Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(20): e2220725120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155857

RESUMO

Dissimilatory sulfate reduction (DSR) mediated by sulfate-reducing microorganisms (SRMs) plays a pivotal role in global sulfur, carbon, oxygen, and iron cycles since at least 3.5 billion y ago. The canonical DSR pathway is believed to be sulfate reduction to sulfide. Herein, we report a DSR pathway in phylogenetically diverse SRMs through which zero-valent sulfur (ZVS) is directly generated. We identified that approximately 9% of sulfate reduction was directed toward ZVS with S8 as a predominant product, and the ratio of sulfate-to-ZVS could be changed with SRMs' growth conditions, particularly the medium salinity. Further coculturing experiments and metadata analyses revealed that DSR-derived ZVS supported the growth of various ZVS-metabolizing microorganisms, highlighting this pathway as an essential component of the sulfur biogeochemical cycle.


Assuntos
Sulfatos , Enxofre , Sulfatos/metabolismo , Oxirredução , Enxofre/metabolismo , Sulfetos/metabolismo , Óxidos de Enxofre
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074914

RESUMO

Catabolism of sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose), the ubiquitous sulfosugar produced by photosynthetic organisms, is an important component of the biogeochemical carbon and sulfur cycles. Here, we describe a pathway for SQ degradation that involves oxidative desulfurization to release sulfite and enable utilization of the entire carbon skeleton of the sugar to support the growth of the plant pathogen Agrobacterium tumefaciens SQ or its glycoside sulfoquinovosyl glycerol are imported into the cell by an ATP-binding cassette transporter system with an associated SQ binding protein. A sulfoquinovosidase hydrolyzes the SQ glycoside and the liberated SQ is acted on by a flavin mononucleotide-dependent sulfoquinovose monooxygenase, in concert with an NADH-dependent flavin reductase, to release sulfite and 6-oxo-glucose. An NAD(P)H-dependent oxidoreductase reduces the 6-oxo-glucose to glucose, enabling entry into primary metabolic pathways. Structural and biochemical studies provide detailed insights into the recognition of key metabolites by proteins in this pathway. Bioinformatic analyses reveal that the sulfoquinovose monooxygenase pathway is distributed across Alpha- and Betaproteobacteria and is especially prevalent within the Rhizobiales order. This strategy for SQ catabolism is distinct from previously described pathways because it enables the complete utilization of all carbons within SQ by a single organism with concomitant production of inorganic sulfite.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Redes e Vias Metabólicas , Metilglucosídeos/metabolismo , Estresse Oxidativo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Metabolismo dos Carboidratos , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Enxofre/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(41): e2209152119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36201540

RESUMO

Marine dissolved organic matter (DOM) is a major reservoir that links global carbon, nitrogen, and phosphorus. DOM is also important for marine sulfur biogeochemistry as the largest water column reservoir of organic sulfur. Dissolved organic sulfur (DOS) can originate from phytoplankton-derived biomolecules in the surface ocean or from abiotically "sulfurized" organic matter diffusing from sulfidic sediments. These sources differ in 34S/32S isotope ratios (δ34S values), with phytoplankton-produced DOS tracking marine sulfate (21‰) and sulfurized DOS mirroring sedimentary porewater sulfide (∼0 to -10‰). We measured the δ34S values of solid-phase extracted (SPE) DOM from marine water columns and porewater from sulfidic sediments. Marine DOMSPE δ34S values ranged from 14.9‰ to 19.9‰ and C:S ratios from 153 to 303, with lower δ34S values corresponding to higher C:S ratios. Marine DOMSPE samples showed consistent trends with depth: δ34S values decreased, C:S ratios increased, and δ13C values were constant. Porewater DOMSPE was 34S-depleted (∼-0.6‰) and sulfur-rich (C:S ∼37) compared with water column samples. We interpret these trends as reflecting at most 20% (and on average ∼8%) contribution of abiotic sulfurized sources to marine DOSSPE and conclude that sulfurized porewater is not a main component of oceanic DOS and DOM. We hypothesize that heterogeneity in δ34S values and C:S ratios reflects the combination of sulfurized porewater inputs and preferential microbial scavenging of sulfur relative to carbon without isotope fractionation. Our findings strengthen links between oceanic sulfur and carbon cycling, supporting a realization that organic sulfur, not just sulfate, is important to marine biogeochemistry.


Assuntos
Matéria Orgânica Dissolvida , Enxofre , Carbono , Nitrogênio/análise , Fósforo , Fitoplâncton , Sulfatos/análise , Sulfetos , Isótopos de Enxofre , Água
4.
Proc Natl Acad Sci U S A ; 119(14): e2119194119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35312339

RESUMO

SignificanceSulfur isotopes confirm a key role for atmospheric sulfur gases in climatic cooling, mass extinction, and the demise of dinosaurs and other global biota after the Chicxulub bolide impact at the Cretaceous-Paleogene boundary. The sulfur isotope anomalies are confined to beds containing ejecta and, in the immediately overlying sediments, are temporally unrelated to known episodes of volcanism that also bracket this event, further addressing the controversial role of the Deccan Traps in the extinction.


Assuntos
Dinossauros , Extinção Biológica , Animais , Isótopos , Enxofre
5.
J Biol Chem ; 299(11): 105338, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838169

RESUMO

Sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose) is a sulfosugar that is the anionic head group of plant, algal, and cyanobacterial sulfolipids: sulfoquinovosyl diacylglycerols. SQ is produced within photosynthetic tissues, forms a major terrestrial reservoir of biosulfur, and is an important species within the biogeochemical sulfur cycle. A major pathway for SQ breakdown is the sulfoglycolytic Embden-Meyerhof-Parnas pathway, which involves cleavage of the 6-carbon chain of the intermediate sulfofructose-1-phosphate (SFP) into dihydroxyacetone and sulfolactaldehyde, catalyzed by class I or II SFP aldolases. While the molecular basis of catalysis is understood for class I SFP aldolases, comparatively little is known about class II SFP aldolases. Here, we report the molecular architecture and biochemical basis of catalysis of two metal-dependent class II SFP aldolases from Hafnia paralvei and Yersinia aldovae. 3D X-ray structures of complexes with substrate SFP and product dihydroxyacetone phosphate reveal a dimer-of-dimers (tetrameric) assembly, the sulfonate-binding pocket, two metal-binding sites, and flexible loops that are implicated in catalysis. Both enzymes were metal-dependent and exhibited high KM values for SFP, consistent with their role in a unidirectional nutrient acquisition pathway. Bioinformatic analysis identified a range of sulfoglycolytic Embden-Meyerhof-Parnas gene clusters containing class I/II SFP aldolases. The class I and II SFP aldolases have mututally exclusive occurrence within Actinobacteria and Firmicutes phyla, respectively, while both classes of enzyme occur within Proteobacteria. This work emphasizes the importance of SQ as a nutrient for diverse bacterial phyla and the different chemical strategies they use to harvest carbon from this sulfosugar.


Assuntos
Aldeído Liases , Frutose-Bifosfato Aldolase , Aldeído Liases/química , Carbono , Frutose-Bifosfato Aldolase/química , Metais , Fosfatos
6.
Appl Environ Microbiol ; 90(4): e0139023, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38551370

RESUMO

Sulfate-reducing prokaryotes (SRPs) are essential microorganisms that play crucial roles in various ecological processes. Even though SRPs have been studied for over a century, there are still gaps in our understanding of their biology. In the past two decades, a significant amount of data on SRP ecology has been accumulated. This review aims to consolidate that information, focusing on SRPs in soils, their relation to the rare biosphere, uncultured sulfate reducers, and their interactions with other organisms in terrestrial ecosystems. SRPs in soils form part of the rare biosphere and contribute to various processes as a low-density population. The data reveal a diverse range of sulfate-reducing taxa intricately involved in terrestrial carbon and sulfur cycles. While some taxa like Desulfitobacterium and Desulfosporosinus are well studied, others are more enigmatic. For example, members of the Acidobacteriota phylum appear to hold significant importance for the terrestrial sulfur cycle. Many aspects of SRP ecology remain mysterious, including sulfate reduction in different bacterial phyla, interactions with bacteria and fungi in soils, and the existence of soil sulfate-reducing archaea. Utilizing metagenomic, metatranscriptomic, and culture-dependent approaches will help uncover the diversity, functional potential, and adaptations of SRPs in the global environment.


Assuntos
Desulfovibrio , Ecossistema , Bactérias/genética , Sulfatos/análise , Enxofre , Solo
7.
Antonie Van Leeuwenhoek ; 117(1): 23, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217803

RESUMO

A survey for bacteria of the genus Thiothrix indicated that they inhabited the area where the water of the Zmeiny geothermal spring (northern basin of Lake Baikal, Russia) mixed with the lake water. In the coastal zone of the lake oxygen (8.25 g/L) and hydrogen sulfide (up to 1 mg/L) were simultaneously present at sites of massive growth of these particular Thiothrix bacteria. Based on the analysis of the morphological characteristics and sequence of individual genes (16S rRNA, rpoB and tilS), we could not attribute the Thiothrix from Lake Baikal to any of the known species of this genus. To determine metabolic capabilities and phylogenetic position of the Thiothrix sp. from Lake Baikal, we analyzed their whole genome. Like all members of this genus, the bacteria from Lake Baikal were capable of organo-heterotrophic, chemolithoheterotrophic, and chemolithoautotrophic growth and differed from its closest relatives in the spectrum of nitrogen and sulfur cycle genes as well as in the indices of average nucleotide identity (ANI < 75-94%), amino acid identity (AAI < 94%) and in silico DNA-DNA hybridization (dDDH < 17-57%), which were below the boundary of interspecies differences, allowing us to identify them as novel candidate species.


Assuntos
Fontes Termais , Thiothrix , Thiothrix/genética , Thiothrix/metabolismo , Fontes Termais/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Baías , Federação Russa , Bactérias/genética , Lagos/microbiologia , Água , Sulfetos/metabolismo , Genômica , DNA
8.
Angew Chem Int Ed Engl ; 63(26): e202401358, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38647177

RESUMO

The sulfolipid sulfoquinovosyl diacylglycerol (SQDG), produced by plants, algae, and cyanobacteria, constitutes a major sulfur reserve in the biosphere. Microbial breakdown of SQDG is critical for the biological utilization of its sulfur. This commences through release of the parent sugar, sulfoquinovose (SQ), catalyzed by sulfoquinovosidases (SQases). These vanguard enzymes are encoded in gene clusters that code for diverse SQ catabolic pathways. To identify, visualize and isolate glycoside hydrolase CAZY-family 31 (GH31) SQases in complex biological environments, we introduce SQ cyclophellitol-aziridine activity-based probes (ABPs). These ABPs label the active site nucleophile of this enzyme family, consistent with specific recognition of the SQ cyclophellitol-aziridine in the active site, as evidenced in the 3D structure of Bacillus megaterium SQase. A fluorescent Cy5-probe enables visualization of SQases in crude cell lysates from bacteria harbouring different SQ breakdown pathways, whilst a biotin-probe enables SQase capture and identification by proteomics. The Cy5-probe facilitates monitoring of active SQase levels during different stages of bacterial growth which show great contrast to more traditional mRNA analysis obtained by RT-qPCR. Given the importance of SQases in global sulfur cycling and in human microbiota, these SQase ABPs provide a new tool with which to study SQase occurrence, activity and stability.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Bacillus megaterium/enzimologia , Domínio Catalítico , Modelos Moleculares , Metilglucosídeos
9.
Appl Environ Microbiol ; 89(2): e0201622, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36728421

RESUMO

Sulfoquinovose (SQ) is a major metabolite in the global sulfur cycle produced by nearly all photosynthetic organisms. One of the major pathways involved in the catabolism of SQ in bacteria such as Escherichia coli is a variant of the glycolytic Embden-Meyerhof-Parnas (EMP) pathway termed the sulfoglycolytic EMP (sulfo-EMP) pathway, which leads to the consumption of three of the six carbons of SQ and the excretion of 2,3-dihydroxypropanesulfonate (DHPS). Comparative metabolite profiling of aerobically glucose (Glc)-grown and SQ-grown E. coli cells was undertaken to identify the metabolic consequences of the switch from glycolysis to sulfoglycolysis. Sulfoglycolysis was associated with the diversion of triose phosphates (triose-P) to synthesize sugar phosphates (gluconeogenesis) and an unexpected accumulation of trehalose and glycogen storage carbohydrates. Sulfoglycolysis was also associated with global changes in central carbon metabolism, as indicated by the changes in the levels of intermediates in the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway (PPP), polyamine metabolism, pyrimidine metabolism, and many amino acid metabolic pathways. Upon entry into stationary phase and the depletion of SQ, E. coli cells utilize their glycogen, indicating a reversal of metabolic fluxes to allow glycolytic metabolism. IMPORTANCE The sulfosugar sulfoquinovose is estimated to be produced on a scale of 10 billion metric tons per annum, making it a major organosulfur species in the biosulfur cycle. The microbial degradation of sulfoquinovose through sulfoglycolysis allows the utilization of its carbon content and contributes to the biomineralization of its sulfur. However, the metabolic consequences of microbial growth on sulfoquinovose are unclear. We use metabolomics to identify the metabolic adaptations that Escherichia coli undergoes when grown on sulfoquinovose versus glucose. This revealed the increased flux into storage carbohydrates through gluconeogenesis and the reduced flux of carbon into the TCA cycle and downstream metabolism. These changes are relieved upon entry into stationary phase and reversion to glycolytic metabolism. This work provides new insights into the metabolic consequences of microbial growth on an abundant sulfosugar.


Assuntos
Carbono , Escherichia coli , Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicólise , Glucose/metabolismo , Glicogênio/metabolismo , Trioses/metabolismo , Enxofre/metabolismo
10.
Arch Microbiol ; 205(5): 162, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010699

RESUMO

Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) inhabit oilfield production systems. Sulfur oxidation driven by SOB and dissimilatory sulfate reduction driven by SRB play important roles in sulfur cycle of oil reservoirs. More importantly, hydrogen sulfide produced by SRB is an acidic, flammable, and smelly toxic gas associated with reservoir souring, corrosion of oil-production facilities, and personnel safety. Effective control of SRB is urgently needed for the oil industry. This depends on an in-depth understanding of the microbial species that drive sulfur cycle and other related microorganisms in oil reservoir environments. Here, we identified SOB and SRB in produced brines of Qizhong block (Xinjiang Oilfield, China) from metagenome sequencing data based on reported SOB and SRB, reviewed metabolic pathways of sulfur oxidation and dissimilatory sulfate reduction, and ways for SRB control. The existing issues and future research of microbial sulfur cycle and SRB control are also discussed. Knowledge of the distribution of the microbial populations, their metabolic characteristics and interactions can help to develop an effective process to harness these microorganisms for oilfield production.


Assuntos
Desulfovibrio , Campos de Petróleo e Gás , Oxirredução , Sulfatos/metabolismo , Desulfovibrio/metabolismo , Bactérias/genética , Bactérias/metabolismo , Enxofre/metabolismo
11.
Environ Res ; 232: 116341, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290623

RESUMO

Anaerobic ammonium (NH4+ - N) oxidation coupled with sulfate (SO42-) reduction (sulfammox) is a new pathway for the autotrophic removal of nitrogen and sulfur from wastewater. Sulfammox was achieved in a modified up-flow anaerobic bioreactor filled with granular activated carbon. After 70 days of operation, the NH4+ - N removal efficiency almost reached 70%, with activated carbon adsorption and biological reaction accounting for 26% and 74%, respectively. Ammonium hydrosulfide (NH4SH) was found in sulfammox by X-ray diffraction analysis for the first time, which confirmed that hydrogen sulfide (H2S) was one of the sulfammox products. Microbial results indicated that NH4+ - N oxidation and SO42- reduction in sulfammox were carried out by Crenothrix and Desulfobacterota, respectively, in which activated carbon may operate as electron shuttle. In the 15NH4+ labeled experiment, 30N2 were produced at a rate of 34.14 µmol/(g sludge·h) and no 30N2 was detected in the chemical control group, proving that sulfammox was present and could only be induced by microorganisms. The 15NO3- labeled group produced 30N2 at a rate of 88.77 µmol/(g sludge·h), demonstrating the presence of sulfur-driven autotrophic denitrification. In the adding 14NH4+ and 15NO3- group, it was confirmed that NH4+ - N was removed by the synergy of sulfammox, anammox and sulfur-driven autotrophic denitrification, where the main product of sulfammox was nitrite (NO2-) and anammox was the main cause of nitrogen loss. The findings showed that SO42- as a non-polluting species to environment may substitute NO2- to create a new "anammox" process.


Assuntos
Compostos de Amônio , Esgotos , Carvão Vegetal , Desnitrificação , Nitrogênio/análise , Dióxido de Nitrogênio/análise , Oxirredução , Reatores Biológicos , Enxofre
12.
Proc Natl Acad Sci U S A ; 117(14): 7650-7657, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32213594

RESUMO

The mass-independent minor oxygen isotope compositions (Δ'17O) of atmospheric O2 and [Formula: see text] are primarily regulated by their relative partial pressures, [Formula: see text]/[Formula: see text] Pyrite oxidation during chemical weathering on land consumes [Formula: see text] and generates sulfate that is carried to the ocean by rivers. The Δ'17O values of marine sulfate deposits have thus been proposed to quantitatively track ancient atmospheric conditions. This proxy assumes direct [Formula: see text] incorporation into terrestrial pyrite oxidation-derived sulfate, but a mechanistic understanding of pyrite oxidation-including oxygen sources-in weathering environments remains elusive. To address this issue, we present sulfate source estimates and Δ'17O measurements from modern rivers transecting the Annapurna Himalaya, Nepal. Sulfate in high-elevation headwaters is quantitatively sourced by pyrite oxidation, but resulting Δ'17O values imply no direct tropospheric [Formula: see text] incorporation. Rather, our results necessitate incorporation of oxygen atoms from alternative, 17O-enriched sources such as reactive oxygen species. Sulfate Δ'17O decreases significantly when moving into warm, low-elevation tributaries draining the same bedrock lithology. We interpret this to reflect overprinting of the pyrite oxidation-derived Δ'17O anomaly by microbial sulfate reduction and reoxidation, consistent with previously described major sulfur and oxygen isotope relationships. The geologic application of sulfate Δ'17O as a proxy for past [Formula: see text]/[Formula: see text] should consider both 1) alternative oxygen sources during pyrite oxidation and 2) secondary overprinting by microbial recycling.

13.
Appl Environ Microbiol ; 88(9): e0021622, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35404072

RESUMO

Oxygen minimum zones (OMZs) are hot spots for redox-sensitive nitrogen transformations fueled by sinking organic matter. In comparison, the regulating role of sulfur-cycling microbes in marine OMZs, their impact on carbon cycling in pelagic and benthic habitats, and activities below the seafloor remain poorly understood. Using 13C DNA stable isotope probing (SIP) and metatranscriptomics, we explored microbial guilds involved in sulfur and carbon cycling from the ocean surface to the subseafloor on the Namibian shelf. There was a clear separation in microbial community structure across the seawater-seafloor boundary, which coincided with a 100-fold-increased concentration of microbial biomass and unique gene expression profiles of the benthic communities. 13C-labeled 16S rRNA genes in SIP experiments revealed carbon-assimilating taxa and their distribution across the sediment-water interface. Most of the transcriptionally active taxa among water column communities that assimilated 13C from diatom exopolysaccharides (mostly Bacteroidetes, Actinobacteria, Alphaproteobacteria, and Planctomycetes) also assimilated 13C-bicarbonate under anoxic conditions in sediment incubations. Moreover, many transcriptionally active taxa from the seafloor community (mostly sulfate-reducing Deltaproteobacteria and sulfide-oxidizing Gammaproteobacteria) that assimilated 13C-bicarbonate under sediment anoxic conditions also assimilated 13C from diatom exopolysaccharides in the surface ocean and OMZ waters. Despite strong selection at the sediment-water interface, many taxa related to either planktonic or benthic communities were found to be present at low abundance and actively assimilating carbon under both sediment and water column conditions. In austral winter, mixing of shelf waters reduces stratification and suspends sediments from the seafloor into the water column, potentially spreading metabolically versatile microbes across niches. IMPORTANCE Microbial activities in oxygen minimum zones (OMZs) transform inorganic fixed nitrogen into greenhouse gases, impacting the Earth's climate and nutrient equilibrium. Coastal OMZs are predicted to expand with global change and increase carbon sedimentation to the seafloor. However, the role of sulfur-cycling microbes in assimilating carbon in marine OMZs and related seabed habitats remain poorly understood. Using 13C DNA stable isotope probing and metatranscriptomics, we explore microbial guilds involved in sulfur and carbon cycling from ocean surface to subseafloor on the Namibian shelf. Despite strong selection and differential activities across the sediment-water interface, many active taxa were identified in both planktonic and benthic communities, either fixing inorganic carbon or assimilating organic carbon from algal biomass. Our data show that many planktonic and benthic microbes linked to the sulfur cycle can cross redox boundaries when mixing of the shelf waters reduces stratification and suspends seafloor sediment particles into the water column.


Assuntos
Bicarbonatos , Microbiota , Carbono/metabolismo , DNA , Isótopos , Nitrogênio/metabolismo , Oceanos e Mares , Oxigênio/metabolismo , RNA Ribossômico 16S , Água do Mar/microbiologia , Enxofre/metabolismo , Água/química
14.
Arch Microbiol ; 204(6): 317, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35567694

RESUMO

Bacteria are important participants in sulfur cycle of the extremely haloalkaline environment, e.g. soda lake. The effects of physicochemical factors on the composition of sulfide-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in soda lake have remained elusive. Here, we surveyed the community structure of total bacteria, SOB and SRB based on 16S rRNA, soxB and dsrB gene sequencing, respectively, in five soda lakes with different physicochemical factors. The results showed that the dominant bacteria belonged to the phyla Proteobacteria, Bacteroidetes, Halanaerobiaeota, Firmicutes and Actinobacteria. SOB and SRB were widely distributed in lakes with different physicochemical characteristics, and the community composition were different. In general, salinity and inorganic nitrogen sources (NH4+-N, NO3--N) were the most significant factors. Specifically, the communities of SOB, mainly including Thioalkalivibrio, Burkholderia, Paracoccus, Bradyrhizobium, and Hydrogenophaga genera, were remarkably influenced by the levels of NH4+-N and salinity. Yet, for SRB communities, including Desulfurivibrio, Candidatus Electrothrix, Desulfonatronospira, Desulfonatronum, Desulfonatronovibrio, Desulfonatronobacter and so on, the most significant determinants were salinity and NO3--N. Besides, Rhodoplanes played a significant role in the interaction between SOB and SRB. From our results, the knowledge regarding the community structures of SOB and SRB in extremely haloalkaline environment was extended.


Assuntos
Desulfovibrio , Lagos , Bactérias/genética , Humanos , Lagos/microbiologia , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Sulfetos , Enxofre
15.
Arch Microbiol ; 204(3): 193, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35201431

RESUMO

Sulfoglycolysis pathways enable the breakdown of the sulfosugar sulfoquinovose and environmental recycling of its carbon and sulfur content. The prototypical sulfoglycolytic pathway is a variant of the classical Embden-Meyerhof-Parnas (EMP) pathway that results in formation of 2,3-dihydroxypropanesulfonate and was first described in gram-negative Escherichia coli. We used enrichment cultures to discover new sulfoglycolytic bacteria from Australian soil samples. Two gram-positive Arthrobacter spp. were isolated that produced sulfolactate as the metabolic end-product. Genome sequences identified a modified sulfoglycolytic EMP gene cluster, conserved across a range of other Actinobacteria, that retained the core sulfoglycolysis genes encoding metabolic enzymes but featured the replacement of the gene encoding sulfolactaldehyde (SLA) reductase with SLA dehydrogenase, and the absence of sulfoquinovosidase and sulfoquinovose mutarotase genes. Excretion of sulfolactate by these Arthrobacter spp. is consistent with an aerobic saprophytic lifestyle. This work broadens our knowledge of the sulfo-EMP pathway to include soil bacteria.


Assuntos
Arthrobacter , Arthrobacter/genética , Arthrobacter/metabolismo , Austrália , Glicólise/genética , Família Multigênica , Enxofre/metabolismo
16.
Proc Natl Acad Sci U S A ; 116(14): 6897-6902, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30886102

RESUMO

The exergonic reaction of FeS with H2S to form FeS2 (pyrite) and H2 was postulated to have operated as an early form of energy metabolism on primordial Earth. Since the Archean, sedimentary pyrite formation has played a major role in the global iron and sulfur cycles, with direct impact on the redox chemistry of the atmosphere. However, the mechanism of sedimentary pyrite formation is still being debated. We present microbial enrichment cultures which grew with FeS, H2S, and CO2 as their sole substrates to produce FeS2 and CH4 Cultures grew over periods of 3 to 8 mo to cell densities of up to 2 to 9 × 106 cells per mL-1 Transformation of FeS with H2S to FeS2 was followed by 57Fe Mössbauer spectroscopy and showed a clear biological temperature profile with maximum activity at 28 °C and decreasing activities toward 4 °C and 60 °C. CH4 was formed concomitantly with FeS2 and exhibited the same temperature dependence. Addition of either penicillin or 2-bromoethanesulfonate inhibited both FeS2 and CH4 production, indicating a coupling of overall pyrite formation to methanogenesis. This hypothesis was supported by a 16S rRNA gene-based phylogenetic analysis, which identified at least one archaeal and five bacterial species. The archaeon was closely related to the hydrogenotrophic methanogen Methanospirillum stamsii, while the bacteria were most closely related to sulfate-reducing Deltaproteobacteria, as well as uncultured Firmicutes and Actinobacteria. Our results show that pyrite formation can be mediated at ambient temperature through a microbially catalyzed redox process, which may serve as a model for a postulated primordial iron-sulfur world.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Ferro/metabolismo , Methanospirillum , Filogenia , RNA Arqueal , RNA Ribossômico 16S , Sulfetos/metabolismo , Methanospirillum/genética , Methanospirillum/metabolismo , Oxirredução , RNA Arqueal/genética , RNA Arqueal/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
17.
J Environ Manage ; 307: 114459, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104700

RESUMO

Low energy consumption treatment of high-strength wastewater is crucial in controlling groundwater pollution and eutrophication in closed waterbodies. In this study, the sulfate reduction, denitrification/anammox, and partial nitrification (SRDAPN) process, which is an effective organic carbon and nitrogen removal process with low energy consumption for low strength wastewater, was applied to treat livestock wastewater with high COD and sulfate concentration, and microbial reaction and community were examined using an anaerobic-anoxic biological filter reactor that simulates circulation from an aerobic reactor. At a total organic carbon loading rate of 2.7-5.8 kgC/m3·day, sulfate reduction and methane production occurred simultaneously in the anaerobic column of the reactor. Specifically, sulfate reduction resulted in organic matter removal rates of 38 and 26% at ambient temperature and 25 °C, respectively. Furthermore, both heterotrophic and autotrophic denitrification occurred in the anoxic column, and when the organic loading rate in the anoxic reactor was below 0.2 kgC/m3·day, 33%-37% of ammonium and 33%-34% of nitrite were removed by the anammox reaction. Heterotrophic denitrification bacteria (Thauera, Comamonas, and Denitratisoma) and sulfur denitrification bacteria (Sulfurimonas denitrificans) grew in the lower and middle parts of the anoxic column, whereas anammox bacteria (2.5% of Candidatus Brocadia at ambient temperature and 9.4% of Candidatus Kuenenia at 25 °C) grew in the upper part of the anoxic column. These results indicate that the SRDAPN process based on sulfur cycle and anammox is useful for treatment of high strength wastewater with low energy consumption.


Assuntos
Nitrificação , Águas Residuárias , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Carbono , Desnitrificação , Nitrogênio/análise , Oxirredução , Esgotos , Sulfetos , Águas Residuárias/análise
18.
Arch Microbiol ; 203(2): 561-578, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32989476

RESUMO

Achromobacter aegrifaciens NCCB 38021 was grown heterotrophically on succinate versus exochemolithoheterotrophically on succinate with thiosulfate as auxiliary electron donor. In batch culture, no significant differences in specific molar growth yield or specific growth rate were found for the two growth conditions, but in continuous culture in the succinate-limited chemostat, the maximum specific growth yield coefficient increased by 23.3% with thiosulfate present, consistent with previous studies of endo- and exochemolithoheterotrophs and thermodynamic predictions. Thiosulfate oxidation was coupled to respiration at cytochrome c551, and thiosulfate-dependent ATP biosynthesis occurred. Specific activities of cytochrome c-linked thiosulfate dehydrogenase (E.C. 1.8.2.2) and two other enzymes of sulfur metabolism were significantly higher in exochemolithoheterotrophically grown cell extracts, while those of succinyl-transferring 2-oxoglutarate dehydrogenase (E.C. 1.2.4.2), fumarate hydratase (E.C. 4.2.1.2) and malate dehydrogenase (NAD+, E.C. 1.1.1.37) were significantly lower-presumably owing to less need to generate reducing equivalents during Krebs' cycle, since they could be produced from thiosulfate oxidation.


Assuntos
Achromobacter/crescimento & desenvolvimento , Achromobacter/metabolismo , Ciclo do Ácido Cítrico , Ácido Succínico/metabolismo , Enxofre/metabolismo , Tiossulfatos/metabolismo , Achromobacter/enzimologia , Elétrons , Cinética , Malato Desidrogenase/metabolismo , Oxirredução , Oxirredutases/metabolismo
19.
Environ Res ; 192: 110282, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038361

RESUMO

Sulfate dependent ammonium oxidation (Sulfammox) is a potential microbial process coupling ammonium oxidation with sulfate reduction under anaerobic conditions, which provides a novel link between nitrogen and sulfur cycle. Recently, Sulfammox was detected in wastewater treatments and was confirmed to occur in natural environments, especially in marine sediments. However, knowledge gaps in the mechanism of Sulfammox, functional bacteria, and their metabolic pathway, make it challenging to estimate its environmental significance and potential applications. This review provides an overview of recent advances in Sulfammox, including possible mechanisms, functional bacteria, and main influential factors, and discusses future challenges and opportunities. Future perspectives are outlined and discussed, such as exploration of microbial community structure and metabolic pathways, possible interactions with other microbes, environmental significance, and potential applications for nitrogen and sulfate removal, to inspire more researches on the Sulfammox process.


Assuntos
Compostos de Amônio , Anaerobiose , Reatores Biológicos , Nitrogênio , Oxirredução , Sulfatos , Enxofre
20.
J Biol Chem ; 294(47): 18002-18014, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31467084

RESUMO

Thiosulfate dehydrogenases (TsdAs) are bidirectional bacterial di-heme enzymes that catalyze the interconversion of tetrathionate and thiosulfate at measurable rates in both directions. In contrast to our knowledge of TsdA activities, information on the redox properties in the absence of substrates is rather scant. To address this deficit, we combined magnetic CD (MCD) spectroscopy and protein film electrochemistry (PFE) in a study to resolve heme ligation and redox chemistry in two representative TsdAs. We examined the TsdAs from Campylobacter jejuni, a microaerobic human pathogen, and from the purple sulfur bacterium Allochromatium vinosum In these organisms, the enzyme functions as a tetrathionate reductase and a thiosulfate oxidase, respectively. The active site Heme 1 in both enzymes has His/Cys ligation in the ferric and ferrous states and the midpoint potentials (Em ) of the corresponding redox transformations are similar, -185 mV versus standard hydrogen electrode (SHE). However, fundamental differences are observed in the properties of the second, electron transferring, Heme 2. In C. jejuni, TsdA Heme 2 has His/Met ligation and an Em of +172 mV. In A. vinosum TsdA, Heme 2 reduction triggers a switch from His/Lys ligation (Em , -129 mV) to His/Met (Em , +266 mV), but the rates of interconversion are such that His/Lys ligation would be retained during turnover. In summary, our findings have unambiguously assigned Em values to defined axial ligand sets in TsdAs, specified the rates of Heme 2 ligand exchange in the A. vinosum enzyme, and provided information relevant to describing their catalytic mechanism(s).


Assuntos
Campylobacter jejuni/enzimologia , Chromatiaceae/enzimologia , Heme/metabolismo , Oxirredutases/metabolismo , Dicroísmo Circular , Eletroquímica , Transporte de Elétrons , Oxirredução , Tiossulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa