RD and JR1 (embryonal RMS) cell lines as well as mouse xenograft models of RMS were used to evaluate the biological and molecular effects induced by SFX-01 treatment. Flow cytometry and the modulation of key markers analysed by q-PCR and Western blot were used to assess cell proliferation, apoptosis, autophagy and production of intracellular reactive oxygen species (ROS) in RMS cells exposed to SFX-01. The ability to migrate and invade was also investigated with specific assays. The possible synergistic effects between SFX-01 and ionising radiation (IR) was studied in both the in vitro and in vivo studies. Student's t-test or two-way ANOVA were used to test the statistical significance of two or more comparisons, respectively. RESULTS: SFX-01 treatment exhibited cytostatic and cytotoxic effects, mediated by G2 cell cycle arrest, apoptosis induction and suppression of autophagy. Moreover, SFX-01 was able to inhibit the formation and the proliferation of 3D tumorspheres as monotherapy and in combination with IR. Finally, SFX-01, when orally administered as single agent, displayed a pattern of efficacy at reducing the growth of tumour masses in RMS xenograft mouse models; when combined with a radiotherapy regime, it was observed to act synergistically, resulting in a more positive outcome than would be expected by adding each exposure alone. CONCLUSIONS: In summary, our results provide evidence for the antitumour properties of SFX-01 in preclinical models of RMS tumours, both as a standalone treatment and in combination with irradiation. These forthcoming findings are crucial for deeper investigations of SFX-01 molecular mechanisms against RMS and for setting up clinical trials in RMS patients in order to use the SFX-01/IR co-treatment as a promising therapeutic approach, particularly in the clinical management of aggressive RMS disease.


Assuntos
Apoptose , Proliferação de Células , Rabdomiossarcoma , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Rabdomiossarcoma/radioterapia , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/patologia , Radiação Ionizante , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Terapia Combinada
7.
Neurochem Res ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886329

RESUMO

Sulforaphane is a natural compound with neuroprotective activity, but its effects on hypothalamus remain unknown. In line with this, astrocytes are critical cells to maintain brain homeostasis, and hypothalamic astrocytes are fundamental for sensing and responding to environmental changes involved in a variety of homeostatic functions. Changes in brain functionality, particularly associated with hypothalamic astrocytes, can contribute to age-related neurochemical alterations and, consequently, neurodegenerative diseases. Thus, here, we investigated the glioprotective effects of sulforaphane on hypothalamic astrocyte cultures and hypothalamic cell suspension obtained from aged Wistar rats (24 months old). Sulforaphane showed anti-inflammatory and antioxidant properties, as well as modulated the mRNA expression of astroglial markers, such as aldehyde dehydrogenase 1 family member L1, aquaporin 4, and vascular endothelial growth factor. In addition, it increased the expression and extracellular levels of trophic factors, such as glia-derived neurotrophic factor and nerve growth factor, as well as the release of brain-derived neurotrophic factor and the mRNA of TrkA, which is a receptor associated with trophic factors. Sulforaphane also modulated the expression of classical pathways associated with glioprotection, including nuclear factor erythroid-derived 2-like 2, heme oxygenase-1, nuclear factor kappa B p65 subunit, and AMP-activated protein kinase. Finally, a cell suspension with neurons and glial cells was used to confirm the predominant effect of sulforaphane in glial cells. In summary, this study indicated the anti-aging and glioprotective activities of sulforaphane in aged astrocytes.

8.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38841734

RESUMO

Chronic inflammation-induced diseases (CID) are the dominant cause of death worldwide, contributing to over half of all global deaths. Sulforaphane (SFN) derived from cruciferous vegetables has been extensively studied for its multiple functional benefits in alleviating CID. This work comprehensively reviewed the biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications of SFN and its potential mechanisms against CID (e.g., cancer, obesity, type 2 diabetes, et al.), and neurological disorders based on a decade of research. SFN exerts its biological functions through the hydrolysis of glucosinolates by gut microbiota, and exhibits rapid metabolism and excretion characteristics via metabolization of mercapturic acid pathway. Microencapsulation is an important way to improve the stability and targeted delivery of SFN. The health benefits of SNF against CID are attributed to the multiple regulatory mechanisms including modulating oxidative stress, inflammation, apoptosis, immune response, and intestinal homeostasis. The clinical applications of SFN and related formulations show promising potential; however, further exploration is required regarding the sources, dosages, toxicity profiles, and stability of SFN. Together, SFN is a natural product with great potential for development and application, which is crucial for the development of functional food and pharmaceutical industries.

9.
J Ren Nutr ; 34(1): 68-75, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37619675

RESUMO

BACKGROUND: Patients with chronic kidney disease (CKD) have reduced expression of erythroid nuclear factor-related factor 2 (NRF2) and increased nuclear factor κB (NF-κB). "Food as medicine" has been proposed as an adjuvant therapeutic alternative in modulating these factors. No studies have investigated the effects of sulforaphane (SFN) in cruciferous vegetables on the expression of these genes in patients with CKD. OBJECTIVE: The study aimed to evaluate the effects of SFN on the expression of NRF2 and NF-κB in patients on hemodialysis (HD). DESIGN AND METHODS: A randomized, double-blind, crossover study was performed on 30 patients on regular HD. Fourteen patients were randomly allocated to the intervention group (1 sachet/day of 2.5 g containing 1% SFN extract with 0.5% myrosinase) and 16 patients to the placebo group (1 sachet/day of 2.5 g containing corn starch colored with chlorophyll) for 2 months. After a washout period of 2 months, the groups were switched. NRF2 and NF-κB mRNA expression was evaluated by real-time quantitative polymerase chain reaction, and tumor necrosis factor alpha and interleukin-6 levels were quantified by enzyme-linked immunosorbent assay. Malondialdehyde was evaluated as a marker of lipid peroxidation. RESULTS: Twenty-five patients (17 women, 55 [interquartile range = 19] years and 55 [interquartile range = 74] months on HD) completed the study. There was no significant difference concerning the expression of mRNA NRF2 (P = .915) and mRNA NF-κB (P = .806) after supplementation with SFN. There was no difference in pro-inflammatory and oxidative stress biomarkers. CONCLUSION: 150 µmol of SFN for 2 months had no antioxidant and anti-inflammatory effect in patients with CKD undergoing HD.


Assuntos
Isotiocianatos , NF-kappa B , Insuficiência Renal Crônica , Sulfóxidos , Humanos , Feminino , NF-kappa B/genética , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estudos Cross-Over , Estresse Oxidativo , Diálise Renal/efeitos adversos , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Suplementos Nutricionais
10.
Phytother Res ; 38(3): 1381-1399, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38217095

RESUMO

Neurological disorders incidences are increasing drastically due to complex pathophysiology, and the nonavailability of disease-modifying agents. Several attempts have been made to identify new potential chemicals to combat these neurological abnormalities. At present, complete abolishment of neurological diseases is not attainable except for symptomatic relief. However, dietary recommendations to help brain development or improvement have increased over the years. In recent times, cruciferous vegetables and their phytochemicals have been identified from preclinical and clinical investigations as potential neuroprotective agents. The present review highlights the beneficial effects and molecular mechanisms of phytochemicals such as indole-3-carbinol, diindolylmethane, sulforaphane, kaempferol, selenium, lutein, zeaxanthin, and vitamins of cruciferous vegetables against neurological diseases including Parkinson's disease, Alzheimer's disease, stroke, Huntington's disease, autism spectra disorders, anxiety, depression, and pain. Most of these cruciferous phytochemicals protect the brain by eliciting antioxidant, anti-inflammatory, and antiapoptotic properties. Regular dietary intake of cruciferous vegetables may benefit the prevention and treatment of neurological diseases. The present review suggests that there is a lacuna in identifying the clinical efficacy of these phytochemicals. Therefore, high-quality future studies should firmly establish the efficacy of the above-mentioned cruciferous phytochemicals in clinical settings.


Assuntos
Brassicaceae , Doenças do Sistema Nervoso , Humanos , Verduras/química , Brassicaceae/química , Dieta , Compostos Fitoquímicos
11.
Environ Toxicol ; 39(3): 1140-1162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37860845

RESUMO

Sulforaphane (SFN) has attracted much attention due to its ability on antioxidant, anti-inflammatory, and anti-apoptotic properties, while its functional targets and underlying mechanism of action on brain injury caused by acute carbon monoxide poisoning (ACOP) have not been fully elucidated. Herein, we used a systematic network pharmacology approach to explore the mechanism of SFN in the treatment of brain damage after ACOP. In this study, the results of network pharmacology demonstrated that there were a total of 81 effective target genes of SFN and 36 drug-disease targets, which were strongly in connection with autophagy-animal signaling pathway, drug metabolism, and transcription disorders in cancer. Upon the further biological function and KEGG signaling pathway enrichment analysis, a large number of them were involved in neuronal death, reactive oxygen metabolic processes and immune functions. Moreover, based on the results of bioinformatics prediction associated with multiple potential targets and pathways, the AMP-activated protein kinase (AMPK) signaling pathway was selected to elucidate the molecular mechanism of SFN in the treatment of brain injury caused by ACOP. The following molecular docking analysis also confirmed that SFN can bind to AMPKα well through chemical bonds. In addition, an animal model of ACOP was established by exposure to carbon monoxide in a hyperbaric oxygen chamber to verify the predicted results of network pharmacology. We found that the mitochondrial ultrastructure of neurons in rats with ACOP was seriously damaged, and apoptotic cells increased significantly. The histopathological changes were obviously alleviated, apoptosis of cortical neurons was inhibited, and the number of Nissl bodies was increased in the SFN group as compared with the ACOP group (p < .05). Besides, the administration of SFN could increase the expressions of phosphorylated P-AMPK and MFN2 proteins and decrease the levels of DRP1, Caspase3, and Casapase9 proteins in the brain tissue of ACOP rats. These findings suggest that network pharmacology is a useful tool for traditional Chinese medicine (TCM) research, SFN can effectively inhibit apoptosis, protect cortical neurons from the toxicity of carbon monoxide through activating the AMPK pathway and may become a potential therapeutic strategy for brain injury after ACOP.


Assuntos
Lesões Encefálicas , Intoxicação por Monóxido de Carbono , Medicamentos de Ervas Chinesas , Isotiocianatos , Sulfóxidos , Ratos , Animais , Simulação de Acoplamento Molecular , Monóxido de Carbono , Proteínas Quinases Ativadas por AMP , Farmacologia em Rede , Encéfalo
12.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279216

RESUMO

The endoplasmic reticulum (ER) plays a crucial role in cellular homeostasis. When ER stress is generated, an autophagic self-digestive process is activated to promote cell survival; however, cell death is induced in the case of excessive levels of ER stress. The aim of the present study was to investigate the effect of a natural compound called sulforaphane (SFN) upon ER stress. Our goal was to investigate how SFN-dependent autophagy activation affects different stages of ER stress induction. We approached our scientific analysis from a systems biological perspective using both theoretical and molecular biological techniques. We found that SFN induced the various cell-death mechanisms in a concentration- and time-dependent manner. The short SFN treatment at low concentrations promoted autophagy, whereas the longer treatment at higher concentrations activated cell death. We proved that SFN activated autophagy in a mTORC1-dependent manner and that the presence of ULK1 was required for its function. A low concentration of SFN pre- or co-treatment combined with short and long ER stress was able to promote cell survival via autophagy induction in each treatment, suggesting the potential medical importance of SFN in ER stress-related diseases.


Assuntos
Estresse do Retículo Endoplasmático , Isotiocianatos , Isotiocianatos/farmacologia , Morte Celular , Sulfóxidos/farmacologia , Autofagia , Apoptose
13.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673850

RESUMO

Changes during the production cycle of dairy cattle can leave these animals susceptible to oxidative stress and reduced antioxidant health. In particular, the periparturient period, when dairy cows must rapidly adapt to the sudden metabolic demands of lactation, is a period when the production of damaging free radicals can overwhelm the natural antioxidant systems, potentially leading to tissue damage and reduced milk production. Central to the protection against free radical damage and antioxidant defense is the transcription factor NRF2, which activates an array of genes associated with antioxidant functions and cell survival. The objective of this study was to evaluate the effect that two natural NRF2 modulators, the NRF2 agonist sulforaphane (SFN) and the antagonist brusatol (BRU), have on the transcriptome of immortalized bovine mammary alveolar cells (MACT) using both the RT-qPCR of putative NRF2 target genes, as well as RNA sequencing approaches. The treatment of cells with SFN resulted in the activation of many putative NRF2 target genes and the upregulation of genes associated with pathways involved in cell survival, metabolism, and antioxidant function while suppressing the expression of genes related to cellular senescence and DNA repair. In contrast, the treatment of cells with BRU resulted in the upregulation of genes associated with inflammation, cellular stress, and apoptosis while suppressing the transcription of genes involved in various metabolic processes. The analysis also revealed several novel putative NRF2 target genes in bovine. In conclusion, these data indicate that the treatment of cells with SFN and BRU may be effective at modulating the NRF2 transcriptional network, but additional effects associated with cellular stress and metabolism may complicate the effectiveness of these compounds to improve antioxidant health in dairy cattle via nutrigenomic approaches.


Assuntos
Isotiocianatos , Fator 2 Relacionado a NF-E2 , Quassinas , Sulfóxidos , Transcriptoma , Animais , Bovinos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Isotiocianatos/farmacologia , Quassinas/farmacologia , Sulfóxidos/farmacologia , Transcriptoma/efeitos dos fármacos , Feminino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Simulação por Computador , Estresse Oxidativo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos
14.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339067

RESUMO

Sulforaphane (SFN) is a promising molecule for developing phytopharmaceuticals due to its potential antioxidative and anti-inflammatory effects. A plethora of research conducted in vivo and in vitro reported the beneficial effects of SFN intervention and the underlying cellular mechanisms. Since SFN is a newly identified nutraceutical in sports nutrition, only some human studies have been conducted to reflect the effects of SFN intervention in exercise-induced inflammation and oxidative stress. In this review, we briefly discussed the effects of SFN on exercise-induced inflammation and oxidative stress. We discussed human and animal studies that are related to exercise intervention and mentioned the underlying cellular signaling mechanisms. Since SFN could be used as a potential therapeutic agent, we mentioned briefly its synergistic attributes with other potential nutraceuticals that are associated with acute and chronic inflammatory conditions. Given its health-promoting effects, SFN could be a prospective nutraceutical at the forefront of sports nutrition.


Assuntos
Isotiocianatos , Estresse Oxidativo , Animais , Humanos , Estudos Prospectivos , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Inflamação/tratamento farmacológico , Sulfóxidos/farmacologia , Suplementos Nutricionais , Fator 2 Relacionado a NF-E2/metabolismo
15.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38203749

RESUMO

Sulforaphane (SFN) has various beneficial effects on organ metabolism. However, whether SFN affects inflammatory mediators induced by warm hepatic ischemia/reperfusion injury (HIRI) is unclear. To investigate the hepatoprotective effects of SFN using an in vivo model of HIRI and partial hepatectomy (HIRI + PH), rats were subjected to 15 min of hepatic ischemia with blood inflow occlusion, followed by 70% hepatectomy and release of the inflow occlusion. SFN (5 mg/kg) or saline was randomly injected intraperitoneally 1 and 24 h before ischemia. Alternatively, ischemia was prolonged for 30 min to evaluate the effect on mortality. The influence of SFN on the associated signaling pathways was analyzed using the interleukin 1ß (IL-1ß)-treated primary cultured rat hepatocytes. In the HIRI + PH-treated rats, SFN reduced serum liver enzyme activities and the frequency of pathological liver injury, such as apoptosis and neutrophil infiltration. SFN suppressed tumor necrosis factor-alpha (TNF-α) mRNA expression and inhibited nuclear factor-kappa B (NF-κB) activation by HIRI + PH. Mortality was significantly reduced by SFN. In IL-1ß-treated hepatocytes, SFN suppressed the expression of inflammatory cytokines and NF-κB activation. Taken together, SFN may have hepatoprotective effects in HIRI + PH in part by inhibiting the induction of inflammatory mediators, such as TNF-α, via the suppression of NF-κB in hepatocytes.


Assuntos
Hepatectomia , Isotiocianatos , Traumatismo por Reperfusão , Sulfóxidos , Animais , Ratos , NF-kappa B , Fator de Necrose Tumoral alfa , Isquemia Quente , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Mediadores da Inflamação , Interleucina-1beta/genética , Isquemia
16.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612798

RESUMO

Brassica vegetables are widely consumed all over the world, especially in North America, Asia, and Europe. They are a rich source of sulfur compounds, such as glucosinolates (GLSs) and isothiocyanates (ITCs), which provide health benefits but are also suspected of having a goitrogenic effect. Adhering to PRISMA guidelines, we conducted a systematic review to assess the impact of dietary interventions on thyroid function, in terms of the potential risk for people with thyroid dysfunctions. We analyzed the results of 123 articles of in vitro, animal, and human studies, describing the impact of brassica plants and extracts on thyroid mass and histology, blood levels of TSH, T3, T4, iodine uptake, and the effect on thyroid cancer cells. We also presented the mechanisms of the goitrogenic potential of GLSs and ITCs, the limitations of the studies included, as well as further research directions. The vast majority of the results cast doubt on previous assumptions claiming that brassica plants have antithyroid effects in humans. Instead, they indicate that including brassica vegetables in the daily diet, particularly when accompanied by adequate iodine intake, poses no adverse effects on thyroid function.


Assuntos
Brassica , Bócio , Iodo , Animais , Humanos , Verduras , Isotiocianatos , Glucosinolatos
17.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38928111

RESUMO

Age-related macular degeneration (AMD) is strictly linked to chronic oxidative stress, inflammation, loss of epithelial barrier integrity, and often with abnormal new blood vessel development. In this study, the retinal epithelial cell line ARPE-19 was treated with pro-inflammatory transforming growth factor-beta (TGF-ß) to investigate the activity of vitamin D (VD) and sulforaphane (SF) in abating the consequences of oxidative stress and inflammation. The administration of VD and SF lowered reactive oxygen species (ROS) levels, and abated the related expression of the pro-inflammatory cytokines interleukin-6 and interleukin-8 induced by TGF-ß. We evaluated mitochondrial respiration as a source of ROS production, and we discovered that the increased transcription of respiratory elements triggered by TGF-ß was prevented by VD and SF. In this model of inflamed epithelium, the treatment with VD and SF also reduced the secretion of VEGF, a key angiogenic factor, and restored the markers of epithelial integrity. Remarkably, all the observed biological effects were potentiated by the co-stimulation with the two compounds and were not mediated by VD receptor expression but rather by the ERK 1/2 pathway. Altogether, the results of this study reveal the powerful synergistic anti-inflammatory activity of SF and VD and lay the foundation for future clinical assessment of their efficacy in AMD.


Assuntos
Isotiocianatos , Degeneração Macular , Estresse Oxidativo , Espécies Reativas de Oxigênio , Sulfóxidos , Vitamina D , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/tratamento farmacológico , Degeneração Macular/patologia , Isotiocianatos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sulfóxidos/farmacologia , Vitamina D/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Biomarcadores/metabolismo , Interleucina-8/metabolismo
18.
Molecules ; 29(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276596

RESUMO

The main goal of this work was to develop analytical procedures for the isolation and determination of selected isothiocyanates. As an example, particularly sulforaphane from plants of the Brassicaceae Burnett or Cruciferae Juss family. The applied methodology was mainly based on classical extraction methods and high-performance liquid chromatography coupled with tandem mass spectrometry. Moreover, the effect of temperature on the release of isothiocyanates from plant cells was considered. The cytotoxic activity of the obtained plant extracts against a selected cancer cell line has also been included. The results allow evaluating the usefulness of obtained plant extracts and raw sprouts regarding their content of isothiocyanates-bioactive compounds with chemopreventive properties.


Assuntos
Antineoplásicos , Brassica , Brassica/química , Isotiocianatos/farmacologia , Isotiocianatos/química , Extratos Vegetais/química , Linhagem Celular , Sulfóxidos , Glucosinolatos/metabolismo
19.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930960

RESUMO

Sulforaphane is a chiral phytochemical with chemopreventive properties. The presence of a stereogenic sulfur atom is responsible for the chirality of the natural isothiocyanate. The key role of sulfur chirality in biological activity is underscored by studies of the efficacy of individual enantiomers as chemoprotective agents. The predominant native (R) enantiomer is active, whereas the (S) antipode is inactive or has little or no biological activity. Here we provide an enantioselective high-performance liquid chromatography (HPLC) protocol for the direct and complete resolution of sulforaphane and its chiral natural homologs with different aliphatic chain lengths between the sulfinyl sulfur and isothiocyanate group, namely iberin, alyssin, and hesperin. The chromatographic separations were carried out on the immobilized-type CHIRALPAK IH-3 chiral stationary phase with amylose tris-[(S)-methylbenzylcarbamate] as a chiral selector. The effects of different mobile phases consisting of pure alcoholic solvents and hydroalcoholic mixtures on enantiomer retention and enantioselectivity were carefully investigated. Simple and environmentally friendly enantioselective conditions for the resolution of all chiral ITCs were found. In particular, pure ethanol and highly aqueous mobile phases gave excellent enantioseparations. The retention factors of the enantiomers were recorded as the water content in the aqueous-organic modifier (methanol, ethanol, or acetonitrile) mobile phases progressively varied. U-shaped retention maps were generated, indicating a dual and competitive hydrophilic interaction liquid chromatography (HILIC) and reversed-phase liquid chromatography retention mechanism on the CHIRALPAK IH-3 chiral stationary phase. Finally, experimental chiroptical studies performed in ethanol solution showed that the (R) enantiomers were eluted before the (S) counterpart under all eluent conditions investigated.


Assuntos
Amilose , Isotiocianatos , Isotiocianatos/química , Cromatografia Líquida de Alta Pressão/métodos , Estereoisomerismo , Amilose/química , Amilose/análogos & derivados , Química Verde/métodos
20.
Inflammopharmacology ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922526

RESUMO

The endoplasmic reticulum (ER) is an intracellular organelle that contributes to the folding of proteins and calcium homeostasis. Numerous elements can disrupt its function, leading to the accumulation of proteins that are unfolded or misfolded in the lumen of the ER, a condition that is known as ER stress. This phenomenon can trigger cell death through the activation of apoptosis and inflammation. Glucoraphanin (GRA) is the predominant glucosinolate found in cruciferous vegetables. Various mechanical and biochemical processes activate the enzyme myrosinase, leading to the hydrolysis of glucoraphanin into the bioactive compound sulforaphane. Sulforaphane is an organosulfur compound that belongs to the isothiocyanate group. It possesses a wide range of activities and has shown remarkable potential as an anti-inflammatory, antioxidant, antitumor, and anti-angiogenic substance. Additionally, sulforaphane is resistant to oxidation, has been demonstrated to have low toxicity, and is considered well-tolerable in individuals. These properties make it a valuable natural dietary supplement for research purposes. Sulforaphane has been demonstrated as a potential candidate drug molecule for managing a range of diseases, primarily because of its potent antioxidant, anti-inflammatory, and anti-apoptotic properties, which can be mediated by modulation of ER stress pathways. This review seeks to cover a wealth of data supporting the broad range of protective functions of sulforaphane, improving various diseases, such as cardiovascular, central nervous system, liver, eye, and reproductive diseases, as well as diabetes, cancer, gastroenteritis, and osteoarthritis, through the amelioration of ER stress in both in vivo and in vitro studies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa