Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 970
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 173(7): 1716-1727.e17, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29779945

RESUMO

Sunlight exposure is known to affect mood, learning, and cognition. However, the molecular and cellular mechanisms remain elusive. Here, we show that moderate UV exposure elevated blood urocanic acid (UCA), which then crossed the blood-brain barrier. Single-cell mass spectrometry and isotopic labeling revealed a novel intra-neuronal metabolic pathway converting UCA to glutamate (GLU) after UV exposure. This UV-triggered GLU synthesis promoted its packaging into synaptic vesicles and its release at glutamatergic terminals in the motor cortex and hippocampus. Related behaviors, like rotarod learning and object recognition memory, were enhanced after UV exposure. All UV-induced metabolic, electrophysiological, and behavioral effects could be reproduced by the intravenous injection of UCA and diminished by the application of inhibitor or short hairpin RNA (shRNA) against urocanase, an enzyme critical for the conversion of UCA to GLU. These findings reveal a new GLU biosynthetic pathway, which could contribute to some of the sunlight-induced neurobehavioral changes.


Assuntos
Encéfalo/efeitos da radiação , Ácido Glutâmico/biossíntese , Aprendizagem/efeitos da radiação , Memória/efeitos da radiação , Raios Ultravioleta , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Cromatografia Líquida de Alta Pressão , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espectrometria de Massas em Tandem , Urocanato Hidratase/antagonistas & inibidores , Urocanato Hidratase/genética , Urocanato Hidratase/metabolismo , Ácido Urocânico/sangue , Ácido Urocânico/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(6): e2309852121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306476

RESUMO

Metal-organic frameworks (MOFs) are superior ion adsorbents for selectively capturing toxic ions from water. Nevertheless, they have rarely been reported to have lithium selectivity over divalent cations due to the well-known flexibility of MOF framework and the similar physiochemical properties of Li+ and Mg2+. Herein, we report an ion-sieving adsorption approach to design sunlight-regenerable lithium adsorbents by subnanoporous MOFs for efficient lithium extraction. By integrating the ion-sieving agent of MOFs with light-responsive adsorption sites of polyspiropyran (PSP), the ion-sieving adsorption behaviors of PSP-MOFs with 6.0, 8.5, and 10.0 Å windows are inversely proportional to their pore size. The synthesized PSP-UiO-66 with a narrowest window size of 6.0 Å shows high LiCl adsorption capacity up to 10.17 mmol g-1 and good Li+/Mg2+ selectivity of 5.8 to 29 in synthetic brines with Mg/Li ratio of 1 to 0.1. It could be quickly regenerated by sunlight irradiation in 6 min with excellent cycling performance of 99% after five cycles. This work sheds light on designing selective adsorbents using responsive subnanoporous materials for environmentally friendly and energy-efficient ion separation and purification.

3.
Small ; : e2400230, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501752

RESUMO

A series of 15 dyes based on the 2-phenylnaphtho[2,3-d]thiazole-4,9-dione scaffold and 1 compound based on the 2,3-diphenyl-1,2,3,4-tetrahydrobenzo[g]quinoxaline-5,10-dione scaffold are studied as photoinitiators. These compounds are used in two- and three-component high-performance photoinitiating systems for the free radical polymerization of trimethylolpropane triacrylate (TMPTA) and polyethylene glycol diacrylate (PEGDA) under sunlight. Remarkably, the conversion of TMPTA can reach ≈60% within 20 s, while PEGDA attains a 96% conversion within 90 s. To delve into the intricate chemical mechanisms governing the polymerization, an array of analytical techniques is employed. Specifically, UV-vis absorption and fluorescence spectroscopy, steady-state photolysis, stability experiments, fluorescence quenching experiments, cyclic voltammetry, and electron spin resonance spin trapping (ESR-ST) experiments, collectively contribute to a comprehensive understanding of the photochemical mechanisms. Photoinitiation capacities of these systems are determined using real-time Fourier transformed infrared spectroscopy (RT-FTIR). Of particular interest is the revelation that, owing to the superior initiation ability of these dyes, high-resolution 3D patterns can be manufactured by direct laser write (DLW) technology and 3D printing. This underscores the efficient initiation of free radical polymerization processes by the newly developed dyes under both artificial and natural light sources, presenting an avenue for energy-saving, and environmentally friendly polymerization conditions.

4.
Chemistry ; 30(33): e202400348, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38602023

RESUMO

Utilizing photocatalytic method to produce hydrogen by splitting water is an efficient strategy to solve the hotspot issues of energy crisis and environmental pollution. Herein, we systematically investigate the corresponding properties of the reported Cu-bearing ternary compound monolayer CuP2Se by using the first-principle calculations. The monolayer CuP2Se has quite small cleavage energy of 0.51 J/m2, indicating it can be easily produced by the mechanical exfoliation method experimentally. In addition, it is an indirect bandgap semiconductor material which has a moderate value of 1.91 eV. The conduction band minimum (CBM) and valence band maximum (VBM) can perfectly straddle the redox potentials of water when a biaxial strain of -4% to 4% is applied, unveiling the high photocatalytic thermodynamic stability of monolayer CuP2Se in response to the effect of solvent tension. Remarkably, the monolayer CuP2Se also demonstrates significant sunlight capturing ability in the visible region. The outstanding electronic and optical properties suggest that the monolayer CuP2Se is undoubtedly a viable material for photocatalytic water splitting.

5.
Photochem Photobiol Sci ; 23(6): 1155-1166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739325

RESUMO

Fruit flies spoil crops in agricultural settings. As conventional pesticides may generate negative off-target effects on humans or the environment, existing treatment methods need eco-friendly and safe alternatives. Photodynamic Inactivation (PDI) is based on the photosensitizer-mediated and light-induced overproduction of reactive oxygen species in targets. We here explore the potential of PDI for the control of fruit fly pests. Drosophila melanogaster serves as well-established model organism in this study. Two distinct experimental approaches are presented: the feed assay, in which fruit flies are provided with sodium magnesium chlorophyllin (Chl, approved as food additive E140) along with sucrose (3%) as their food, and the spray assay, where the photosensitizer is sprayed onto the insects. We show that PDI based on Chl can induce moribundity rates of Drosophila melanogaster of more than 99% with 5 mM Chl and LED illumination (395 nm, 8 h incubation in the dark, radiant exposure 78.9 J/cm2) with the feed assay. If the radiant exposure is doubled to 157.8 J/cm2, 88% of insects are killed by PDI based on 1 mM Chl. The photoactive compound is also effective if presented on strawberries without addition of sucrose with somewhat lower moribundity (71% at 5 mM Chl). Spraying Chl onto insects is less effective than feeding the photosensitizer: 5 mM Chl resulted in 79.5% moribundity (drug to light interval 8 h, radiant exposure 78.9 J/cm2), but if 5 h of sun light (532 J/cm2) and overnight (14 h) dark incubation is used for activation of Chl, more than 95% of insects are killed. As conclusion, Chl serves as effective photoinsecticide against Drosophila melanogaster if a drug to light interval of 8 h is maintained. Feeding the photoactive compound together with sucrose is more effective than spraying it onto insects and increasing the radiant exposure allows for lowering the photosensitizer concentration. Photodynamic Inactivation might therefore represent an eco-friendly addition to the farmers armamentarium against (semi-transparent) insects.


Assuntos
Clorofilídeos , Drosophila melanogaster , Inseticidas , Fármacos Fotossensibilizantes , Animais , Clorofilídeos/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Luz , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Inseticidas/farmacologia
6.
Environ Sci Technol ; 58(3): 1700-1708, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38154042

RESUMO

Ozonation is universally used during water treatment but can form hazardous brominated disinfection byproducts (Br-DBPs). While sunlight exposure is advised to reduce the risk of Br-DBPs, their phototransformation pathways remain insufficiently understood. Here, sunlight irradiation was found to reduce adsorbable organic bromine by 63%. Applying high-resolution mass spectrometry, the study investigated transformations of dissolved organic matter in sunlit-ozonated reclaimed water, revealing the number and abundance of assigned formulas decreased after irradiation. The Br-DBPs with O/C < 0.6 and MW > 400 Da were decreased or removed after irradiation, with the majority being CHOBr compounds. The peak intensity reduction ratio of CHOBr compounds correlated positively with double bound equivalent minus oxygen ratios but negatively with O/C, suggesting that photo-susceptible CHOBr compounds were highly unsaturated. Mass difference analysis revealed that the photodegradation pathways were mainly oxidation aligned with debromination. Three typical CHOBr molecular structures were resolved, and their photoproducts were proposed. Toxicity estimates indicated decreased toxicity in these photoproducts compared to their parent compounds, in line with experimentally determined values. Our proposed phototransformation pathways for Br-DBPs enhance our comprehension of their degradation and irradiation-induced toxicity reduction in reclaimed water, further illuminating their transformation under sunlight in widespread environmental scenarios.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Desinfetantes/análise , Desinfetantes/química , Desinfetantes/toxicidade , Halogenação , Poluentes Químicos da Água/análise , Purificação da Água/métodos
7.
Environ Res ; 251(Pt 1): 118649, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458589

RESUMO

A novel photocatalyst In2O3 with loading Ag particles is prepared via a facile one-step annealing method in air atmosphere. The Ag/In2O3 exhibits considerable photoactivity for decomposing sulfisoxazole (SOX), tetracycline hydrochloride (TC), and rhodamine B (RhB) under natural sunlight irradiation, which is much higher than that of pristine In2O3 and Ag species. After natural sunlight irradiation for 100 min, 70.6% of SOX, 65.6% of TC, and 81.9% of RhB are degraded over Ag/In2O3, and their corresponding chemical oxygen demand (COD) removal ratio achieve 95.4%, 38.4%, and 93.6%, respectively. A batch of experiments for degrading SOX with adjusting pollutant solution pH and adding coexisting anions over Ag/In2O3 are carried out to estimate its practical application prospect. Particularly, the as-prepared Ag/In2O3 possesses a superior stability, which exhibits no noticeable deactivation in decomposing SOX after eight cycles' reactions. In addition, the Ag/In2O3 coated on a frosted glass plate, also possesses a superior activity and stability for SOX removal, which solve the possible second pollution of residual powdered catalyst in water. Ag particles on In2O3 working as electron accepter improve charge separation and transfer efficiency, as well as the photo-absorption and organic pollutants affinity, leading to the boosted photoactivity of Ag/In2O3. The photocatalytic mechanism for degrading SOX and degradation process over Ag/In2O3 has been systemically investigated and proposed. This work offers an archetype for the rational design of highly efficient photocatalysts by metal loading.


Assuntos
Prata , Luz Solar , Prata/química , Poluentes Químicos da Água/química , Catálise , Rodaminas/química , Fotólise
8.
Environ Res ; 242: 117747, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016498

RESUMO

The increasing use of pharmaceuticals and the ongoing release of drug residues into the environment have resulted in significant threats to environmental sustainability and water safety. In this sense, developing a robust and easy-recovered magnetic nanocomposite with eminent photocatalytic activity is very imperative for detoxifying pharmaceutical compounds. Herein, a systematic study was conducted to investigate the photocatalytic ozonation for eliminating metronidazole (MET) from aqueous media utilizing the CuFe2O4/SiO2/ZnO heterojunction under simulated sunlight irradiation. The composite material was fabricated by a facile hydrothermal method and diagnosed by multiple advanced analytical techniques. Modelling and optimization of MET decontamination by adopting the central composite design (CCD) revealed that 90 % of MET decontamination can be achieved within 120 min of operating time at the optimized circumstance (photocatalyst dose: 1.17 g/L, MET dose: 33.20 mg/L, ozone concentration: 3.99 mg/min and pH: 8.99). In an attempt to scrutinize the practical application of the CuFe2O4/SiO2/ZnO/xenon/O3 system, roughly 56.18% TOC and 73% COD were removed under the optimized operational circumstances during 120 min of degradation time. According to the radical quenching experiments, hydroxyl radicals (HO•) were the major oxidative species responsible for the elimination of MET. The MET degradation rate maintained at 83% after seven consecutive runs, manifesting the efficiency of CuFe2O4/SiO2/ZnO material in the MET removal. Ultimately, the photocatalytic ozonation mechanism over the CuFe2O4/SiO2/ZnO heterojunction of the fabricated nanocomposites was rationally proposed for MET elimination. In extension, the results drawn in this work indicate that integrating photocatalyst and ozonation processes by the CuFe2O4/SiO2/ZnO material can be applied as an efficient and promising method to eliminate tenacious and non-biodegradable contaminants from aqueous environments.


Assuntos
Nanocompostos , Ozônio , Óxido de Zinco , Metronidazol , Óxido de Zinco/química , Dióxido de Silício , Descontaminação , Ozônio/química , Catálise
9.
Environ Res ; 243: 117854, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065389

RESUMO

In this work, a new S-type hybrid composed of 2D BiOIO3 and 0D Bi3NbO7 was proposed and hybridized by a facile self-assembly strategy. The developed nanomaterials were characterized and identified by a series of sophisticated analyses, like XRD, SEM, EIS, XPS, PL, UPS, EDS, BET, M-S, TEM, HRTEM, and DRS. The photocatalytic behavior of BiOIO3/Bi3NbO7 was examined and optimized against amoxicillin (AMX) and other types of antibiotics under a variety of environmental conditions, such as visible light (150 W LED), direct sunlight, pH (3-11), catalyst dosages (20-80 mg), humic acid (0-24 mg/L), AMX concentration (10-40 mg/L), and different inorganic ions (0.05 M). The optimized BiOIO3/Bi3NbO7 hybrid attained exceptional AMX degradation activity (96.5%) under visible light (60 min), with a reaction constant of up to 0.04559 min-1, exceeding bare BiOIO3 and Bi3NbO7 by 5.57 and 5.3 folds, respectively. The obtained BiOIO3/Bi3NbO7 hybrid unclosed expanded light utilization behavior compared with neat catalysts, which originates from the powerful incorporation between BiOIO3 and Bi3NbO7 in the S-type system. The radical investigations confirmed the superiority of BiOIO3/Bi3NbO7 in generating both •OH and •O2- during the photoreaction. The novel Bi3NbO7-based heterojunction afforded robust photostability in five treatment cycles and simple charge transfer activity in the S-type route, boosting the photo-mechanism for antibiotic degradation in an efficient manner. The building of the S-scheme heterojunction between BiOIO3 and Bi3NbO7 stimulates the utilization of holes by the recombination process and promotes the overall stability of the composite. Our study introduces a new class of semiconductor heterojunctions that may contribute to the development potential of the photocatalysis sector in wastewater treatment.


Assuntos
Antibacterianos , Nanopartículas , Águas Residuárias , Amoxicilina , Luz , Catálise
10.
BMC Public Health ; 24(1): 122, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195450

RESUMO

INTRODUCTION: Gestational weight gain (GWG) is influenced by various factors during pregnancy. This study attempts to explore the relationship between environmental factors i.e., sunlight exposure and psychological health i.e. psychological well-being and sleep quality during pregnancy with total gestational weight gain. METHODS: This was a prospective observational study conducted in government maternity clinics in Kuala Lumpur. Pregnant women aged 19-39 years without comorbidities were recruited during second trimester and followed up until birth. The participants were required to wear a UVB dosimeter for a total of three consecutive days (2 weekdays and 1 weekend) to determine sunlight exposure (SED) during their second trimester. The PSQI and DASS-21 were used to determine sleep quality and psychological wellbeing, respectively. GWG data were collected from clinic health records. The association of sun exposure and psychological health with total GWG was determined using multiple linear regression. RESULTS: A total of 73 pregnant women aged 27.9 ± 3.3 years were included in the analysis. The prevalence of pregnant women exhibiting stress, anxiety, and depression symptoms was 11%, 40%, and 16% respectively. The global PSQI median score was 5 (IQR = 3), with 59% having poor sleep quality. Median sleep duration was 7 h (IQR = 2) while median sleep efficiency was 92% (IQR = 14). The median SED was 0.04 (IQR = 0.09), with 51% of them being under the 50th percentile. The majority had adequate GWG (58%). Sleep parameters were not found to be correlated with total GWG except for sleep latency (ρ = -0.356, p = 0.002). Sunlight exposure was found to have no significant relationship with sleep and total GWG. Adjusted multiple linear regression showed that greater depression is associated with higher total GWG (ß = 0.239, p = 0.039) while controlling for sleep quality. CONCLUSION: Depression was associated with total GWG when sleep quality was controlled for while sunlight exposure had no significant association with GWG. Future studies should study the complex relationship between factors of mental health, sleep, and weight gain during pregnancy. Healthcare providers may be better equipped to develop interventions aimed to prevent negative maternal and fetal health outcomes.


Assuntos
Ganho de Peso na Gestação , Feminino , Humanos , Gravidez , Saúde Mental , Estudos Prospectivos , Sono , Aumento de Peso , Adulto Jovem , Adulto
11.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33376202

RESUMO

Multiple sclerosis (MS) disease risk is associated with reduced sun-exposure. This study assessed the relationship between measures of sun exposure (vitamin D [vitD], latitude) and MS severity in the setting of two multicenter cohort studies (nNationMS = 946, nBIONAT = 990). Additionally, effect-modification by medication and photosensitivity-associated MC1R variants was assessed. High serum vitD was associated with a reduced MS severity score (MSSS), reduced risk for relapses, and lower disability accumulation over time. Low latitude was associated with higher vitD, lower MSSS, fewer gadolinium-enhancing lesions, and lower disability accumulation. The association of latitude with disability was lacking in IFN-ß-treated patients. In carriers of MC1R:rs1805008(T), who reported increased sensitivity toward sunlight, lower latitude was associated with higher MRI activity, whereas for noncarriers there was less MRI activity at lower latitudes. In a further exploratory approach, the effect of ultraviolet (UV)-phototherapy on the transcriptome of immune cells of MS patients was assessed using samples from an earlier study. Phototherapy induced a vitD and type I IFN signature that was most apparent in monocytes but that could also be detected in B and T cells. In summary, our study suggests beneficial effects of sun exposure on established MS, as demonstrated by a correlative network between the three factors: Latitude, vitD, and disease severity. However, sun exposure might be detrimental for photosensitive patients. Furthermore, a direct induction of type I IFNs through sun exposure could be another mechanism of UV-mediated immune-modulation in MS.


Assuntos
Monócitos/efeitos da radiação , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Receptor Tipo 1 de Melanocortina/genética , Transcriptoma/efeitos da radiação , Vitamina D/sangue , Linfócitos B/efeitos da radiação , Estudos de Coortes , Feminino , Variação Genética , Genótipo , Humanos , Interferon beta/farmacologia , Interferon beta/uso terapêutico , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Esclerose Múltipla/patologia , Esclerose Múltipla/radioterapia , Fenótipo , Fototerapia , Recidiva , Índice de Gravidade de Doença , Luz Solar , Linfócitos T/metabolismo , Linfócitos T/efeitos da radiação , Transcriptoma/genética
12.
Risk Anal ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492971

RESUMO

A major global catastrophe would likely disrupt trade in liquid fuels. Countries dependent on imported oil products might struggle to sustain industrial agriculture. Island nations importing 100% of refined fuels are particularly vulnerable. Our case study aimed to estimate the agricultural land area and biofuel volumes needed to feed the population of New Zealand in the absence of trade. Results showed that stored diesel would quickly be exhausted with ordinary use (weeks) and even with strict rationing (months). To preserve fuel, we found that farming wheat (requiring as little as 5.4 million liters [L] of diesel per annum) was more fuel-efficient than potatoes (12.3) or dairy (38.7) to feed the national population under a climate-as-usual scenario. In a nuclear winter scenario, with reduced agricultural yields, proportionately greater diesel is needed. The wheat would require 24% of current grain-cropped land, and the canola crop used as feedstock for the required biofuel would occupy a further 1%-7%. Investment in canola biodiesel or renewable diesel refineries could ensure supply for the bare minimum agricultural liquid fuel needs. Were subsequent analysis to favor this option as part of a fuels resilience response and as a tradeoff for routine food use, expansion in refining and canola cropping before a catastrophe could be encouraged through market mechanisms, direct government investment, or a combination of these. Logistics of biofuel refining scale-up, post-catastrophe, should also be analyzed. Further, biodiesel produced in normal times would help the nation meet its emissions reduction targets. Other countries should conduct similar analyses.

13.
Nord J Psychiatry ; : 1-7, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046274

RESUMO

INTRODUCTION: Seasonality in depressive and bipolar disorders, are recognized in the ICD-10/11 and DSM-5 diagnostic systems. The existence of a seasonal pattern of hospital diagnosis of major depression, bipolar disorder and prescription of antidepressant medications has not been evaluated in the Danish population. METHODS: We retrieved date and year for all first-time hospital contacts with depression or bipolar disorder between 1999 and 2019, registered in the Danish National Patient Registry. Depression was defined using the ICD-10 F32-F33 codes, and for bipolar disorder the F30 or F31 codes. Date and year of all first-time purchases of antidepressant medications with ATC codes (N06A) between 1999 and 2021 were retrieved from the Danish National Prescription Registry, containing information on all prescribed drugs dispensed at pharmacies since 1995. Data on sunlight hours from 2012 to 2021 were retrieved from the Danish Metrological Institute. RESULTS: Incidences of hospital diagnoses as well as purchases of medication varied with month and season. The monthly variations were larger for antidepressant medication and smallest for bipolar disorder. The multiple linear regression analysis showed that number of first-time diagnoses of depression or bipolar disorder did not correlate with season. For antidepressant medication the number of first-time prescriptions was significantly lower in summer compared to the winter season. CONCLUSION: This study found a seasonal variation of first-time prescriptions of antidepressant medication. We did not find a seasonal variation in first-time hospital diagnoses. Further research looking into depression severity, polarity of bipolar illness episodes, lag-time for sunlight exposure, and specific parts of the yearly photoperiods should be conducted.

14.
J Environ Manage ; 363: 121393, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850920

RESUMO

Defect engineering is regarded as an effective strategy to boost the photo-activity of photocatalysts for organic contaminants removal. In this work, abundant surface oxygen vacancies (Ov) are created on AgIO3 microsheets (AgIO3-OV) by a facile and controllable hydrogen chemical reduction approach. The introduction of surface Ov on AgIO3 broadens the photo-absorption region from ultraviolet to visible light, accelerates the photoinduced charges separation and migration, and also activates the formation of superoxide radicals (•O2-). The AgIO3-OV possesses an outstanding degradation rate constant of 0.035 min-1, for photocatalytic degrading methyl orange (MO) under illumination of natural sunlight with a light intensity is 50 mW/cm2, which is 7 and 3.5 times that of the pristine AgIO3 and C-AgIO3 (AgIO3 is calcined in air without generating Ov). In addition, the AgIO3-OV also exhibit considerable photoactivity for degrading other diverse organic contaminants, including azo dye (rhodamine B (RhB)), antibiotics (sulflsoxazole (SOX), norfloxacin (NOR), chlortetracycline hydrochloride (CTC), tetracycline hydrochloride (TC) and ofloxacin (OFX)), and even the mixture of organic contaminants (MO-RhB and CTC-OFX). After natural sunlight illumination for 50 min, 41.4% of total organic carbon (TOC) for MO-RhB mixed solution can be decreased over AgIO3-OV. In a broad range of solution pH from 3 to 11 or diverse water bodies of MO solution, AgIO3-OV exhibits attractive activity for decomposing MO. The MO photo-degradation process and mechanism over AgIO3-OV under natural sunlight irradiation has been systemically investigated and proposed. The toxicities of MO and its degradation intermediates over AgIO3-OV are compared using Toxicity Estimation Software (T.E.S.T.). Moreover, the non-toxicity of both AgIO3-OV catalyst and treated antibiotic solution (CTC-OFX mixture) are confirmed by E. coli DH5a cultivation test, supporting the feasibility of AgIO3-OV catalyst to treat organic contaminants in real water under natural sunlight illumination.


Assuntos
Fotólise , Luz Solar , Oxigênio/química , Poluentes Químicos da Água/química , Compostos Azo/química , Catálise , Rodaminas/química
15.
Angew Chem Int Ed Engl ; 63(31): e202404528, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38722260

RESUMO

Natural photoactive systems have evolved to harness broad-spectrum light from solar radiation for critical functions such as light perception and photosynthetic energy conversion. Molecular photoswitches, which undergo structural changes upon light absorption, are artificial photoactive tools widely used for developing photoresponsive systems and converting light energy. However, photoswitches generally need to be activated by light of specific narrow wavelength ranges for effective photoconversion, which limits their ability to directly work under sunlight and to efficiently harvest solar energy. Here, focusing on azo-switches-the most extensively studied photoswitches, we demonstrate effective solar E→Z photoisomerization with photoconversions exceeding 80 % under unfiltered sunlight. These sunlight-driven azo-switches are developed by rendering the absorption of E isomers overwhelmingly stronger than that of Z isomers across a broad ultraviolet to visible spectrum. This unusual type of spectral profile is realized by a simple yet highly adjustable molecular design strategy, enabling the fine-tuning of spectral window that extends light absorption beyond 600 nm. Notably, back-photoconversion can be achieved without impairing the forward solar isomerization, resulting in unique light-reversible solar switches. Such exceptional solar chemistry of photoswitches provides unprecedented opportunities for developing sustainable light-driven systems and efficient solar energy technologies.

16.
Angew Chem Int Ed Engl ; : e202407186, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837631

RESUMO

Although natural sunlight is one of the most abundant and sustainable energy resources, only a fraction of its energy is currently harnessed and utilized in photoactive systems. The development of molecular photoswitches that can be directly activated by sunlight is imperative for unlocking the full potential of solar energy and addressing the growing energy demands. Herein, we designed a series of 2-amino-1,3-bis-azopyrazoles featuring a coupled πn system, resulting in a pronounced redshift in their spectral absorption, reaching up to 661 nm in the red region. By varying the amino substituents of these molecules, highly efficient E→Z photoisomerization under unfiltered sunlight can be achieved, with yields of up to 88.4 %. Moreover, the Z,Z-isomers have high thermal stability with half-lives from days to years at room temperature. The introduction of ortho-amino substitutions and meta-bisazo units leads to a reversal of the n-π* and πn-π* transitions on the energy scale. This change provides a new perspective for further tuning the visible absorption of azo-switches by utilizing the πn-π* band instead of the conventional n-π* band. These results suggest that photoresponsive systems can be powered by sunlight instead of traditional artificial lights, thereby paving the way for sustainable smart materials and devices.

17.
Actas Dermosifiliogr ; 115(3): 288-292, 2024 Mar.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37244395

RESUMO

Few reports describing an association between UV radiation and fixed skin eruptions have been published since 1975. These reactions have received various names, including fixed sunlight eruption, fixed exanthema due to UV radiation, and broad-spectrum abnormal localized photosensitivity syndrome. We present a series of 13 patients (4 men [30.8%] and 9 women [69.2%]) aged between 28 and 56 years who were evaluated for fixed eruptions induced by UV radiation at a dermatology referral hospital in Bogotá, Colombia. The lesions were located on the inner thighs, buttocks, popliteal region, anterior and posterior axilla, and dorsum of the feet. Photoprovocation reproduced lesions in all the affected areas, and histopathology showed changes similar to those seen in fixed drug eruptions. While these UV-provoked reactions may be a type of fixed skin eruption, we cannot rule out that they may also be a distinct condition that simply shares a pathogenic mechanism with fixed eruptions.


Assuntos
Exantema , Transtornos de Fotossensibilidade , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Colômbia/epidemiologia , Luz Solar/efeitos adversos , Transtornos de Fotossensibilidade/etiologia , Transtornos de Fotossensibilidade/patologia , Raios Ultravioleta/efeitos adversos , Exantema/etiologia
18.
Planta ; 258(5): 96, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819558

RESUMO

MAIN CONCLUSION: Sunlight boosts anthocyanin synthesis/accumulation in sunny pericarp of litchi fruit, directly leading to uneven pigmentation. Distribution discrepancy of mineral element aggravates uneven coloration by modulating synthesis/accumulation of anthocyanin and sugar. Uneven coloration, characterized by red pericarp on sunny side and green pericarp on shady side, impacts fruit quality of 'Feizixiao' (cv.) litchi. The mechanisms of this phenomenon were explored by investigating the distribution of chlorophyll, flavonoids, sugars, and mineral elements in both types of pericarp. Transcriptome analysis in pericarp was conducted as well. Sunny pericarp contained higher anthocyanins in an order of magnitude and higher fructose, glucose, co-pigments (flavanols, flavonols, ferulic acid), and mineral elements like Ca, Mg and Mn, along with lower N, P, K, S, Cu, Zn and B (P < 0.01), compared to shady pericarp. Sunlight regulated the expression of genes involved in synthesis/accumulation of flavonoids and sugars and genes functioning in nutrient uptake and transport, leading to asymmetric distribution of these substances. Anthocyanins conferred red color on sunny pericarp, sugars, Ca and Mg promoted synthesis/accumulation of anthocyanins, and co-pigments enhanced color display of anthocyanins. The insufficiencies of anthocyanins, sugars and co-pigments, and inhibition effect of excess K, S, N and P on synthesis/accumulation of anthocyanins and sugars, jointly contributed to green color of shady pericarp. These findings highlight the role of asymmetric distribution of substances, mineral elements in particular, on uneven pigmentation in litchi, and provide insights into coloration improvement via precise fertilization.


Assuntos
Antocianinas , Litchi , Antocianinas/metabolismo , Litchi/genética , Litchi/metabolismo , Frutas/genética , Luz Solar , Flavonoides/metabolismo , Pigmentação , Açúcares/metabolismo
19.
Mov Disord ; 38(11): 2131-2135, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37670567

RESUMO

BACKGROUND: Preliminary studies suggested seasonality of dopaminergic functioning, but it is unknown whether dopamine transporter (DAT) expression in humans is also dependent on the seasons. We, therefore, investigated seasonal and sunlight-dependent effects on DAT availability in early Parkinson's disease (PD) patients and healthy controls. METHODS: DAT single-photon emission computed tomography scans (n = 730) were gathered from the Parkinson's Progression Marker Initiative (PPMI) database. We used global horizontal irradiance (GHI) as proxy for sun exposure/month and assessed associations between striatal DAT availability and season (autumn/winter versus spring/summer), GHI and latitude of the PPMI site. RESULTS: In PD patients, DAT availability in the left caudate nucleus was higher in spring/summer (B [standard error (SE)] = 0.05 [0.02], P = 0.03) and positively associated with higher sun exposure (B [SE] = 0.59 [0.22] × 10-3 , P = 0.007). Latitude (in degrees north) of the PPMI site was negatively associated with DAT availability in both PD and healthy controls. CONCLUSION: Striatal DAT availability may be influenced by daylight exposure. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Doença de Parkinson , Luz Solar , Humanos , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Doença de Parkinson/complicações , Tomografia Computadorizada de Emissão de Fóton Único/métodos
20.
Mult Scler ; 29(3): 343-351, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36250508

RESUMO

BACKGROUND: Multiple sclerosis risk has been shown to have seasonal variations that are more pronounced in higher latitudes. However, this phenomenon has not been adequately studied near the Equator. OBJECTIVE: To explore the risk of multiple sclerosis associated with month, season of birth, and sunlight exposure variables in Colombia. METHODS: In this case-control study, 668 multiple sclerosis cases were matched to 2672 controls by sex and age. Association of multiple sclerosis with each month/season of birth and sunlight exposure variables was estimated with multilevel mixed-effects logistic regression and ecological regression models, respectively. Seasonality in the births of multiple sclerosis was assessed with a non-parametric seasonality test. RESULTS: We found a higher probability of multiple sclerosis in September (0.25; 95% confidence interval (CI) = 0.21-0.31) and lower in March (0.15; 95% CI = 0.10-0.18), which turned non-significant after a multiple comparisons test. Sunlight exposure variables had no significant effect on the risk of MS, and the tests of seasonality in the births of MS did not show significant results. CONCLUSION: Our results show no seasonality in the risk of multiple sclerosis near the Equator, supporting the hypothesis that this phenomenon is latitude dependent.


Assuntos
Esclerose Múltipla , Humanos , Estudos de Casos e Controles , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa