Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Anal Bioanal Chem ; 416(8): 1809-1820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358532

RESUMO

The existence of slow adsorption-desorption kinetics in chiral liquid chromatography is common knowledge. This may significantly contribute to worsening the efficiency and kinetic performance of a chromatographic run, especially when high flow rates are employed. Many attempts and protocols have been proposed to access this term, the so-called c ads , but they are based on different (theoretical) assumptions. As a consequence, no official method is available for the estimation of the adsorption-desorption kinetics term. In this work, a novel approach to access c ads is presented. This procedure combines experimental results obtained with kinetic and thermodynamic measurements. The investigations have been performed on two zwitterionic teicoplanin chiral stationary phases (CSPs) based on 1.9 µ m fully porous and 2.0 µ m superficially porous particles (FPPs and SPPs), using Z-D,L-Methionine as probe molecule. Kinetic studies have been performed through the combination of both stop-flow and dynamic measurements, while adsorption isotherms have been calculated through Inverse Method. This study has confirmed that, on both particle formats, analyte diffusion on the surface of the particle is negligible, meaning that adsorption is localized, and it has been demonstrated that adsorption-desorption kinetics is strongly dependent on particle geometry and, in particular, on the loading of chiral selector. These findings are fundamental not only to unravel novel aspects of the complex enantiorecognition mechanism but also to optimize the employment of CSPs for ultra-fast and preparative applications.

2.
Molecules ; 29(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999118

RESUMO

In this study, a liquid chromatographic method was developed for the fast determination of lincomycin, polymyxin and vancomycin in a preservation solution for transplants. A Kinetex EVO C18 (150 × 4.6 mm, 2.6 µm) column was utilized at 45 °C. Gradient elution was applied using a mixture of mobile phases A and B, both including 30 mM phosphate buffer at pH 2.0 and acetonitrile, at a ratio of 95:5 (v/v) for A and 50:50 (v/v) for B. A flow rate of 1.0 mL/min, an injection volume of 20 µL and UV detection at 210 nm were used. A degradation study treating the three antibiotics with 0.5 M hydrochloric acid, 0.5 M sodium hydroxide and 3% H2O2 indicated that the developed method was selective toward lincomycin, polymyxin, vancomycin and their degradation products. Other ingredients of the preservation solution, like those from the cell culture medium, did not interfere. The method was validated with good sensitivity, linearity, precision and accuracy. Furthermore, lincomycin, polymyxin and vancomycin were found to be stable in this preservation solution for 4 weeks when stored at -20 °C.


Assuntos
Lincomicina , Polimixinas , Vancomicina , Lincomicina/análise , Vancomicina/análise , Polimixinas/análise , Cromatografia Líquida/métodos , Soluções para Preservação de Órgãos , Antibacterianos/análise , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos
3.
Chirality ; 35(12): 937-951, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37461229

RESUMO

Derivatives of the nido-7,8-C2 B9 H12 (1-) (dicarbollide ion) and [3,3'-Co-(1,2-C2 B9 H11 )2 ](1-) cobalt sandwich (COSAN) ion represent groups of extremely chemically and thermally stable abiotic compounds. They are being investigated in many research areas, that is, medicinal chemistry, material sciences, analytical chemistry, and electrochemistry. The chirality of these compounds remains still grossly overlooked, what is also reflected in limited number of reports on their chiral separations. Continued progress depends on reliable, fast, and cost-effective methods for such separations. Recently, chiral separations of COSAN derivatives were achieved in liquid chromatography and supercritical fluid chromatography. Only five anionic derivatives of nido-7,8-C2 B9 H12 (1-) were successfully enantioseparated in liquid chromatography. Efforts to separate anionic nido-7,8-C2 B9 H12 (1-) in supercritical chromatography have failed, and only a few dicarbollide ions were separated using liquid chromatography. Generally, all chiral separations in liquid chromatography took about 30 min. Herein, we identify a versatile column capable of separating both COSAN and nido-7,8-C2 B9 H12 (1-) derivatives and achieve faster analyses times employing commercially available superficially porous chiral stationary phases. The semisynthetic hydroxypropyl ß-cyclodextrin-based column (CDShell-RSP) is identified as the column of choice from the tested columns by separating 19 of 27 compounds from each structural motifs tested mainly in less than 10 min. The dihydroxyalkyl, oxygen-bridged hydroxyalkyl, and bisphenylene-bridged COSAN derivatives were baseline separated in less than 5 min exceeding the results of supercritical fluid chromatography. Methods developed herein will aid synthetic chemists without the possession of a supercritical fluid chromatograph to achieve fast chiral separations of COSAN and derivatives of nido-7,8-C2 B9 H12 (1-) on a common liquid chromatograph without the need of dedicated instrumentation.

4.
J Sep Sci ; 46(8): e2200894, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36757818

RESUMO

This paper investigates the suitability of an ultra-high-performance liquid chromatography/high-performance liquid chromatography hybrid system for ultra-high-performance liquid chromatography applications. Thus, the effect of extra column band broadening, the gradient system, and the injection system were tested and optimized according to their capabilities. An increase of the theoretical plate number up to a factor of two is achieved by the optimization of the extra column volume into the typical ultra-high-performance liquid chromatography range (<10 µl). Moreover, for qualitative purposes injections of volumes typical for ultra-high-performance liquid chromatography methods are precise. Despite this, a lack of precision and accuracy was determined for the gradient system, and the dwell volume meets the typical specification range for conventional HPLC systems. Therefore, hybrid systems are the intercept between both spectra and are limitedly suitable for ultra-high-performance liquid chromatography applications. Another way to approximate ultra-high-performance liquid chromatography performance using a high-performance liquid chromatography system is superficially porous particles. Thus, H/u curves of 5 µm superficially porous and 3 µm fully porous particles were recorded in order to determine the effect of the particle technology resulting in comparable performance of the used stationary phases.

5.
J Sep Sci ; 46(8): e2200738, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36806481

RESUMO

A loading and productivity study was done using three racemates on vancomycin and teicoplanin-bonded chiral stationary phases of different particle formats. Two columns were packed with 2.7 µm superficially porous particles and two columns were packed with identically bonded 5 µm fully porous particles. The last two columns were packed with specially synthesized 4.5 µm vancomycin and teicoplanin superficially porous particles. The loading of different chiral compounds showed that the columns filled with 2.7-µm chiral stationary phases were inappropriate for preparative separations due to their very low permeability which precluded high flow rates. However, columns containing 4.5 µm superficially porous (core-shell) particles were as effective for small-scale preparative chiral separations as columns filled with classical 5 µm fully porous particles. Comparing the 4.5 µm superficially porous particles and 5 µm fully porous particles teicoplanin columns, the observed respective productivities of 270 and 265 mg/g chiral phase/h for 5-methyl-5-phenyl hydantoin enantiomers were obtained. Particular attention was given to the peculiar case of the mianserin enantiomeric separation on vancomycin columns that gave observed productivities of 200 and 205 mg/g chiral phase/h on the 4.5 µm superficially porous particles and 5 µm fully porous particles, respectively.

6.
Molecules ; 28(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770866

RESUMO

The enantioselective potential of two macrocyclic glycopeptide-based chiral stationary phases for analysis of 28 structurally diverse biologically active compounds such as derivatives of pyrovalerone, ketamine, cathinone, and other representatives of psychostimulants and antidepressants was evaluated in sub/supercritical fluid chromatography. The chiral selectors immobilized on 2.7 µm superficially porous particles were teicoplanin (TeicoShell column) and modified macrocyclic glycopeptide (NicoShell column). The influence of the organic modifier and different mobile phase additives on the retention and enantioresolution were investigated. The obtained results confirmed that the mobile phase additives, especially water as a single additive or in combination with basic and acidic additives, improve peak shape and enhance enantioresolution. In addition, the effect of temperature was evaluated to optimize the enantioseparation process. Both columns exhibited comparable enantioselectivity, approximately 90% of the compounds tested were enantioseparated, and 30% out of them were baseline enantioresolved under the tested conditions. The complementary enantioselectivity of the macrocyclic glycopeptide-based chiral stationary phases was emphasized. This work can be useful for the method development for the enantioseparation of basic biologically active compounds of interest.


Assuntos
Cromatografia com Fluido Supercrítico , Cromatografia com Fluido Supercrítico/métodos , Estereoisomerismo , Glicopeptídeos/química , Teicoplanina/química , Preparações Farmacêuticas
7.
Chirality ; 34(4): 620-629, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064695

RESUMO

Eleven racemic ethanolamine derivatives were prepared, and their enantiomers were separated using liquid chromatography with various chiral columns. These derivatives included chiral vicinal amino alcohols, ß-hydroxy ureas, ß-hydroxy thioureas, and ß-hydroxy guanidines, all of which are present in many active pharmaceutical ingredients. The screening study was performed with six chiral stationary phase containing columns, including four recently introduced superficially porous particles bonded with two macrocyclic glycopeptides, a cyclodextrin derivative and a cyclofructan derivative. The two remaining columns contained chiral stationary phases, based on either a cellulose derivative or derivatized amylose, both bonded to fully porous particles. The cyclodextrin and cellulose-based chiral stationary phases proved to be the most broadly effective selectors and were able to separate 8 and 7 of the 11 tested compounds, respectively. With respect to analyte structural features, marked differences in enantiorecognition were observed between compounds containing phenyl and cyclohexyl groups adjacent to the stereogenic center. Additionally, replacing a small electronegative oxygen atom by a larger and less electronegative sulfur atom induced a significant difference in chiral recognition by the cellulose derivative as well as by the vancomycin-based chiral selectors.


Assuntos
Etanolamina , Glicopeptídeos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Glicopeptídeos/química , Estereoisomerismo
8.
J Sep Sci ; 45(20): 3811-3826, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35986632

RESUMO

A trilobal capillary-channeled polymer fiber stationary phase is evaluated for its performance for intact protein separations under reversed-phase high-performance liquid chromatography conditions. The separation quality, operational characteristics, and protein dynamic loading capacity on the fiber phases are compared to commercially-available superficially porous and monolithic columns. The trilobal or "y-shaped" polypropylene fiber phase was employed to separate a synthetic mixture of five proteins (having diverse chemistries and molecular weights). The separation quality was evaluated based on the resolution, peak heights/recoveries, peak widths, and peak areas. The present work illustrates the unique ability to operate at higher linear velocities (47.5 mm/s) while maintaining lower back pressures (∼4 MPa), faster separation times (<8 min), and faster gradient rates using the fiber columns while yielding comparable chromatographic performance to the commercial columns. The separations employing the commercial stationary phases operate at lower linear velocities (∼3.0 mm/s), higher back pressures (∼9 MPa), require longer separation times (10 min), and require slightly higher compositions of organic mobile phase to effect protein elution. Likewise, based on breakthrough loading analysis of lysozyme and bovine serum albumin, the trilobal, polypropylene C-CP fiber column stationary phases demonstrate 3-9X greater binding capacities on a bed volume basis versus the commercial columns.


Assuntos
Polímeros , Polipropilenos , Polímeros/química , Porosidade , Polipropilenos/química , Cromatografia de Fase Reversa , Soroalbumina Bovina/química , Cromatografia Líquida de Alta Pressão/métodos
9.
Biomed Chromatogr ; 35(7): e5087, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33566360

RESUMO

Types of particles have been fundamental to LC separation technology for many years. Originally, LC columns were packed with large-diameter (>100 µm) calcium carbonate, silica gel, or alumina particles that prohibited fast mobile-phase speeds because of the slow diffusion of sample molecules inside deep pores. During the birth of HPLC in the 1960s, superficially porous particles (SPP, ≥30 µm) were developed as the first high-speed stationary-phase support structures commercialized, which permitted faster mobile-phase flowrates due to the fast movement of sample molecules in/out of the thin shells. These initial SPPs were displaced by smaller totally porous particles (TPP) in the mid-1970s. But SPP history repeated when UHPLC emerged in the 2000s. Stationary-phase support structures made from sub-3-µm SPPs were introduced to chromatographers in 2006. The initial purpose of this modern SPP was to enable chromatographers to achieve fast separations with high efficiency using conventional HPLCs. Later, the introduction of sub-2-µm SPPs with UHPLC instruments pushed the separation speed and efficiency to a very fast zone. This review aims at providing readers a comprehensive and up-to-date view on the advantages of SPP materials over TPPs historically and theoretically from the material science angle.


Assuntos
Cromatografia Líquida de Alta Pressão , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Microesferas , Tamanho da Partícula , Porosidade
10.
J Sep Sci ; 43(15): 2964-2970, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32388922

RESUMO

Method qualification is a key step in the development of routine analytical monitoring of pharmaceutical products. However, when relying on published monographs that describe longer method times based on older high-performance liquid chromatography column and instrument technology, this can delay the overall analysis process for generated drug products. In this study, high-throughput ultrahigh pressure liquid chromatography techniques were implemented to decrease the amount of time needed to complete a 24-run sequence to identify linearity, recovery, and repeatability for both drug assay and impurity analysis in 16 min. Multiple experimental parameters were tested to identify a range of experimental settings that could be used for the sequence while still maintaining this fast analysis time. The full sequence was replicated on a different system and with different columns, further demonstrating its robustness.


Assuntos
Preparações Farmacêuticas/análise , Cromatografia Líquida de Alta Pressão
11.
J Sep Sci ; 43(9-10): 1737-1745, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32125067

RESUMO

Three columns packed with 2.0 µm superficially porous particles, 1.7 µm fully porous particles, and monodisperse 1.9 µm fully porous particles with narrow particle size distribution have been deeply characterized from a kinetic point of view. The 1.9 µm column showed excellent kinetic performance, comparable to that of the superficially porous one. These two columns also exhibit flatter c-branches of the van Deemter curve compared to the 1.7 µm fully porous particles column, resulting in smaller loss of efficiency when they are operated at higher flow rates than the optimal ones. The independent evaluation of each contribution to band broadening has revealed that the difference in kinetic performance comes from the very small eddy dispersion contribution on the 1.9 µm column, surprisingly even lower than that of the superficially porous one. This finding suggests a very good packing of the monodisperse 1.9 µm column. On the other hand, the potential of 1.7 µm fully porous particles is completely broken down by the strong frictional heating effect already arising at relatively low flow rates.

12.
Anal Bioanal Chem ; 410(10): 2457-2465, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29340722

RESUMO

About ten years after their introduction to the market (happened in 2006), the so-called second generation superficially porous particles (SPPs) have undoubtedly become the benchmark as well as, very often, the preferred choice for many applications in liquid chromatography (LC), when high efficiency and fast separations are required. This trend has interested practically all kinds of separations, with the only exception of chiral chromatography (at least so far). The technology of production of base SPPs is advanced, relatively simple and widely available. The deep investigation of mass transfer mechanisms under reversed-phase (RP) and normal-phase (NP) conditions for achiral separations has shown the advantages in the use of these particles over their fully porous counterparts. In addition, it has been demonstrated that SPPs are extremely suitable for the preparation of efficient packed beds through slurry packing techniques. However, the research in this field is in continual evolution. In this article, some of the most advanced concepts and modern applications based on the use of SPPs, embracing in particular ultrafast chiral chromatography and the design of SPPs with engineered pore structures or very reduced particle diameter, are revised. We describe modern trends in these fields and focus on those aspect where further innovation and research will be required. Graphical Abstract Word cloud of cutting edge applications of superficially porous particles in liquid chromatography.

13.
Chirality ; 30(9): 1067-1078, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29969166

RESUMO

A modified macrocyclic glycopeptide-based chiral stationary phase (CSP), prepared via Edman degradation of vancomycin, was evaluated as a chiral selector for the first time. Its applicability was compared with other macrocyclic glycopeptide-based CSPs: TeicoShell and VancoShell. In addition, another modified macrocyclic glycopeptide-based CSP, NicoShell, was further examined. Initial evaluation was focused on the complementary behavior with these glycopeptides. A screening procedure was used based on previous work for the enantiomeric separation of 50 chiral compounds including amino acids, pesticides, stimulants, and a variety of pharmaceuticals. Fast and efficient chiral separations resulted by using superficially porous (core-shell) particle supports. Overall, the vancomycin Edman degradation product (EDP) resembled TeicoShell with high enantioselectivity for acidic compounds in the polar ionic mode. The simultaneous enantiomeric separation of 5 racemic profens using liquid chromatography-mass spectrometry with EDP was performed in approximately 3 minutes. Other highlights include simultaneous liquid chromatography separations of rac-amphetamine and rac-methamphetamine with VancoShell, rac-pseudoephedrine and rac-ephedrine with NicoShell, and rac-dichlorprop and rac-haloxyfop with TeicoShell.


Assuntos
Antibacterianos/química , Cromatografia Líquida de Alta Pressão/instrumentação , Vancomicina/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Espectrofotometria Ultravioleta , Estereoisomerismo
14.
J Sep Sci ; 41(1): 99-124, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28994266

RESUMO

The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications.

15.
Chem Eng Sci ; 185: 243-255, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30613108

RESUMO

The effects of hydrodynamic radius on the transport of solute molecules in packed beds of wide-pore superficially porous particles (SPP) are studied using pore-scale simulation. The free molecular diffusion rate varies with radius through the Stokes-Einstein relation. Lattice Boltzmann and Langevin methods are used to model fluid motion and the transport of an ensemble of solute molecules in the fluid, providing statistics on solute concentration, flux, molecule age and residence time, as a function of depth in the SPP. Intraparticle effective diffusion and bed dispersion coefficients are calculated and correlated with the hydrodynamic radius and accessible porosity. The relative importance of convection and diffusion are found to depend on the molecule (tracer) size through the diffusion rate, and convection effects are more significant for larger, slower-diffusing molecules. When larger molecules are utilized, the intraparticle concentration is reduced in proportion to the local particle porosity, leading to a natural definition of the accessible porosity used in size exclusion chromatography (SEC). Although the pore shape is complex, the SEC constant K can be calculated directly from simulation. Simulation demonstrates that the effective diffusion coefficient is elevated near the particle hull, which is largely open to interstitial flow, and decreases with depth into the particle. All molecules studied here have transport access to the entire particle depth, although the accessible volume at a given depth depends on their size. The first passage time into the particle is well predicted by the diffusion rate, but residence time is influenced by convection, shortening the average visit duration. These results are of interest in "perfusion" chromatography where convection is thought to increase separation efficiency for large biomolecules.

16.
Chirality ; 27(11): 788-94, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26377753

RESUMO

A superficially porous particle (SPP)-based hydroxypropyl-ß-cyclodextrin (HPBCD) chiral stationary phase (CSP) was produced and its chromatographic performance was compared to both 5 µm and 3 µm fully porous particle (FPP)-based CSPs. The relative surface coverage of the HPBCD chiral selector on each particle was approximately equal, which resulted in equivalent enantiomeric selectivity (α) values on each phase when constant mobile phase conditions were used. Under such conditions, the SPP column resulted in greatly reduced analysis times and three times greater efficiencies compared to the FPP columns. When higher flow rates were used, efficiency gains per analysis times were five times greater for the SPP column compared to the FPP-based columns. When the mobile phases were altered to give similar analysis times on each column, resolution values were doubled for the SPP column. Finally, the novel SPP based HPBCD column proved to be stable for 500 injections under high flow rate (4.5 mL/min) and high pressure (400 bar) conditions used for an ultrafast (~45 sec) enantiomeric separation.

17.
J Sep Sci ; 38(17): 2968-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26075936

RESUMO

Three mixed-mode high-performance liquid chromatography columns packed with superficially porous carbon/nanodiamond/amine-polymer particles were used to separate mixtures of cannabinoids. Columns evaluated included: (i) reversed phase (C18 ), weak anion exchange, 4.6 × 33 mm, 3.6 µm, and 4.6 × 100 mm, 3.6 µm, (ii) reversed phase, strong anion exchange (quaternary amine), 4.6×33 mm, 3.6 µm, and (iii) hydrophilic interaction liquid chromatography, 4.6 × 150 mm, 3.6 µm. Different selectivities were achieved under various mobile phase and stationary phase conditions. Efficiencies and peak capacities were as high as 54 000 N/m and 56, respectively. The reversed phase mixed-mode column (C18 ) retained tetrahydrocannabinolic acid strongly under acidic conditions and weakly under basic conditions. Tetrahydrocannabinolic acid was retained strongly on the reversed phase, strong anion exchange mixed-mode column under basic polar organic mobile phase conditions. The hydrophilic interaction liquid chromatography column retained polar cannabinoids better than the (more) neutral ones under basic conditions. A longer reversed phase (C18 ) mixed-mode column (4.6 × 100 mm) showed better resolution for analytes (and a contaminant) than a shorter column. Fast separations were achieved in less than 5 min and sometimes 2 min. A real world sample (bubble hash extract) was also analyzed by gradient elution.


Assuntos
Canabinoides/análise , Aminas/química , Canabinoides/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Cromatografia de Fase Reversa/métodos , Dronabinol/análise , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Nanodiamantes/química , Nanopartículas/química , Nanotecnologia/métodos , Compostos Orgânicos/química , Polímeros/química , Porosidade , Detecção do Abuso de Substâncias/métodos
18.
J Sep Sci ; 37(3): 189-97, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24302641

RESUMO

The aim of this study was to evaluate the possibilities/limitations of recent RP-LC columns packed with 1.6 µm superficially porous particles (Waters Cortecs) and to compare its potential to other existing sub-2 µm core-shell packings. The kinetic performance of Kinetex 1.3 µm, Kinetex 1.7 µm and Cortecs 1.6 µm stationary phases was assessed. It was found that the Kinetex 1.3 µm phase outperforms its counterparts for ultra-fast separations. Conversely, the Cortecs 1.6 µm packing seemed to be the best stationary phase for assays with longer analysis time in isocratic and gradient modes, considering small molecules and peptides as test probes. This exceptional behaviour was attributed to its favourable permeability and somewhat higher mechanical stability (ΔPmax of 1200 bar). The loading capacity of these three columns was also investigated with basic and neutral drugs analysed under acidic conditions. It appears that the loading capacities of Cortecs 1.6 µm and Kinetex 1.7 µm were very close, while it was reduced by 2-7-fold on the Kinetex 1.3 µm packing. However, this observation is dependent on the nature of the compound and certainly also on mobile phase conditions.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Cromatografia Líquida de Alta Pressão/instrumentação , Imunoglobulina G/isolamento & purificação , Preparações Farmacêuticas/isolamento & purificação , Resinas Sintéticas/química , Cromatografia Líquida de Alta Pressão/métodos , Tamanho da Partícula , Porosidade
19.
J Sep Sci ; 37(20): 2837-43, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25155847

RESUMO

Due to the lack of chromophores in many macrolides, analytical methods based on mass spectrometry and electrochemical detection coupled to liquid chromatography have been suggested to be suitable for the quantification of macrolides in complex matrices. In this study, a simple and sensitive analytical method was established for the simultaneous measurement of nine macrolides in human urine by combining a sub-3 µm superficially porous particle packed column with charged aerosol detection. After thorough investigation of various sample preparation methods, including two liquid-liquid extraction methods and four solid-phase extraction methods, HLB solid-phase extraction was selected and further optimized. Absolute recovery of the optimized sample preparation method ranged from 99.5-110.2%, indicating its very high extraction/clean-up efficiency. For chromatography, parameters influencing macrolide separation were systematically optimized, and the resulting conditions allowed baseline separation of nine macrolides within 24 min using a very simple mobile phase. The established method was validated for linearity, limit of detection, limit of quantification, absolute recovery, and precision. Based on its limit of detection (0.025-0.100 µg/mL), the method had similar or greater sensitivity than most methods based on electrochemical detection. It was found that the current method was appropriate for application to real human urine samples after drug administration.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Macrolídeos/urina , Aerossóis , Cromatografia Líquida de Alta Pressão/instrumentação , Humanos , Limite de Detecção , Padrões de Referência , Espectrometria de Massas em Tandem
20.
J Chromatogr A ; 1713: 464538, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38043163

RESUMO

To determine the efficiency that can be obtained in a packed-bed liquid-chromatography column for a particular analyte, a correct determination of the molecular and effective diffusion coefficients (Dm and Deff) of the analyte is required. The latter is usually obtained via peak parking experiments wherein the flow is stopped. As a result, the column pressure rapidly dissipates and the measurement is essentially conducted at ambient pressure. This is problematic for analytes whose retention depends on pressure, such as proteins and potentially other large (dipolar) molecules. In that case, a conventional peak parking experiment is expected to lead to large errors in Deff. To obtain a better estimate ofDeff, the present study reports on the use of a set-up enabling peak parking measurements under pressurized conditions. This approach allowed us to report, for the first time, Deff for proteins at elevated pressure under retained conditions. First, Deff was determined at a (average) pressure of about 105 bar for a set of proteins with varying size, namely: bradykinin, insulin, lysozyme, ß-lactoglobulin, and carbonic anhydrase in a column packed with 400 Å core-shell particles. The obtained data were then compared to those of several small analytes: acetophenone, propiophenone, benzophenone, valerophenone, and hexanophenone. A clear trend between Deff and analyte size was observed. The set-up was then used to determine Deff of bradykinin and lysozyme at variable (average) pressures ranging from 28 bar to 430 bar. These experiments showed a decrease in intra-particle and surface diffusion with pressure, which was larger for lysozyme than bradykinin. The data show that pressurized peak parking experiments are vital to correctly determine Deff when the analyte retention varies significantly with pressure.


Assuntos
Bradicinina , Muramidase , Porosidade , Cinética , Cromatografia Líquida , Proteínas , Difusão , Tamanho da Partícula , Cromatografia Líquida de Alta Pressão/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa