Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genes Cells ; 29(8): 667-680, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39105351

RESUMO

In the fission yeast Schizosaccharomyces pombe, the response to sulfur depletion has been less studied compared to the response to nitrogen depletion. Our study reveals that the fission yeast gene, SPCC417.09c, plays a significant role in the sulfur depletion response. This gene encodes a protein with a Zn2Cys6 fungal-type DNA-binding domain and a transcription factor domain, and we have named it sdr1+ (sulfur depletion response 1). Interestingly, while sulfur depletion typically induces autophagy akin to nitrogen depletion, we found that autophagy was not induced under sulfur depletion in the absence of sdr1+. This suggests that sdr1+ is necessary for the induction of autophagy under conditions of sulfur depletion. Although sdr1+ is not essential for the growth of fission yeast, its overexpression, driven by the nmt1 promoter, inhibits growth. This implies that Sdr1 may possess cell growth-inhibitory capabilities. In addition, our analysis of Δsdr1 cells revealed that sdr1+ also plays a role in regulating the expression of genes associated with the phosphate depletion response. In conclusion, our study introduces Sdr1 as a novel transcription factor that contributes to an appropriate cellular nutrient starvation response. It does so by inhibiting inappropriate cell growth and inducing autophagy in response to sulfur depletion.


Assuntos
Autofagia , Regulação Fúngica da Expressão Gênica , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Enxofre , Fatores de Transcrição , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Enxofre/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas
2.
Genes Cells ; 25(12): 825-830, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33064910

RESUMO

Autophagy is an intracellular degradation system widely conserved among various species. Autophagy is induced by the depletion of various nutrients, and this degradation mechanism is essential for adaptation to such conditions. In this study, we demonstrated that sulfur depletion induces autophagy in the fission yeast Schizosaccharomyces pombe. Based on the finding that autophagy induced by sulfur depletion was completely abolished in a mutant in which the ecl1, ecl2 and ecl3 genes were deleted (Δecls), we report that these three genes are essential for the induction of autophagy by sulfur depletion. Furthermore, autophagy-defective mutant cells exhibited poor growth and short lifespan (compared with wild-type cells) under the sulfur-depleted condition. These results indicated that the mechanism of autophagy is necessary for the appropriate adaptation to sulfur depletion.


Assuntos
Autofagia , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Enxofre/deficiência , Proteínas Nucleares/genética , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa