Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Natl Sci Rev ; 11(8): nwae107, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39007011

RESUMO

The magnetic correlations at the superconductor/ferromagnet (S/F) interfaces play a crucial role in realizing dissipation-less spin-based logic and memory technologies, such as triplet-supercurrent spin-valves and 'π' Josephson junctions. Here we report the observation of an induced large magnetic moment at high-quality nitride S/F interfaces. Using polarized neutron reflectometry and DC SQUID measurements, we quantitatively determined the magnetization profile of the S/F bilayer and confirmed that the induced magnetic moment in the adjacent superconductor only exists below T C. Interestingly, the direction of the induced moment in the superconductors was unexpectedly parallel to that in the ferromagnet, which contrasts with earlier findings in S/F heterostructures based on metals or oxides. First-principles calculations verified that the unusual interfacial spin texture observed in our study was caused by the Heisenberg direct exchange coupling with constant J∼4.28 meV through d-orbital overlapping and severe charge transfer across the interfaces. Our work establishes an incisive experimental probe for understanding the magnetic proximity behavior at S/F interfaces and provides a prototype epitaxial 'building block' for superconducting spintronics.

2.
Beilstein J Nanotechnol ; 14: 233-239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865092

RESUMO

The main goal of the present work is the description of the dynamics of spin current and induced magnetization inside a superconducting film S that is in contact with a ferromagnetic insulator layer FI. Spin current and induced magnetization are calculated not only at the interface of the S/FI hybrid structure, but also inside the superconducting film. The new and interesting predicted effect is the frequency dependence of the induced magnetization with a maximum appearing at high temperatures. It is also shown that the increase of the magnetization precession frequency can drastically change the spin distribution of quasiparticles at the S/FI interface.

3.
Beilstein J Nanotechnol ; 12: 913-923, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497739

RESUMO

Employment of the non-trivial proximity effect in superconductor/ferromagnet (S/F) heterostructures for the creation of novel superconducting devices requires accurate control of magnetic states in complex thin-film multilayers. In this work, we study experimentally in-plane transport properties of microstructured Nb/Co multilayers. We apply various transport characterization techniques, including magnetoresistance, Hall effect, and the first-order-reversal-curves (FORC) analysis. We demonstrate how FORC can be used for detailed in situ characterization of magnetic states. It reveals that upon reduction of the external field, the magnetization in ferromagnetic layers first rotates in a coherent scissor-like manner, then switches abruptly into the antiparallel state and after that splits into the polydomain state, which gradually turns into the opposite parallel state. The polydomain state is manifested by a profound enhancement of resistance caused by a flux-flow phenomenon, triggered by domain stray fields. The scissor state represents the noncollinear magnetic state in which the unconventional odd-frequency spin-triplet order parameter should appear. The non-hysteretic nature of this state allows for reversible tuning of the magnetic orientation. Thus, we identify the range of parameters and the procedure for in situ control of devices based on S/F heterostructures.

4.
Beilstein J Nanotechnol ; 11: 1336-1345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974112

RESUMO

We present both theoretical and experimental investigations of the proximity effect in a stack-like superconductor/ferromagnetic (S/F) superlattice, where ferromagnetic layers with different thicknesses and coercive fields are made of Co. Calculations based on the Usadel equations allow us to find the conditions at which switching from the parallel to the antiparallel alignment of the neighboring F-layers leads to a significant change of the superconducting order parameter in superconductive thin films. We experimentally study the transport properties of a lithographically patterned Nb/Co multilayer. We observe that the resistive transition of the multilayer structure has multiple steps, which we attribute to the transition of individual superconductive layers with the critical temperature, T c, depending on the local magnetization orientation of the neighboring F-layers. We argue that such superlattices can be used as tunable kinetic inductors designed for artificial neural networks representing the information in a "current domain".

5.
Beilstein J Nanotechnol ; 11: 807-813, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509494

RESUMO

Single-layer vanadium nitride (VN) and bilayer Pd0.96Fe0.04/VN and VN/Pd0.92Fe0.08 thin-film heterostructures for possible spintronics applications were synthesized on (001)-oriented single-crystalline magnesium oxide (MgO) substrates utilizing a four-chamber ultrahigh vacuum deposition and analysis system. The VN layers were reactively magnetron sputtered from a metallic vanadium target in Ar/N2 plasma, while the Pd1- x Fe x layers were deposited by co-evaporation of metallic Pd and Fe pellets from calibrated effusion cells in a molecular beam epitaxy chamber. The VN stoichiometry and Pd1- x Fe x composition were controlled by X-ray photoelectron spectroscopy. In situ low-energy electron diffraction and ex situ X-ray diffraction show that the 30 nm thick single-layer VN as well as the double-layer VN(30 nm)/Pd0.92Fe0.08(12 nm) and Pd0.96Fe0.04(20 nm)/VN(30 nm) structures have grown cube-on-cube epitaxially. Electric resistance measurements demonstrate a metallic-type temperature dependence for the VN film with a small residual resistivity of 9 µΩ·cm at 10 K, indicating high purity and structural quality of the film. The transition to the superconducting state was observed at 7.7 K for the VN film, at 7.2 K for the Pd0.96Fe0.04/VN structure and at 6.1 K for the VN/Pd0.92Fe0.08 structure with the critical temperature decreasing due to the proximity effect. Contrary to expectations, all transitions were very sharp with the width ranging from 25 mK for the VN film to 50 mK for the VN/Pd0.92Fe0.08 structure. We propose epitaxial single-crystalline thin films of VN and heteroepitaxial Pd1- x Fe x /VN and VN/Pd1- x Fe x (x ≤ 0.08) structures grown on MgO(001) as the materials of a choice for the improvement of superconducting magnetic random access memory characteristics.

6.
Beilstein J Nanotechnol ; 10: 833-839, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019870

RESUMO

We present a study of magnetic structures with controllable effective exchange energy for Josephson switches and memory applications. As a basis for a weak link we propose to use a periodic structure composed of ferromagnetic (F) layers spaced by thin superconductors (s). Our calculations based on the Usadel equations show that switching from parallel (P) to antiparallel (AP) alignment of neighboring F layers can lead to a significant enhancement of the critical current through the junction. To control the magnetic alignment we propose to use a periodic system whose unit cell is a pseudo spin valve of structure F1/s/F2/s where F1 and F2 are two magnetic layers having different coercive fields. In order to check the feasibility of controllable switching between AP and P states through the whole periodic structure, we prepared a superlattice [Co(1.5 nm)/Nb(8 nm)/Co(2.5 nm)/Nb(8 nm)]6 between two superconducting layers of Nb(25 nm). Neutron scattering and magnetometry data showed that parallel and antiparallel alignment can be controlled with a magnetic field of only several tens of Oersted.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa